橋梁部における 無散水融雪設備放熱器の施工について

泰松 宏平1

1近畿地方整備局 奈良国道事務所 管理第二課 (〒630-8115奈良県奈良市大宮町3-5-11)

無散水融雪設備は、舗装表面の凍結及び積雪を防止するために設置され、舗装体内に放熱管を埋設し、放熱管内の熱を舗装体に伝導させて機能を発揮する設備であり、舗装性能を確保するとともに、放熱器としての性能を有した舗装を施工することが重要である。ここでは、和田山八鹿道路での橋梁部における無散水融雪設備放熱器の施工事例を示すものである。

キーワード 無散水融雪設備、積雪寒冷地域、舗装

1. はじめに

和田山八鹿道路は、兵庫県豊岡市から丹波市までを結 ぶ延長約70kmの高規格道路の北近畿豊岡自動車道の一部 として、朝来市和田山町から養父市八鹿町を結ぶ延長 13.7kmの自動車専用道路である。(図-1)

図-1 北近畿豊岡自動車道位置図

兵庫県北部の積雪寒冷地域を通過する道路であると共に、トンネルや橋梁が延長の約7割を占める道路であることから、冬期においてトンネル坑口部や橋梁部において路面状況の変化が生じやすい箇所を有するため、冬期道路管理が非常に難しい道路である。

そのため、路線全線にわたり、自然条件、道路条件、

交通・周辺環境といった項目について評価を行い、路面 状況の変化が生じると予想される箇所について無散水融 雪設備を設置することにより、冬期道路交通の安全・安 心を確保することとした。

無散水融雪設備については、北近畿豊岡自動車道の既供用区間である春日和田山道路でも採用されている自然エネルギーである地中熱を利用した方式を採用し、ランニングコストを縮減すると共に、温室効果ガスの削減を図っている。

地中熱を利用した無散水融雪設備は、地中熱を取り込むための配管を地中に埋設した採熱器と、舗装体内に配管を設置し、舗装体へ熱を放出する放熱器で構成され、 採熱部と放熱部の配管内に水を循環させることにより効果を発揮する設備である。

本報告では、橋梁部における無散水融雪設備の放熱器の施工として、放熱管の保護層としての目的と、舗装体としての両方の機能を併せ持つ鋼繊維補強コンクリート(以下、SFRC)を採用したため事例を紹介するものである。

2. 工事概要

(1) 工事規模

和田山八鹿道路おける全ての橋梁、市御堂大橋 (678m)、芳賀野高架橋(上り61m,下り60m)、別所高 架橋(上り291m,下り298m)、畑川橋(289m)、建屋川 橋(91m)、大屋川橋(319m)において施工を実施した。

(2)工事内容

橋梁部の放熱器の施工に当たっては、橋梁コンクリート床版の上に放熱管(SUS10A)を敷設した後、放熱管の

施工·安全管理対策部門:No.15

保護層としての役割と、舗装体の基層としての役割を兼ねた、硅石骨材入砕石マスチックアスコンを施工することとした。 (図-2)

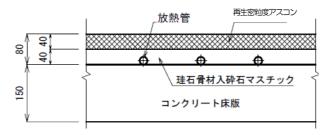


図-2 当初施工予定舗装断面

この舗装構成は、既供用区間である春日和田山道路の 無散水融雪設備においても施工されており、供用後にお いても支障がないことから採用に至った。

3. 放熱器の施工に当たっての課題点

当初設計での施工に当たり、橋梁コンクリート床版を 調査した結果、既設床板に不陸が生じているため、放熱 管と既設床板の間に空隙が生じることが確認された。 (写真-1)

写真-1 放熱管と床版の不陸状況

橋梁床版の不陸については、橋梁施工時の品質管理の 面からは許容範囲内の値となっていたが、放熱器を施工 する際には、下記のような課題が生じる恐れがあると判 断し、他の工法についても検討を行うこととした。

①放熱管と床版の隙間に舗装材が充填されないため、通 行車両の振動等により、リフレクションクラックやポットホールが発生する要因となる可能性がある。

- ②放熱管の固定が出来ない箇所が生じるため、施工時に 配管が動き、ズレや跳ね上がりを起こし、破損する恐 れがある。
- ③舗装体と放熱管の間に生じる隙間の為、放熱管の熱が 効率的に舗装体へ伝わらない可能性がある。

4. 放熱器保護層の検討

(1) 放熱管保護層の検討条件

放熱管保護層の検討に際して、検討条件については下記のとおりとし、検討、評価を行うこととした。

- ①放熱器として、放熱管の熱を効率的に舗装体へ伝える 性能を有していること。 (放熱管まわりに隙間が生じ ないこと)
- ②舗装体としての性能を有していること。
- ③舗装施工時の振動、熱等により、放熱器の性能に影響を及ぼさないこと。
- ④橋梁構造へ影響を与えないこと。
- ⑤ライフサイクルコストに優れていること。

(2)比較工法の検討

検討条件を元に、比較工法として下記の3工法について比較対象とした。

工法① 床版上にレベリング層20mmを施工した後、配管を敷設し、放熱管保護層に硅石骨材入砕石マスチックアスコン、表層に当初設計とおりの舗装を施工する。

レベリング層を施工しているため、配管敷設 面の不陸が解消される。

工法② 床版上にレベリング層20mmを施工した後、配管を敷設し、放熱管保護層に半たわみ舗装とし、表層に当初設計とおりの舗装を施工する。

レベリング層を施工しているため、配管敷設面 の不陸が解消される。

工法③ 放熱管の保護層として、SFRCを50mm施工し、表層に30mmの密粒度アスコンを施工する。

SFRC工法はコンクリートであるため、充填性が良く、放熱管まわりに隙間が生じない。

上記3工法について、比較、評価を行った結果を、表 -1に示す。

施工·安全管理対策部門: No.15

表-1 舗装構成比較表

		設 計 工 法	変 更 工 法①	変 更 工 法②	変 更 工 法③
	工 法	アスファルト舗装	アスファルト舗装	半たわみ舗装	コンクリート舗装
		基層 硅石砕石マスチック舗装工法(SMA)	基層 硅石砕石マスチック舗装(SMA)+レベリング層(細粒度アスコン)	基層 半たわみ性舗装工法+レベリング層(細密粒度アスコン)	基層 繊維補強コンクリート舗装工法(SFRC)
施工方法		40mm 表層工(再生密粒度A120T改質 I型) A5系加熱塗護防み 40mm 基層工 (柱石骨材SMA) 既設力ンカリート床板	40mm 表号I (再生容性度Accor計頁1型) 40mm	TOTAL CALLES	30mm 表彰工 (年生臣は素A13Tの質目型 A3系元統強関係を 50mm 基第工 (57音道Con一般外行) (10分) (10分) (
		マスチック舗装は、粗骨材やフィラーの割合が多い不連続料理像の加熱アスファルト混合物であり、粗骨材の削減を多量のマスチックモルタルにより充填するため、放射管周辺の空隙が小さいので、熱に過率が高く、水密性・たわみ性にも優れている。 東実縛等 春日和田山道路では融雪配管用舗装材として施工された実練があり、転圧が充分に行われた場合、水密性にも優れ間設は無い。 床版の不陸より放熱管周りの充填性に影響が生じる。	を多量のマスチックモルタルにより充填するため、放射管周辺の空隙が小さいので、熱伝導率が高く、水密性・たわみ性にも優れている。 舗設にあたっては、レベリンが層を設け、床板の不陸を整正することで、放射管と床板の空隙を軽減し、核施工時の配管の破損、鉄ね上が	半たわみ性舗装は、開粒度アスファルト混合物の空隙に、特殊セメントミルクを浸透させた舗装で、一般の密粒度アスファルトに比べて、塑性変形抵抗性、明色性、耐油性および難燃性に優れる舗装である。 開粒度アスコンに特殊セメントミルクを注入する工法なので、放熱管と床版の空隙部にも充填出来る。コンクリートの性質を併せ持つため、収縮によるひび割れの発生があり、通常では表層の施工で適用される。	SFRC工法は、老朽化したコンクリート床 版の増厚工事で使用される工法で、床板と一体 となって機能する。 放熱管の熱収縮の問題が無く、放熱管と床板 との空隙に対する充填性も高い。スチールファ イバーが添加されており衝撃吸埋が高い。 コンクリート増厚工法の基準より厚さ5cmを 確保すればコンクリート舗装としての曲げも満 足する。
20	表層	表層熱伝導率: 1.20 W/m·K 表層厚: 40mm	表層熱伝導率: 120 W/m·K 表層厚: 40mm	表層熱伝導率: 1.20 W/m·K 表層厚: 40mm	表層熱伝導率: 1.20 W/m·K 表層厚: 30mm
伝	基層	基層熱伝導率: 2.05 W/m·K 基層厚: 40mm	基層熟伝導率: 2.05 W/m·K 基層厚: 40mm	基層熱伝導率: ※- W/m・K 基層厚: 40mm	基層熱伝導率: 1.77 W/m·K 基層厚: 50mm
熟伝導率		平均熟伝導率 1.47 W/m·K	平均熱伝導率 1.47 W/m·K	平均熱伝導率 ※一 W/m・K	平均熟伝導率 1.47 W/m·K
	調製主件	路面までの距離:71mm	路面までの距離:71mm	路面までの距離:71mm	路面までの距離:71mm
基图的	仕様 (粗骨材最大粒径)	硅石マスチックアスコン(13)	硅石マスチックアスコン(13)+レペリング層(5)	半たわみ+レバリング層(5)	-
		・施工規模が大きく、機械施工する場合には、 放熱管周りの充填や転圧が十分に出来す、密度 の確保や耐流動性に問題が生しる。	・放熱管周りの充填・転圧が十分に出来ないた 放入力施工となる。そのため、分割舗設にな り打ち継ぎ目多くなり、平均性・表層への影響 が懸念される。	- 等間隔での目地を設ける必要があり、床版 および表層との付着に問題がある。	・研補(ショットプラスト)+接着剤により床版への付着性は問題無い。 ・レールによる機械施工が可能であり、施工時 に放熱管への影響(温度による熱収縮・敷き均 し及び転圧時の機械等での破損)がない。
		■動物体の発展(雑味) L I アの本田州	■放熱管保護層(舗装)としての適用性	■放熱管保護層(舗装)としての適用性	■放熱管保護層(舗装)としての適用性
評価	概評	■放熱管保護層 (網装)としての適用性 ※床版の不陸が起因となる、放熱管周りの空 縁から、クラック及びボッドホールの発生が 懸念される。 ※舗装補修の際には、放熱管まで補修が必要 となるため、ライフサイクルコストが高くな る。	×舗装厚(+20mm)が厚くなり、死荷量の 検討が必要。 ×舗装補修の際には、放熱管まで補修が必要 となるだめ、ライフサイクルコストが高くな	X舗装厚(+20mm)が厚くなり、死荷重の検討が必要。X舗装補修の際には、放熱管まで補修が必	・床版増厚工法であるので、基層は床版と一 体化するため、舗装補修の際には、表層のみ 考えれば良く、維持管理コストの縮減を図る ことが出来る。
評価	概評	※床版の不陸が起因となる、放熱管周りの空隙から、クラック及びボッドホールの発生が懸念される。 ※舗装補修の際には、放熱管まで補修が必要となるため、ライフサイクルコストが高くなる。 ※	X舗装厚 (・20mm) が厚くなり、死荷重の 検討が必要。 メ舗装補修の際には、放熱管まで補修が必要 となるため、ライフサイクルコストが高くな る。	×舗装厚 (+20mm) が厚くなり、死荷重 の検討が必要。 ×舗装補修の際には、放熱管まで補修が必 要となるため、ライフサイクルコストが高 くなる。	・床版増厚工法であるので、基層は床版と一体化するため、舗装補修の際には、表層のみ 考えれば良く、維持管理コストの縮減を図る
評価	充填性 耐流動性	※末版の不陸が起因となる、放熱管周りの空隙から、クラック及びボッドホールの発生が 態念される。 ※舗装補修の際には、放熱管まで補修が必要 となるだめ、ライフサイクルコストが高くなる。 ※	X舗装厚 (・20mm) が厚くなり、死荷重の 検討が必要。 メ舗装補修の際には、放熱管まで補修が必要 となるため、ライフサイクルコストが高くな る。	×舗装厚(+20mm)が厚くなり、死荷重 の検討が必要。 ×舗装補修の際には、放熱管法で補修が必 要となるため、ライフサイクルコストが高 くなる。	・床版増厚工法であるので、基層は床版と一体化するため、舗装補修の駅には、表層のみ考えれば良く、維持管理コストの網減を図ることが出来る。
評価	充填性 耐流動性 熱伝導率	×床版の不陸が起因となる、放熱管周りの空隙から、クラック及びボッドホールの発生が懸念される。 ※舗装補修の際には、放熱管まで補修が必要となるため、ライフサイクルコストが高くなる。	X舗装厚 (+20mm) が厚くなり、死荷重の検討が必要。 ※舗装補修の際には、放熱管まで補修が必要となるため、ライフサイクルコストが高くなる。	★舗練更 (*20mm) が厚くなり、死荷重 の検討が必要。 X舗装補修の際には、放熱管まで補修が必 要となるため、ライフサイクルコストが高 くなる。	・床版増厚工法であるので、基層は床版と一体化するため、舗装補修の際には、表層のみ考えれば良く、維持管理コストの縮減を図ることが出来る。
晉	充填性 耐流動性 熱伝導率 施工性	×床版の不陸が起因となる、放熱管周りの空隙から、クラック及びポッドホールの発生が懸念される。 ※舗装補修の際には、放熱管まで補修が必要となるため、ライフサイクルコストが高くなる。	X舗装厚 (*20mm) が厚くなり、死荷重の 検討が必要。 X舗装補修の際には、放熱管まで補修が必要 となるため、ライフサイクルコストが高くな る。	★舗装厚 (+20mm) が厚くなり、死荷重の検討が必要。 ・	・床版増厚工法であるので、基層は床版と一体化するため、舗装補修の際には、表層のみ考えれば良く、維持管理コストの網塊を図ることが出来る。
価	充填性 耐流動性 熱伝導率 施工性 工程	×床版の不陸が起因となる、放熱管周りの空隙から、クラック及びボッドホールの発生が懸念される。 ※舗装補修の際には、放熱管まで補修が必要となるだめ、ライフサイクルコストが高くなる。 <	X舗装事 (*20mm) が厚くなり、死荷重の 検討が必要。 ※舗装補修の際には、放熱管まで補修が必要 となるため、ライフサイクルコストが高くな る。 △ △ △ △ △ △ △		・床版増厚工法であるので、基層は床版と一体化するため、舗装補修の駅には、表層のみ考えれば良く、維持管理コストの総減を図ることが出来る。
一	充填性 削流動性 熟伝導率 施工程 工程 維持管理	 ×床版の不陸が起因となる、放熱管周りの空隙から、クラック及びボッドホールの発生が懸念される。 ※舗装補修の際には、放熱管まで補修が必要となるため、ライフサイクルコストが高くなる。 ※ ※ ※ ※ ※ ※ ※ ※ ※ 	 X舗装厚 (*20mm) が厚くなり、死荷重の検討が必要。 X 舗装補修の際には、放熱管まで補修が必要となるため、ライフサイクルコストが高くなる。 	 X舗接厚 (+20mm) が厚くなり、死荷重の検討が必要。 X舗接補修の際には、放熱管まで補修が必要となるため、ライフサイクルコストが高くなる。 ○ △ △ △ △ △ △ △ 	・床版増厚工法であるので、基層は床版と一体化するため、舗装補修の際には、表層のみ考えれば良く、維持管理コストの縮減を図ることが出来る。
価	充填性 削流動性 熱広導率 施工性 工程 維持管理 イニシャルコスト	 ・ 床版の不陸が起因となる、放熱管周りの空隙 態から、クラック及びボッドホールの発生が 態念される。 × 舗装補修の際には、放熱管まで補修が必要となるため、ライフサイクルコストが高くなる。 	X舗装厚 (*20mm) が厚くなり、死荷重の 検討が必要。 X舗装補修の際には、放熱管まで補修が必要 となるため、ライフサイクルコストが高くな る。	 X舗装厚 (+20mm) が厚くなり、死荷重の検討が必要。 X舗装補修の際には、放熱管まで補修が必要となるため、ライフサイクルコストが高くなる。 ○ ○ ○ △ ○ ○	- 床版増厚工法であるので、基層は床版と一体化するため、舗装補修の際には、表層のみ考えれば良く、維持管理コストの網塊を図ることが出来る。
価	充填性 削流動性 熟伝導率 施工程 工程 維持管理	 ×床版の不陸が起因となる、放熱管周りの空隙から、クラック及びボッドホールの発生が懸念される。 ※舗装補修の際には、放熱管まで補修が必要となるため、ライフサイクルコストが高くなる。 ※ ※ ※ ※ ※ ※ ※ ※ ※ 	 X舗装厚 (*20mm) が厚くなり、死荷重の検討が必要。 X 舗装補修の際には、放熱管まで補修が必要となるため、ライフサイクルコストが高くなる。 	 X舗接厚 (+20mm) が厚くなり、死荷重の検討が必要。 X舗接補修の際には、放熱管まで補修が必要となるため、ライフサイクルコストが高くなる。 ○ △ △ △ △ △ △ △ 	・床版増厚工法であるので、基層は床版と一体化するため、舗装補修の際には、表層のみ考えれば良く、維持管理コストの縮減を図ることが出来る。

(3) 検討結果

検討の結果、床板増厚工法等で採用されているSFR C工法を採用することにより、放熱管が橋梁床版と一体 化され半永久構造物となることからライフサイクルの縮 減を図ることが出来た。また、品質確保の観点からも放 熱管まわりの充填性が十分に確保出来ることから最も有 利であると判断した。(図-2)

SFRC工法は、老朽化したコンクリート床版の増厚工事で使用される工法で、床版と一体となって機能し、曲げ耐力や押抜きせん断耐力の向上を図る工法であり多数の実績がある。

また、コンクリート舗装系であるため、放熱管と床版 との空隙に対する充填性も高い。また、スチールファイ バーが添加されており衝撃吸収性が高く、熱伝導率も高 い上、ライフサイクルコストを評価した結果も優位であ ったことが採用となった要因である。

SFRC工法の採用に当たっての課題点としては、最小施工厚が50mmであるため、表層厚についても30mmへ見直しを行う必要があった。

表層厚を当初設計厚の40mmとした場合、全舗装厚が

90mmとなり、わずかではあるが死荷重が増加することや、舗装面の前後へのすりつけ及び熱伝導率が低下する等の課題が生じたため表層厚の変更については30mmを採用し、当初の全舗装厚80mmに押さえることとした。

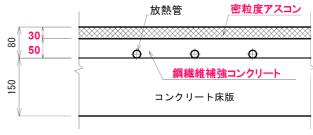


図-2 採用舗装断面

4. 放熱器保護層の施工について

SFRC工法については、床版増厚工法で多数の実績があるため、施工に当たって大きな問題点等は生じなかったが、放熱管を施工した後(写真-2)での施工となるため、オンレール方式での施工(写真-3)となった。また、

施工·安全管理対策部門: No.15

施工継目の付着性を確保するため、継目部にエポキシ樹脂を塗布した。

写真-2 放熱管施工後

写真-3 SFRC施工中

また、SFRCの施工前には、小規模な試験施工を行い、問題がないか確認した後、施工を行った。

表-2 SFRCの配合

種別	圧縮強度	骨材 最大 寸法	スランプ の範囲	単位鋼繊維量	備考
早強 コンクリート	24N/mm2	20mm	8±2.5cm	60kg/m3 (L=50mm)	高性能AE減水材、 膨張剤入り

5. まとめ

当初設計の珪石骨材入りマスチック舗装は、放熱器としての性能を確保するために、熱伝導率に着目したものであり、過去の施工実績も有していたが、施工規模が小さく人力施工であった。そのため、今回の施工現場については、施工規模が大きいことから機械施工となり、既設床板の不陸が施工上影響を与える恐れがあることから、

舗装構成を見直すこととした。

その結果、融雪設備および舗装体の品質について十分 確保することができたうえ、放熱管については、既設床 板と一体化構造としたため舗装補修時の対象とならない ことからライフサイクルコストの縮減を図ることができ た。

また、2012年3月の降雪時には、無散水融雪設備を稼働させた範囲は、積雪が認められず機能が発揮されていると思われる。(写真4参照)

写真4 無散水融雪設備稼働状況

和田山八鹿道路の供用は平成24年11月に予定されていることから、供用後、運用しながら道路交通等による耐久性及び性能に問題が生じないかどうか経過観察を行っていきたい。

謝辞:本論文は筆者が豊岡河川国道事務所在籍中の経験を元に研究成果として取りまとめたものである。

論文作成に際しては、本工事の施工者である、福日機電(株)、(株)柿本商会、福井鐵工(株)、(株)モリモト、大成ロテック(株)、日本道路(株)をはじめとする多くの方々にご協力を頂き、ここに感謝の意を表する。

参考文献

- 1) 近畿地方建設局:橋梁床版上面増厚工法設設計施工マニュアル(案)
- 2) 高島 浩一、宮本 重信:曲げ加工のない放熱管を浅層に配置した無散水融雪舗装の施工