マシンコントロール/ マシンガイダンスバックホウの 現場対応集 [施工者向け]

はじめに

国土交通省では、平成 25 年度より 10,000m³以上の土工を含む直轄工事で「TS を用いた出来形管理(土工編)」を使用原則化すると共に、①「TS を用いた出来形管理(土工編)(10,000m³未満の土工)」、②「MC(モータグレーダ)技術」、③「MC/MG(ブルドーザ)技術」、④「MG(バックホウ)技術」、⑤「TS・GNSS による締固め管理技術」の5つの情報化施工技術を今後5ヶ年の一般化推進技術と位置づけて更なる普及促進に取り組んできました。

更に、H28年度からはICT活用工事(土工)においてMC/MG(3D)の活用を加速させています。

ICT 施工技術の普及・推進に向けては、利用者が高度・高機能な技術を使いこなし、トラブルへの迅速な対応や機能の応用など、技術の持つ能力を最大限に活かすノウハウを修得することが不可欠です。

本現場対応集は、情報化施工技術の特徴を活かすノウハウの一部として、3D の MC/MG システムを基準としてこれまでの試験施工結果から、現場でのトラブル対応や工夫をとりまとめたものです。

また、「MC/MG(バックホウ)技術」については、技術の革新や機能の改良が進んでおり、本書でとりまとめた課題、課題への対応方法も適宜変わっていくことが想定されますが、本書は平成29年度時点の調査結果を元に、事例として整理しております。

目次

1.	現場対応集の構成と使い方	1
2.		
	1 システムの選定	
	2.1.2 「MG (バックホウ) 技術」の種類【MG (バックホウ) 全般	=
	2.1.3 「MC/MG (バックホウ) 技術」の種類【MC/MG (バックホ	
	2.1.4 計測機器の選定【3DMC/MG (バックホウ)】	
	2.1.5 通信機器の選定【3DMC/MG(バックホウ)】	
2	2 システムの調達	
	2.2.1 必要なシステム【3DMC/MG(バックホウ)全般】	8
	2.2.2 システムの調達【3DMC(バックホウ)共通】	0
	2.2.3 システムの調達【3DMG(バックホウ)共通】	6
	2.2.4 他社システムとの組合せ【3DMC/MG(バックホウ)共通】	9
	2.2.5 システムの利用期間【3DMC(バックホウ)共通】	10
	2.2.6 システムの利用期間【3DMG(バックホウ)共通】	10
3.	計測精度の確保	11
	1 システムの精度	
	3.1.1 システムの性能【3DMC/MG(バックホウ)】	
	3.1.2 性能の証明【3DMC/MG(バックホウ)】	
3	2 施工の精度	
	3.2.1 施工時の精度確認【3DMC/MG(バックホウ)】	
	3.2.2 計測距離の制限【3DMC/MG(バックホウ)】	
4.		
	1 データの構成	
•	4.1.1 データの種類【3DMC/MG(バックホウ)】	
	4.1.2 データ作成に必要なソフトウェア【3DMC/MG(バックホウ)	
Δ	2 データの作成例	
1	4.2.1 設計データ作成上のポイント【3DMC/MG(バックホウ)】	
	4.2.2 設計データ作成上のポイント【3DMC/MG(バックホウ)】	
	4.2.3 設計データ作成上のポイント【3DMC/MG(バックホウ)】	
	4.2.4 設計データ作成上のポイント【3DMC/MG(バックホウ)】	
5	機器取り付け・システム設定	
	UK BER BER TO THE SECOND OF TH	
	1 機器設置【3DMC/MG(バックホウ)共通】 2 キャリブレーション【3DMC/MG(バックホウ)共通】	
6.		
	旭工 1 施工および施工管理【3DMC/MG(バックホウ)共通】	
O		
	6.1.1 記載内容	
0		
6	2 施工中のトラブル	
	6.2.1 データ作成範囲の設定ミス【3DMC/MG(バックホウ)】	
	6.2.2 計測機器設置のトラブル【3DMC/MG(バックホウ)】	25

1. 現場対応集の構成と使い方

「MG(バックホウ)技術」とは、「3 次元設計データ」を搭載したバックホウにより掘削・法面整形作業等を行うことで、「3 次元設計データとバケット位置との標高差」等の操作支援情報をオペレータに提供して、オペレータがバックホウの全ての操作を行う技術です。

また、「MC (バックホウ) 技術」とは、「3 次元設計データ」を搭載したバックホウにより掘削・法面整形作業等を行うことで、「3 次元設計データとバケット位置との標高差」等の操作支援情報をオペレータに提供するとともに、ブームやアーム、バケット操作の半自動制御を行う(バックホウでは、設計面より下に刃先が下がらないよう制御されます) 技術です。

本技術は、従来の施工目標として設置されていた丁張りを削減し、現場作業の効率化・省人化の 実現に多大な効果を発揮する技術です。しかし、本技術導入時に、最大の効果を得るためには、これまでとは違った準備作業や、運用体制を確立する必要がある等、多くのノウハウが必要となります。

本技術は施工者が利用する技術であり、発注者より本技術の利用に対して制限を受ける事項はありません。

しかし、技術提案事項などの履行確認の観点から、本技術導入時の確認が必要な事項や、出来形確保の観点から施工状況の把握を行う等、受・発注者で実施すべき事項があります。これらを踏まえ、本書では、「MC/MG(バックホウ)技術」適用時の主要5パートについて、現場調査に基づき運用上の留意点や対応例を整理しました。

1.システム適用条件の事前調査 (1)計測障害の事前調査 (2)測位技術の選定 計測機器(TS: GNSS)の選択 システム適用条件の確認 [GNSSの場合] [GNSS] 無線通信障害がない 衛星の補足が困難となる ことを確認 狭小部や山間部でない現場 · FIX解データを得る循 である 星捕捉状態の確保 2. 計測精度の確保 (1)計測格度の確認 基準局の設置 [GNSSの場合] 計測座標と既知座標とが合致することを確認 任意点の計測座標が合致することを確認(1箇所を2回計測) 3. 3次元設計データの作成 (1)設計図書(平面図、縦断図、 (2)3次元設計データの作成 横断図)、線形計算書の貸与 3次元設計データ作成ソフト

(3)3次元設計データの確認

結果の確認

(3)MC/MGシステムの選定・調達

場合)

必要機能を有するシステムの選定

パケット刃先の3次元位置データ(平面

位置・高さ 勾配)と設計データとの差

分を計算し、車載へ提供する(MGの)

バケットの刃先の3次元位置データ(平

面位置・高さ 勾配)と設計データとの 差分を計算し、車載へ提供し、重機の 稼働を半自動制御(MCの場合)

3次元設計データの照査

- 施工者が3次元設計データの照査 監督職員が基3次元設計データの照査
 - 3ケージ・ナーク

3次元設計データ のイメージ

4. 機器取付・システム設定

2次元CADデータの照査

起工測量結果との差 異の確認

不備の確認

(1)建設機械への機器取付・現場調整

機器取付·現場調整

- 建設機械への機器の適切な取付
- ・ パケット幅・ブーム・アームの長さ等の正確 な測定、車載PCへの必要情報の入力

(2)設計 データ作成・搭載

道路中心線形(又

出来形横断 面形状

は堤防法線)

設計データ

・ 3次元設計データの建設機械への搭載

5. 施工

(1)施工格度の確認

バケナ刃先の位置情報の 格度確認

(2)施工

ウェアにより作成

工事基準点·平面線形·縦 断線形·出来形横断面形

状を基準点測量結果や設計図書等から作成

- ・ 車載PCの確認
- 施工機械の操作

施工状況をリアルタイム で確認

本書の構成

2. システム適用条件の事前調査

2.1 システムの選定

2.1.1 「MC (バックホウ) 技術」の種類【MC (バックホウ) 全般】

2.1.1	1	1	『生妖【MC(ハックハッ) 土成】			
記号	事前調査 一 ①					
質問者分類	利用者	質問種別	留意点			
質問:Q	MC(バックホウ)のシステム(測位部)を選定する際のポイントはどこですか?					
回答:A	【3DMC(バックホウ)】					
	※ MG との違い					
	・MC では、刃先が設計面より下に下がらないため、オペレータの技能に関わらず過掘りを防止できる。					
	・3DMC(バックホウ)は、主に土工の掘削や法面整形に利用されます。刃先の位置を求める計測技術としては、以下に示す高精度な計測装置が用いられています。					
			の入力方法に差はありません。			
	※ どのシステムでも	、機器の設置	置や重機側のキャリブレーション作業に差はありません。			
	【RTK-GNSS 仕様】					
			-GNSSの基準局1台に対して、複数台の移動局となるMC(バ			
	ックホウ)の計測に □ RTK-GNSSの基		C(バックホウ)以外に、例えば、締固め管理、自主的な出来形・			
		るローバと共	有することができます(ただし、それぞれの移動局側システムは			
	重機用GNSS 測量機器(基準局):重機(移動局)=1:多のシステム 高さの計測精度がTSに比べて劣る					
	【VRS 方式の RTK-GNSS の活用】					
	□ RTK-GNSS の方式の一つとして VRS 方式が利用できます。基準局の代わりに、携帯電話を通じて基準局相当の電波を受信する方式です(契約料と通信料がかかります)。 □ 計測精度は RTK-GNSS と同等です。携帯電話などの電波状況により計測の可否が変化し					
	ます。					
	【自動追尾式 TS 仕様】	l				
			つき、1台の「MC(バックホウ)技術」の追尾・計測が可能です。			
	□ TS から追尾可能な計測範囲は、自動追尾 TS から移動局となるバックホウのプリズムを遮らない範囲で、自動追尾式 TS から数百メートル程度の範囲で計測が可能です。					
	□ 自動追尾式 TS では、移動の度に旋回作業を行い旋回中心を求めることが必要です。自動 追尾式 TS 式 MC(バックホウ)は、開発メーカが限定されています。(H29 時点)					
		測量	追尾式TS 機器: 重機=1:1のシステム 度(高さ計測精度=±5mm程度)			

【補足説明】

※ RTK-GNSS の高さの計測値は±30mm 程度の幅で不連続に変動しています。

2.1.2 「MG (バックホウ) 技術」の種類【MG (バックホウ) 全般】

	-	1	, <u> </u>			
記号	事前調査 一 ②					
質問者分類	利用者	質問種別	留意点			
質問:Q	MG(バックホウ)のシステム(測位部)を選定する際のポイントはどこですか?					
回答:A	【3DMG(バックホウ)】					
	※ MC との違い					
	・MGでは、設計と刃先との差はモニタ画面で表示されますが、操作は全てオペレータが行います。					
	・3DMG(バックホウ)は、主に土工の掘削や法面整形に利用されます。刃先の位置を求める計測 技術としては、以下に示す高精度な計測装置が用いられています。					
			7の入力方法に差はありません。			
	※ どのシステムでも 【RTK-GNSS 仕様】	、機器の設置	置や重機側のキャリブレーション作業に差はありません。			
			K-GNSS の基準局1台とレーザ基準局1台につき、複数台の きです。			
	□ RTK-GNSS Ø	基準局は、 N 用するローバ	IC (バックホウ)以外に、例えば、締固め管理、自主的な出来と共有することができます(ただし、それぞれの移動局側システ			
	重機用GNSS 測量機器(基準局):重機(移動局)=1:多のシステム 高さの計測精度がTSに比べて劣る					
	_	方式の RTK-GNSS の活用】				
		GNSS の方式の一つとして VRS 方式が利用できます。 基準局の代わりに、携帯電話 て基準局相当の電波を受信する方式です (契約料と通信料がかかります)。				
			同等です。携帯電話などの電波状況により計測の可否が変化し			
	ます。					
	【自動追尾式 TS 仕様】					
		•	つき、1台の「MG(バックホウ)技術」の追尾・計測が可能です。			
			は、自動追尾 TS から移動局となるバックホウのプリズムを遮ら から数百メートル程度の範囲で計測が可能です。			
			の度に旋回作業を行い旋回中心を求めることが必要です。自動			
)は開発メーカが限定されています。(H29 時点)			
		自動追尾式TS 測量機器: 重機=1:1のシステム 高精度(高さ計測精度=±5mm程度)				
	【館見わ白動泊尼式 TC	仕样 【				

【簡易な自動追尾式 TS 仕様】

□ 小規模工事では、自動追尾式 TS と出来形管理用の端末を組合せ、プリズムをバケットに設置し、端末をオペレータ席に設置する 3DMG(バックホウ)も利用可能です。

【補足説明】

- ※ RTK-GNSS の高さの計測値は±30mm 程度の幅で不連続に変動しています。
- ※ MG(バックホウ)の導入は施工精度の向上や安定と同意ではありません。MG(バックホウ)はこれを支援する技術ですので、適切に利用することや仕上がりに対する確認は必須の項目です。

2.1.3 「MC/MG(バックホウ)技術」の種類【MC/MG(バックホウ)全般】

記号	事前調査 - ③	<u></u>						
質問者分類	利用者	質問種別	留意点					
質問:Q	MC(バックホウ)のシステムで 2D と 3D の違いはどこですか?							
回答:A	3Dと2Dの違いを以下に整理しました。また、補足説明として活用例を記載しています。							
	ームやアームの作業プ ・使用にあたっては、施 力すると、この「設計形 するものです。	(】 ()は、設計データとして登録できるのは2次元の形状のみで、多くの場合は、 業方向の2次元形状を登録できます。 、施工開始位置(杭など)の指示が必要で、施工開始位置からの設計形状を 計形状に対するバケット位置との差分」をオペレータに操作支援情報として携 バックホウと同様にブーム・アーム・バケット・本体の傾斜を計測して利用しまっ						
	項目		3Dバックホウ	2Dバックホウ				
	設計データ	3次元設計	データを作成します	2次元的な形状を作成します。				
	システムの特徴	ため、複雑だた、対面施との差が表示	データに基づいた施工となるな形状にも対応可能です。ま エ以外でもどの位置でも設計示されます。	相対的な設計形状は搭載していますが、 位置と向きを別途指定する作業が必要と なります。 高さと勾配のみを示すシステムであるた め、横断形状に沿った方向で作業するこ とが必要です。				
	丁張り		が位置情報をモニタで把握で を体的に丁張りの設置数を減 ができます。	横断面変化点と切り出し位置では丁張り が必要です。 丁張りの延長や、既設構造物等の目安 がある箇所では丁張りを削減できます。				
	位置情報の取得	GNSS、TS ます	を用いて3次元座標を取得し	3次元座標は不要です				
	適用場所	複雑な地形土工に適して	での掘削や道路等の大規模でいる	目安になる線や高さが既存の場合に効 果的。				
	モニタ	平面・側面・の表示が可	バケット正面・座標など複数 能	1方向 (側面) のみの表示 (0.00 f.00 f.00 f.00 f.00 f.00 f.00 f.0				

【補足説明】

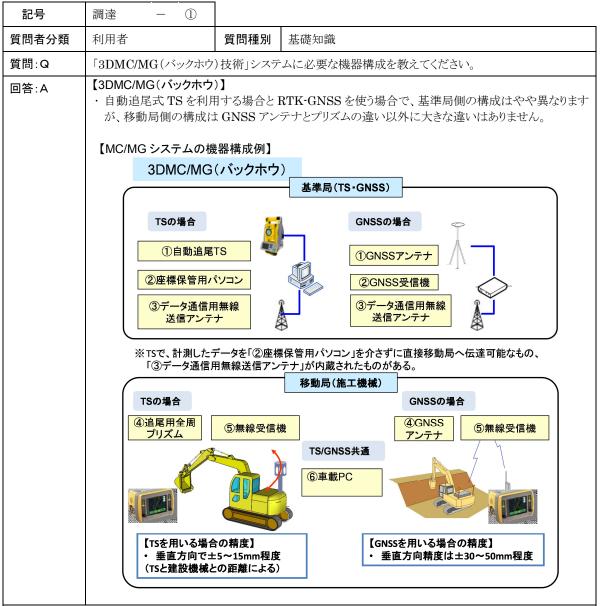

- ※RTK-GNSS の受信状況が不安定な場所などでは、衛星の受信状況が良好な時間帯に 3D ガイダンスシステムで掘削開始位置に目安(目印として 50cm 程度の掘削)を設置し、衛星の受信状況が不安定な時間帯は、設置した目安から 2D ガイダンスシステムとして活用すると効果的に利用できます。
- ※TS 出来形システムや RTK-GNSS のローバシステム等を用いて、掘削の基準線・点を設置(マーキング)し、その後に 2D ガイダンスで作業を行う方法もあります。

計測機器の選定【3DMC/MG(バックホウ)】 2.1.4

記号	事前調査 - ②				
質問者分類	利用者	質問種別	留意点		
質問:Q	自動追尾式 TS や RTK	-GNSS が適	用できない現場条件はありますか?		
回答:A	①自動追尾式 TS の適用が難しい現場条件について ・自動追尾式 TS では、TS 本体から発信するレーザが MC/MG バックホウに設置したプリズムによって反射する光を検知して追尾しています。したがって、レーザが遮断される状況が発生すると自動追尾による計測ができなくなります。 ・また、自動追尾式 TS は精密機器で、自己位置からの向きや角度から対象物の位置を算出しています。したがって、TS 本体が揺れたり傾いたりする場所では正確な計測ができません。				
	【レーザが遮断される条件】 □ 激しい降雨や降雪、濃霧(TSから発信するレーザ光が拡散してしまう)。 □ ダンプ等が通行し、レーザを遮断する。 【TSの正確な計測ができない条件】 □ 軟弱地盤上等で、重機の通行や作業の影響により TS 設置箇所が揺れる場所、あるいは変形する場所。 □ 橋梁の梁上などの揺れがある場所。 □ 凍上などで利用する基準点に変位が起こる場所。				
	・RTK-GNSS は、測位 を行います。したがっ 合には高精度な測位な	SNSSの適用が難しい現場条件について SNSS は、測位衛星からの電波と地上の基準局からの電波を受信することで高精度な測位ます。したがって、測位衛星からの電波および地上の基準局からの電波が受信できない場高精度な測位ができなくなります。また、RTK-GNSSでは、移動局および基準局で同時に上の測位衛星を必要とします。 「星からの電波が遮断される条件】 多動局および基準局の上空が開けていない、山間地の谷間、高層ビル街(測位衛星が安定して5個以上補足できない。連続した計測ができない)。 「野星が5個以上補足できているが、測位衛星の配置が悪い(例えば、北側に山やビルなどがあり、全ての衛星が南側に偏っている)。 同辺に電波を反射する高い壁等がある(衛星の電波が反射され、計測が不安定)。			
	□ 移動局および基 して5個以上補見 □ 衛星が5個以上社 あり、全ての衛星				
【柳音占】	□ 類似のシステムた□ 高圧電線や変電	の高出力な無線が発信されている。 ムなどで、同周波数帯の無線が多数利用されている。 電所周辺。 無線通信が遮断されている。			

- ※ 無線の状況を分析する方法もありますが、上記のような無線は時間帯などによって大きく変化します。また、 無線は目に見えないため、実際に工事を想定している時間帯に利用する無線機を活用して通信状況の確 認を行うことをお奨めします。
- ※ 衛星の飛来予測は下記のホームページから確認することもできます(現場の代表的な位置座標と天空の状 況を入力します)。 http://www.trimble.com/GNSSPlanningOnline/ (※左記はH26.3時点の民間 サービスです。)

2.1.5 通信機器の選定【3DMC/MG (バックホウ)】


記号	事前調査 一 ③					
質問者分類	利用者	質問種別	留意点			
質問:Q	3DMC/MG(バックホウ)シ	/ステムが上	手く稼働しない条件はありますか?			
回答:A	 3DMC/MG(バックホウ)では、RTK-GNSS からバックホウの間、自動追尾 TS からバックホウの間で無線通信しています。無線通信が混信や通信障害をおこす場合は、測位ができないためシステムが適切に稼働できません。 3DMC/MG(バックホウ)とバックホウの通信は、免許や申請の不要な、特定省電力無線が多く利用されています。本無線は、通信障害の無い場所では 1km 程度(カタログ値などでは 2km 以上の場合もありますがかなりの好条件に限定されます)の通信が可能ですが、無線の出力が小さいため、周辺環境の影響を受けやすく周辺環境の調査が重要です。 					
	【無線通信の障害が発生しやすい、あるいは無線通信の発生要因】 □ 違法無線などの高出力な無線が発信されている。 □ 類似のシステムなどで、同周波数帯の無線が多数利用されている。 □ 高圧電線や変電所周辺。 □ 障害物などで無線通信が遮断されている。 □ 空港や航空基地周辺。					
	【通信障害の確認方法】 □ 無線の状況を分析する方法もありますが、上記のような無線は時間帯などによって大きく変化します。また、無線は目に見えないため、実際に工事を想定している時間帯に利用する無線機を活用して通信状況の確認を行うことをお奨めします。					
	【対応例】 ※ 無線通信障害が多い場所では、免許や申請が必要な高出力な無線を利用する。 ※ 無線通信は、距離は離れると急激に出力が減衰します。RTK-GNSS 基準局とバッ TS とバックホウの距離を短くすることで対応できる場合もあります。					

【留意点】

- ※ 利用する無線の通信可能距離について、システムの調達段階でメーカなどに良く確認しておきましょう。
- ※ また、可能な場合は、無線通信の状況を事前に確認しておくことをお奨めします。
- ※ RTK-GNSS の受信状況が不安定な場所などでは、衛星の受信状況が良好な時間帯に 3D システムで掘削開始位置に目安(目印として 50cm 程度の掘削)を設置し、衛星の受信状況が不安定な時間帯は、設置した目安から 2D システムとして活用すると効果的に利用できる場合もあります。

2.2 システムの調達

2.2.1 必要なシステム【3DMC/MG(バックホウ)全般】

【システムの供給メーカについて】

平成 29 年度現在、3DMC/MG(バックホウ)システムとして、市販・レンタルされているシステムは、コマツ、キャタピラー、日立建機、コベルコといった建設機械メーカの他に、トプコン、ニコン・トリンブル、ライカ等の計測機器メーカが開発しています。

システムの開発状況は平成29年度時点です。今後、新機種や開発メーカ等も増えていくと想定されます。

この他、簡易なシステムとして出来形管理で利用するシステムを応用したシステムも市販あるいはレンタルされており、小規模工事で短期間の利用に限定される場合は検討をお勧めします。 (例:E三・S(カナモト), 快速ナビ(建設システム))

2.2.2 システムの調達【3DMC (バックホウ) 共通】

記号	調達 - ④		
質問者分類	利用者	質問種別	基礎知識
質問:Q	システムと重機を別々に調達しても問題ありませんか?		
回答:A	種によって調達方法が ・3DMC バックホウは向 アンテナを取り付ける(・重機とシステムを別々) ※ 各種プリズムや	・異なります。 きを特定する 立置が無い場 こ調達する場 アンテナを装	体に内蔵されているものとされていないものがあり、メーカや機 ために2基のアンテナを設置していますが、小旋回型などでは 合もあります。 合、以下の留意点があります。 長着するマストやセンサ類などを重機に装着する必要があるた るための治具(台座)を溶接する必要があります。

【留意点】

- ※センサおよびセンサを取り付ける治具は、重機の振動などに十分耐えられるように設置することが必要です。
- ※特に、掘削中に岩の発生が予想される場合などはフレーム部等の頑丈な箇所にセンサや治具を設置する 必要があります。ただし、フレームに溶接などを行う場合は、重機本体の強度などにも影響が出る恐れ がありますので、建機メーカ等にも相談することをお奨めします。

2.2.3 システムの調達【3DMG(バックホウ)共通】

記号	調達 - ⑤			
質問者分類	利用者	質問種別	基礎知識	
質問:Q	システムと重機を別々に調達しても問題ありませんか?			
回答:A	ムを別々に調達するこ ※ 各種プリズムや	とも可能です。 アンテナを装	機に後付けすることが可能なシステムですので、重機とシステ。ただし、以下の留意点があります。 長着するマストやセンサ類などを重機に装着する必要があるたるための治具(台座)を溶接する必要があります。	

【留意点】

- ※センサおよびセンサを取り付ける治具は、重機の振動などに十分耐えられるように設置することが必要です。
- ※特に、掘削中に岩の発生が予想される場合などはフレーム部等の頑丈な箇所にセンサや治具を設置する 必要があります。ただし、フレームに溶接などを行う場合は、重機本体の強度などにも影響が出る恐れ がありますので、建機メーカ等にも相談することをお奨めします。

2.2.4 他社システムとの組合せ【3DMC/MG(バックホウ)共通】

記号	調達 - ⑥				
質問者分類	利用者	質問種別	基礎知識		
質問:Q	他社システムとの組み合わせは可能ですか?				
回答:A	では、他社システムとの	D組み合わせ の治具やマン	やすさなど開発各社の技術開発競争が進められており、現状は補償されていません。 ストなどは転用が可能な場合もありますが、ガタの発生やトラブ 公要です。		

【留意点】

・同一メーカのシステムでも、バージョンなどによってシステム間に互換性が無い場合もありますので、システム提供メーカに確認することをお奨めします。

2.2.5 システムの利用期間【3DMC(バックホウ)共通】

記号	調達 - ⑦		
質問者分類	利用者	質問種別	留意点
質問:Q	システムの導入までの準備期間はどの程度ですか		
回答:A	です。 ・上記の準備が済み、M テムを装着に要するF 合)。	IC システムの 寺間は、1~2 伝調整、操作の	を着する治具が設置されていない場合は、溶接作業等が必要 手配が完了すれば、MC システムに対応したバックホウにシス 日程度で設置可能です(トラブルや不具合の発生が無い場 の慣れを考慮すると、準備期間として 3~4 日程度の余裕を見

【留意点】

・システムの試運転などを行うために、事前に試運転用の設計データを準備しておくことをお奨めします。

2.2.6 システムの利用期間【3DMG(バックホウ)共通】

記号	調達 - 8		
質問者分類	利用者	質問種別	留意点
質問:Q	システムの導入までの準備期間はどの程度ですか		
回答:A	です。 ・ 上記の準備が済み、M テムを装着に要する時 合)。	IG システムの 時間は、1~2 云調整、操作の	接着する治具が設置されていない場合は、溶接作業等が必要の手配が完了すれば、MGシステムに対応したバックホウにシス日程度で設置可能です(トラブルや不具合の発生が無い場の慣れを考慮すると、準備期間として 3~4 日程度の余裕を見

【留意点】

・システムの試運転などを行うために、事前に試運転用の設計データを準備しておくことをお奨めします。

3. 計測精度の確保

3.1 システムの精度

3.1.1 システムの性能【3DMC/MG (バックホウ)】

記号	精度確保 一 ①		
質問者分類	利用者	質問種別	基礎知識
質問:Q	利用する測位システムで	、どの程度の	施工精度が確保できますか?
回答:A	度以上の施工精度は記 【施工精度からの測位技 ①RTK-GNSS を用いる 一 垂直方向精度は ことで測位の安気 RTK-GNSS でい 配置状況を確認 態を指します)。 ②自動追尾 TS を用い TS 本体の計測制 TS の場合は、計	実 術場 の 50 min を 1	について m 程度と言われています。RTK-GNSSでは、衛星数が増える 待できますが、精度が向上する訳ではありません。 衛星の配置状況によっても測位の安定性は変化します(衛星の DOP値があります。DOP値は小さい方が衛星の配置が良い状 度について 度は2秒~10秒程度が多い) 加にともない計測誤差が大きくなることに注意。 :置以上に高さの精度に注意が必要。

【留意点】

利用する測位技術が要求する施工精度に十分か吟味して選定してください。

3.1.2 性能の証明【3DMC/MG (バックホウ)】

記号	精度確保 一 ②			
質問者分類	利用者	質問種別	留意点	
質問:Q	MC/MG の利用にあたっ	て、システム	の精度を証明する資料等の提出は必要ですか?	
回答:A	 MC/MG の利用にあたって、シスケムの精度を証明する資料等の提出は必要ですが? MC/MG (バックホウ)の活用においては、計測機器に関する公的な校正証明書や検定証を添付する必要はありません。 ただし、MC/MG (バックホウ)では、測位技術の精度、傾斜計などのセンサ精度、機械のがたつきやブレードの摩耗や損耗などが施工誤差の要因となります。利用機器単体の精度に加えて、トータルでの精度を確保する方法を計画し、施工精度を確認することをお奨めします。(3.2.1 参照) 【精度管理例】 作業前に現場に設置している基準点を用いてクロスチェックを行う 施工前に、従来手法で設置した丁張りとの比較検証を行う 施工中、あるいは施工後に TS 等を用いて適宜検測を行う 			
【留意点】 出来高部分払いで施工履歴を利用する場合は、精度確認結果を提出することが必要です。				

3.2 施工の精度

3.2.1 施工時の精度確認【3DMC/MG (バックホウ)】

記号	精度確保 一 ③				
質問者分類	利用者	質問種別	留意点		
質問:Q	3DMC/MG(バックホウ)	の精度を確認	まする簡単な方法はありませんか?		
回答:A	・3DMC/MG(バックホウ)の活用においては、始業前などに既存の丁張りや検測用の基準点を設けて確認します(確認例①)。 ・オペレータモニタ上に表示される刃先の座標データと同位置で取得した TS での計測結果を比較する方法などがあります(確認例②)。				
	確認例① □ 基準点でチェック	ッ する。			
	車載PC上に表示される座標値と 既知座標とが一致することを確認 X=-117043.328 Y= -30469.337 H= 93.000				
	_				
		TS (自動			

3.2.2 計測距離の制限【3DMC/MG (バックホウ)】

記号	精度確保 - ④			
質問者分類	利用者	質問種別	留意点	
質問:Q	3DMC/MG(バックホウ)の利用にあたって、TSの計測距離に制限はありますか?			
回答:A			おいて、計測距離の制限はありません。ただし、施工結果の精 は関係なく施工管理を実施して精度を確認してください。	

【留意点】

3DMC/MG(バックホウ)の導入による施工結果の精度確認(施工管理)の頻度低減などは関係がありません。施工管理に TS を用いた出来形管理も利用することが可能です。

ICT 活用工事(土工)では、UAV を用いた写真測量や地上型レーザースキャナーを用いた出来形管理(面的管理)も適用できます。

4. 3次元設計データの作成

4.1 データの構成

4.1.1 データの種類【3DMC/MG (バックホウ)】

記号	データ作成 一 ①			
質問者分類	利用者	質問種別	基礎知識	
質問:Q	3次元設計データには、	路線ファイル	、TINファイルがありますが、これらの違いを教えてください。	
回答:A	・駐車場、広場、飛行場	いいます いまま いっぱい かいりゅう かいっと かいの イメー	代の組み合わせで表現した形状です。 形に対する施工管理が求められる舗装工事では、線形情報で ポイントを抽出して作成する TIN ファイルを利用することが有 ・ジ】	
	道路中心線形(又は堤防法線)			
	□ TIN ファイルイメ	-ÿ		
/ +± □ =× □□ 1				

【補足説明】

TS による出来形管理にて作成した基本設計データの MC/MG 技術での使用について

※ TS による出来形管理にて作成した基本設計データをそのまま MC/MG 技術で用いることはできないが、メーカによってはデータ変換により可能となる場合があります。詳細は、TS を用いた出来形ソフトウェアおよび MG 用設計データ作成(あるいは変換)ソフトウェアの読み込み可能ファイルを参照してください。

4.1.2 データ作成に必要なソフトウェア【3DMC/MG(バックホウ)】

記号	データ作成 一 ③		
質問者分類	利用者	質問種別	基礎知識
質問:Q	3DMC/MG(バックホウ) が必要ですか?	用のデータ作	た成に必要なソフトウェアを教えてください。 専用のソフトウェア
回答: A	テムに付属するソフトヴ・また、3 次元座標デーで、専用のソフトウェア 【MC/MG 用のデータ作f・現状は、2 次元の設計 算出した後に MC/MG線データから MC/MG・他にも、汎用の 2DCA入力する方法等もあり ①要素デ入カー、で 座標(x,y,z) 路線データ M2DCAD ソフト(汎 3 DE) 3 DE	アエア上で専門 タ、3D 面デ 以外を利用す 或の流れの 例 ・図面から必要 は用の付属ソニ は用の付属ソニ は、カートント は、カート は 、カート は 、カ	要なデータを抽出し、3DCAD や測量計算ソフトで3次元座標をフトウェアにデータを移して MC/MG 用データとする場合や路フトウェアでデータを作成します。 座標と高さを個別に算出して、MC/MG 用の付属ソフトウェアに

【留意点】

※ 各社のシステム(付属ソフトウェアを含む)については、市場のニーズによる技術改良が日進月歩で実施されており、詳細については利用するシステムメーカに確認してください。

4.2 データの作成例

4.2.1 設計データ作成上のポイント【3DMC/MG (バックホウ)】

記号	データ作成 一 ④			
質問者分類	利用者	質問種別	留意点	
質問:Q	3DMC/MG(バックホウ)	で施工を行う	場合に、3 次元部	と計データ作成上の留意点はありますか?
回答:A	すり付け位置が変わるに作成することをお奨。 MGのシステュ 面とパックホ・ 形状は大きめ	ことが発生す めします。(下 ムでは、バック を	るため、3 次元記図参照) *ウの刃先に対応する。 *** 「解説」 バシクホウの刃先に対応する。 「解説」 バシクホウの刃先に対応する。 「解説」 バシカホウの刃先さい。 「解説」 バシカボウの刃先きない。	実際の施工では、施工箇所によって地山との設計データは設計法長よりも数 m 程度大きめたる設計面が存在しない場合、設計でともありますので、法面等の横断 「検断形状を現況地盤より大きめに作成した場合 「パケットの刃先位置と対応する設計値が存在 」 設計差:5cm ガイダンス画面

【留意点】

設計の端部については、直線的に自動補間する機能を有する 3DMC/MG システムもあります。各社の仕様によってデータ作成範囲の拡張が必要かどうか確認してください。

4.2.2 設計データ作成上のポイント【3DMC/MG (バックホウ)】

記号	データ作成 一 ④	
質問者分類	利用者 質問種別 音	智意点
質問:Q	TS 出来形で作成した3次元設計データを	・ ・活用が可能ですか?
回答:A	ります。TS 出来形は前者の形状を対象を対象が用いられています。 ・ MC/MG の 3 次元設計データとTS 出もあります。 完成形状(・ TS 出来形ソフトを利用して MC/MC	を対象とした形状と施工途中の丁張りを代替する形状があ象としているのに対し、MC/MGでは多くの場合後者のデー来形で作成する形状が同じ場合はそのまま利用できる場合 左)と 施工段階の形状(右) 5 用の設計データを作成することが可能かどうかについている。 フトのメーカに問い合わせることをお奨めします。
	MC/MG向けのデータ出力が可能 ※曲線部は密な断面ピッチを指定して出力す な曲線に近い形状が出力できる。 出力可能なフォーマットと読み込み可能ない いて、TS出来形ソフトをMC/MG機器メー てください。同一形式でも互換性が無い場合	フォーマットにつ 一力に問居合わせ
	・利用できる場合でも、TS 出来形のデー 意すべきパターン。	ータだけでは不十分な場合も多いので注意してください。注
	□ TS 出来形では、作成する断面が横断図のある位置だけとなります。このまま MC/MG 用の設計データを出力すると、曲線部が直線で表現されてしまうことがあります。出力時に断面の補間(自動的に作成できることが多いです)を利用し、	数計データに曲線はありません。変化点毎に直線の連続に変換されるため、曲線部では細かな分割などを行います。 「ESIS
	滑らかな設計になるように留意してください。(右上図) □ TS 出来形ソフトでは線形に直交する向きに法面を構築します。各幅部や法面の向きが変化する場合は編集で修正してください。(右下図)	横断図だけでなく、平面図で示される変化点についても全て座標として抽出します。 3DCADやTS出来形などの積形情報と横断形状から作成したデータの場合は法面 の方向に十分注意してください。 要注意 実際の形

4.2.3 設計データ作成上のポイント【3DMC/MG (バックホウ)】

1.2.0			LODINIO/INIO (1.777/1.7/1
記号	データ作成 一 ④		
質問者分類	利用者	質問種別	留意点
質問:Q	現場あわせの作業で3~	欠元設計デー	-タ無しに利用できませんか?
回答:A	・ MC/MG は、単純な形	が状(基準線と	片勾配)程度であれば、現場でのデータ作成も可能です。
		台点と終点に	移動して座標計測と登録を行い、直線区間の左右に勾配を設 に成することができます。 ①始点の登録
			2終点の登録 3勾配の登録
【留意点】	<u>l</u>		
1			

4.2.4 設計データ作成上のポイント【3DMC/MG (バックホウ)】

記号	データ作成 - ④		
質問者分類	利用者	質問種別	留意点
質問:Q	データ作成に関して、3	・ 次元設計デー	- -タ作成前に発注者と協議しておく項目はありますか。
回答:A	 ・MC/MG バックホウでは、発注者と積極的に督・検査には不可欠で ・発注図では下図の水色に必要な3次元設計 	掘削・整形す - 協議を行い です。 - 会デールらに - これす。 - さる形 - さる形 - さる形	る形状のうち、横断図として明記されていない変化点について 明確な位置を確定させておくことが円滑な施工、施工管理、監 しか明確になっていない場合があります。MC/MG バックホウ は、黒色の部分の点、線および黒点線部分の横断図な て、必要な変化点については発注者からの提供や協議で確定 法面の向き の変化

5. 機器取り付け・システム設定

5.1 機器設置【3DMC/MG (バックホウ) 共通】

記号	機器設置 一 ①			
質問者分類	利用者	質問種別	基礎知識	
質問:Q	建設機械への機器の取付け方を教えてください。			
回答:A	ンサ類の設置位置(マ 制御の調整を行います	ストの高さや ⁻ 。 施工機械を購	機器を建設機械に取付けます。その後、建設機械の機種やセ機械幅等)を入力し、最後にセンサのキャリブレーションと油圧 (入またはリース・レンタルする場合は、機械の種類や機械の幅 合が多いです。	
	工場等での事前取付	1	 パケット・ブーム・アームを制御するバルブ センサ類 各機器を接続するケーブル コントロールボックスはポール等の建設機械への取付のためのブラケット(取付用台座) 	
	現場での取付		【車内への機器取付け】 ・ 車載PC(コントロールボックス) ※ケーブルでパルブ、センサ類と接続する ・ 無線受信器 ※ケーブルで車載PCと接続する	
			【車外への機器取付け】・ 全周プリズム(ポール付き)(TSの場合)・ GNSSアンテナ(GNSSの場合)	
		HITACH	コントロール ボックス ポックス ドッチセンサ	
			タル会社では、機器購入者、リース・レンタル者を対 取付、キャリブレーション等を実施しています。	

【補足説明】

※ 実施手順については、各メーカのマニュアルを参照してください。

5.2 キャリブレーション【3DMC/MG(バックホウ)共通】

記号	機器設置 一 ②				
質問者分類	利用者	質問種別	基礎知識		
質問:Q	施工中にセンサが緩んでいたので締め直したため、再度キャリブレーションを行いたいのですが、キャリブレーションの流れを教えてください。				
回答:A		要な情報を します。 7容】	付け位置等を測定します。その後、各センサの設定を実施し、 車載 PC へ入力し、最後にモニタ上の表示値が、別途計測した		
	建設機械の寸法測		・ 全周プリズム又はGNSSアンテナ中心からアーム 寸法等各可動部のピン間の寸法・バケット寸法等 を測定(バックホウ)		
	車載PCの設定		【マシン設定】 ・ 建設機械の種類、センサ類のタイプ、建設機械の寸法を車載PCに入力		
			【センサ設定】 ・ バケット・ブーム・アームの位置を調整し、各センサの値を車載PCに入力		
	Antonia Band Band Band Band Band Band Band Ban	Stoke Bushel Senece	TO NOTE TO SERVICE OF THE PARTY		
Edd Classers	図はシステ	ムの入力用パ	ラメータの計測・入力項目例		

【補足説明】

※ 実施手順については、各メーカのマニュアルを参照してください。

6. 施工

6.1 施工および施工管理【3DMC/MG(バックホウ)共通】

6.1.1 記載内容

記号	計画 一 ①		
質問者分類	利用者	質問種別	留意点
質問:Q			施工することを技術提案に盛り込んでおり、MC/MG 施工を施ったの程度の記載が必要ですか。
回答:A	および精度が確認でき	る資料(メー	メーカ、型番、構成機器等を記載し、使用するシステムの機能 カパンフレット等)を添付することをお奨めします。 対応した技術、あるいは機能であることが解るような内容を記

【補足説明】

[施工計画書への記載事項等]

※ 「土木工事共通仕様書 1-1-4 施工計画書」の規定に基づき、使用重機に関する情報を記載して下さい。

6.1.2 施工管理計画【3DMC/MG(バックホウ)共通】

記号	施工 一 ①		
質問者分類	利用者	質問種別	基礎知識
質問:Q	MC/MG(バックホウ)施工を行う際に準拠する要領等はあるのですか。		
回答:A	・MC/MG を対象とした施工管理要領、監督・検査要領等は策定されていません。 ・従来の施工のとおり、「河川土工マニュアル((財)国土技術研究センター)」、「道路土工指針 ((社)日本道路協会)」、「土木工事施工管理基準及び規格値(国土交通省)」等の土工の要領等 に準じて実施してください。		

【補足説明】

- ※ MC/MG の導入による施工管理の手法に変更はありません。ただし、ICT 活用工事(土工)では、UAV による写真測量や地上型レーザースキャナーによる出来形管理(面管理)を適用できます。
- ※ 出来高部分払いに施工履歴(刃先の位置データ記録)を利用する場合は、国土交通省が定める要領に沿って精度確認とデータ処理を行う必要があります。

6.2 施工中のトラブル

6.2.1 データ作成範囲の設定ミス【3DMC/MG (バックホウ)】

記号	施工 - ②				
質問者分類	利用者	質問種別	トラブル対応		
質問:Q	特定の場所で制御がうま	特定の場所で制御がうまくいかない場合の対応でどのような要因が考えられますか?			
回答:A	要因として以下の事項が考えられます。参考にしてください。 【設計データに間違いがある。】 ※ 各システムの設計データ作成ソフトウェアの多くに、設計データの確認ができる機能があります。入力ミスがないかどうか確認してください。大きな入力ミスは容易に発見できますが、僅かな入力値の間違いはデータを詳細にチェックする必要があります。 【設計データの範囲外で作業を行っている。】 ※ MC/MG(バックホウ)施工に限ったことではありませんが、実施工では目的形状以外の範囲から材料を運んだり、盛りこぼした材料を集めたり、やや大きめに整形したりします。3次元設計データを目的形状範囲のみ作成している場合は、これらの作業時に比較対象となる設計データがないことから制御に必要な差分データを算出できないため、制御ができない場合があります。				
【補足説明】	【設計データの変化する位置とバックホウのマスト位置の不適合】 ※ 道路構造物などで、道路センターを中心に勾配を設定している場合、システムが設計との対比を行う位置によってブレードの勾配が変わります。チェックしている箇所を確認してください。				

6.2.2 計測機器設置のトラブル【3DMC/MG (バックホウ)】

記号	施工 - ③]				
質問者分類	利用者	質問種別	トラブル対応			
質問:Q	3DMC/MG(バックホウ)システムで利用する測位技術が正確に計測できません。どのような原因が考えられますか。					
回答:A	①RTK-GNSS の主な制	約条件と発生	三する不具合例			
	RTK-GNSS の。	- 1 11 4 11 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	□ RTK-GNSSの。 辺や高圧線、変 □ RTK-GNSSの	RTK-GNSSの基準点は、揺れや振動の影響が無い場所に設置します。 RTK-GNSSの基準局とMC/MG側は無線通信による障害が無いことを確認します(空港周辺や高圧線、変電所周辺、国道脇などでは、通信が不安定な場合もある)。 RTK-GNSSの場合は、周辺に高い構造物があると反射波によるマルチパスの影響を受ける				
	ソフトウェアが販	売、無償公開	アについて、測量機器メーカ等により、衛星補足数を予測する されているので、概ねの受信状況が予測できます。 ISS 受信機について、マルチパス対策を強化した GNSS 受信			
	②自動追尾式 TS を用い 自動追尾 TS か 自動追尾 TS か 自動追尾 Uでき	機も開発されています。現場状況の調査が重要です。 自動追尾式 TS を用いる場合の主な制約条件と発生する不具合例 自動追尾 TS から MC/MG 側のプリズムを視通できる範囲。 自動追尾 TS から発信する光波で測距できる距離。 自動追尾側で計測した 3 次元座標を、MC/MG 側に無線送信できる範囲。				
	途切れる場合が 自動追尾 TS に 自動追尾 TS と ります。 自動追尾 TS は 基準局(TS)	あります。 は計測距離の MC/MG 側の	上事基準点 「おが」 自動追尾が可能な距離			

【留意点】

※ 測位技術の特徴や現場条件による制約を踏まえ、事前調査に基づいてシステムの利用範囲を明確に整理 しておくことがポイントです。