丹波帯・付加体堆積物が分布する地山での 前方探査事例

長沼 諭1・原田 建志2

¹(㈱鴻池組 土木事業本部技術部(〒541-0057 大阪市中央区北久宝寺町3-6-1) ²(㈱鴻池組 大阪本店土木部 (〒541-0057 大阪市中央区北久宝寺町3-6-1)

丹波綾部道路須知第二トンネルは,丹波帯の「付加体堆積物」が分布する地帯に位置してお り,工事着工前に実施された地質調査では断層破砕帯の存在が推測されていた.断層破砕帯の 位置や分布,地山性状等を切羽到達前に正確に把握し,早期に不良地山対策を検討・実施する ため,切羽前方探査を実施した.

キーワード 山岳トンネル,前方探査,丹波帯,付加体堆積物

1. はじめに

トンネル施工において,事前に切羽前方地山の地質や 性状を把握することは,安全かつ経済的にトンネルを掘 削するうえで最も重要なことの1つである.しかしなが ら,工事着手前に行われる調査は,主に地表からの探査 やピンポイントのボーリング調査等であり,トンネル全 体の地質や地山性状を把握することは困難である.その ため,断層破砕帯などの不良地山が想定される場合には, 施工時に切羽前方探査による調査が積極的に行われるよ うになっている.

丹波綾部道路須知第二トンネルは、丹波帯の「付加体 堆積物」が分布する地帯に位置しており、工事着手前の 弾性波探査による地質調査からは、4箇所の低速度帯 (断層破砕帯)の存在が推測されていた。

本稿は、須知第二トンネルで行った切羽前方探査について紹介するものである.

2. 工事概要

丹波綾部道路は、南北に長い京都府を縦貫して宮津市 から久御山町に至る、長さ約100kmの京都縦貫自動車道 のうち、綾部市〜京丹波町間29.2kmの一部区間である. 開通により、京都南北間の移動時間短縮、京都北部の観 光客の増加など沿道地域の活性化が期待されている.

須知第二トンネルは、丹波綾部道路の南端に位置する 丹波ICにほど近い延長380mの山岳トンネルである. 図-1に工事位置を、表-1に工事内容を示す.

表-1 工事内容

工事名称		丹波綾部道路 須知第二トンネル工事
工事場所		京都府船井郡京丹波町 須知地先~曽根地先
工 期		2012年10月2日 ~ 2014年2月28日
	延長	工事延長 L=708.6m, トンネル延長 L=380.0m
I.	断面	内空面積 75.5m²
事	施工法	NATM
内	掘削方式	発破掘削方式
容	掘削工法	上半先進ベンチカット工法
	補助工法	注入式長尺鋼管フォアパイリング

3. 地形・地質概要

当該工事は、丹波山地の南西部、須知盆地の南側に位置する.標高400m前後の山地が低地と接する付近であり、山腹斜面の傾斜は25°~30°であるが、谷に沿って部分的に緩傾斜を示す箇所も認められる.また、谷部には段丘面が形成されている.

地質学的には、中生代・ジュラ紀(約2.1億~約1.5億 年前)に形成された丹波帯の「付加体堆積物」が分布す る地帯に属しており、緑色岩、層状チャート、頁岩・砂 岩を主とする砕屑岩類が分布する.

4. 前方探査概要

当現場では、工事着手前の現地踏査と弾性波探査によ る地質調査から4箇所の低速度帯(断層破砕帯)の存在 が推測されていた。断層破砕帯では地山の緩みによる切 羽の肌落ちや崩落、天端の抜け落ち等が発生しやすく、 掘削に先立ち正確な破砕帯の位置を把握し、必要な対策 を講じる必要があった。

そこで、地質縦断図に記載されている断層破砕帯を確認するために、以下の順で前方探査を実施した.まず、 想定されている破砕帯位置の約20m手前で、①TSP切羽前 方探査を行い、破砕帯の位置をある程度特定する.特定 した破砕帯位置の10m手前から、②先進調査ボーリング、 および③DRISS検層調査を行い、破砕帯の地質や地山性 状を把握することとした.

事前調査により想定されていた破砕帯の位置と各探査の実施位置を図-2に示す.

(1) TSP切羽前方探查概要

TSP切羽前方探査は、3成分弾性波反射法に属する探

査法である.トンネル側壁に複数の発振孔を設け,発破 により順次振動を発生させ,断層等で反射した反射波を 受振することにより,切羽前方100~150mまでの地山状 況を3次元的に予測・評価できる.

トンネル側壁で発破すると、その振動が岩盤内を球面 状に拡大しながら伝播する弾性波として伝わる.その弾 性波が地質不連続面に到達すると、岩盤強度の変化量に 応じた反射波を生じてトンネル側に戻ってくる.この反 射波を、振動計(受振器)を用いて高精度に測定すると、 反射波が戻ってきた方向と所要時間(数ミリ秒〜数十ミ リ秒程度)が得られる.このデータを多数集めて立体的 に分析することで反射面、すなわち岩盤強度の変化面の 位置を知ることができる.図-3にTSP切羽前方探査のイ メージ図を、写真-1に探査実施状況を示す.

図-3 TSP切羽前方探査イメージ

写真-1 TSP切羽前方探查実施状況

図-2 想定破砕帯および前方探査実施位置

(2) 先進調査ボーリング概要

今回,先進調査ボーリングには,油圧式ロータリーパ ーカッションドリルによる急速コアサンプリングが可能 なワイヤーライン工法(以下PS-WL工法)を採用した.

PS-WL工法は油圧式ロータリーパーカッションドリル にコア採取機能を持たせたシステムである.回転打撃に 対応できるコアバーレルを装着し,穿孔時にコアを採取 する.コアの回収はロッド内にワイヤーで接続した回収 器(オーバーショット)を水圧で送り込み,ロッド内の インナーチューブアッセンブリーを回収する.

この工法は、従来コア採取の困難な礫層や破砕質地盤 のコアを効率よく採取できる工法として多くの実績をあ げている.

ボーリング箇所は切羽中央部1箇所とし,30mの穿孔 およびコアサンプリングを行った. 写真-2に先進ボーリ ング実施状況および穿孔位置を示す.

写真-2 先進ボーリング実施状況および穿孔位置

(3) DRISS検層調査概要

DRISS検層調査は、トンネル掘削に使用する油圧式削 岩機(ドリルジャンボ)の穿孔時における機械データを 計測し、これを基に地山性状を推定するシステムである. DRISS (Drilling Survey System) は、一般的に実施さ

れる"探り削孔"と同様の手法で行われ、穿孔作業時に 削岩機の各油圧データを自動測定し、これらのデータを 基に地山性状に対する定量的な推定・評価を行う.測定 データは、削岩機の機械データ(フィード圧、打撃圧、 回転圧、ダンピング圧、フィードシリンダ油量(穿孔距 離・速度に換算))と、穿孔時の目視観察データ(湧水 量、くり粉の性状等)である.専用のソフトウェアによ り、機械データから穿孔エネルギーを算出し、切羽前方 の地山評価指標とする.

DRISS検層箇所は両肩部2箇所とし、30mの削孔検層を 行った.**写真-3**にDRISS検層調査の実施状況を示す.

写真-3 DRISS検層調査実施状況

5. 前方探査結果

(1) TSP切羽前方探查結果

TSP切羽前方探査により得られた弾性波反射面の分布 を図-4に示す.これは、計測した反射波をP波、SH波、 SV波の3成分に分解し、各成分で反射強度の強い上位 10位までの反射面を抽出したものである.

1回目の探査では、探査区間全体に反射面の分布が認められた.地質縦断図に示される想定破砕帯A, Bにおいても反射面は認められるが、顕著な反射面の集中や弾性波速度の落ち込みは確認されなかった.このため破砕帯を含む脆弱な地山がある程度の広がりをもって分布していると判定した.想定破砕帯AとBに挟まれた区間は、設計ではCII-bで計画されていたが、探査時切羽と同じDIIIaからDI-b相当の地山が分布するものと想定した.

2回目の探査でも、想定破砕帯Bでの顕著な反射面の 集中や弾性波速度の落ち込みは見られず、想定破砕帯B を含む切羽前方約100mにわたり、反射面が分布している. 想定破砕帯BとCに挟まれた区間は、設計ではCII-bで あったが、1回目の探査結果と同様に、破砕帯を含む脆弱な地山が分布していると判断し、探査時切羽と同じ DI-b相当の地山が分布するものと想定した.

3回目の探査では、切羽から90m前方までの区間に大きな反射面は認められなかった.このため、想定破砕帯 Cは存在せず、探査時切羽のDI-b相当の岩相が続くものと考えられた.90mから先の区間については反射面が 多く、亀裂などの不連続面が発達し、地山が脆弱化する ものと想定されたが、1回目、2回目の探査結果と同様 に、想定破砕帯Dのみでの顕著な反射面の集中や弾性波 速度の落ち込みは見られず、破砕帯を含む脆弱な地山が 広がりをもって分布していると判定した.

実際の掘削記録や先進ボーリングの結果から,想定破 砕帯A,Bでは、図-5に示されるような軟質な破砕され た黒色頁岩(泥岩基質)に硬質な珪質頁岩,緑色岩,砂 岩の岩塊が混在する「混在岩相」を確認しており,TSP で観測された多くの反射面は各岩塊の境界面での反射波 をとらえたものと考えられる.想定破砕帯A,B,Cに 挟まれた区間でも混在岩相が分布しており,設計でCIIbであった区間は、岩質判定の結果,DIもパターンに変 更されている.想定破砕帯C付近では、比較的硬質な珪 化した頁岩と砂岩が分布しており、破砕帯は確認されな かった.想定破砕帯D付近では、地山が著しく破砕され 脆弱化し,注入式長尺鋼管フォアパイリングを補助工法 として採用して掘削を行っている.以上のことより, TSP探査により得られた前方地山の想定は、実際の地山 状況に概ね一致するものであったといえる.

図-5 切羽写真およびスケッチ(混在岩相部)

(2) 先進調査ボーリング結果

先進調査ボーリングの範囲は,TSP切羽前方探査によ り破砕帯位置を特定して決めるものとしていたが,脆弱 部が広い範囲で分布すると想定され,明確に連続した形 態での破砕帯が確認されなかったため,地質縦断図に記 載された想定破砕帯位置でのボーリング調査とした.

1回目の調査は想定破砕帯Aを対象にボーリングを行った.地質は主に頁岩が分布し,一部に砂岩を狭在する. 頁岩の岩相は,剥離性を有し,一方向に割れ易く,亀裂 面は鏡肌である.岩質は硬質だが潜在的な片理が発達し, 片理面に沿って割れ易く3~14cm程の柱状~片状コアが 目立つ.深度1.5m~8.0m区間には,緑色岩を混在する. 深度18.0m~21.0m及び29.4m以深には,粗粒砂岩を狭在す る.深度8.0~8.95m, 17.3~18.0m, 21.0~22.5m区間に おいては,粘土化を伴った破砕帯が確認された.

2回目の調査は想定破砕帯Bを対象にした.この区間 でも、引き続き混在岩相が確認された.特に、11.5mか ら16.1m付近では、頁岩の粘土化した破砕帯が約5m幅で 観察され、深度3.5~16.1m区間は、頁岩砂岩互層部も含 め破砕帯とみなされる.また、17.1~21.0m区間では、 約4m幅で硬質な砂岩が分布している.

3回目の調査区間では想定破砕帯Cを対象とした.こ の区間はTSP切羽前方探査で反射面の分布が少なかった 区間である.地質は砂岩と頁岩の互層状態を呈している. 頁岩,砂岩とも珪化して硬い.頁岩は剥離性を有し,一 方向に割れ易く,亀裂面には鏡肌がみられたが,3回目 の調査区間内に,破砕帯と判断されるような著しい劣化 部は確認されなかった.

図-6 先進調査ボーリング結果

(3) DRISS検層調査結果

DRISS検層位置も先進調査ボーリングと同じ区間で実施した.図-7に1回目から3回目までのDRISS検層調査結果(穿孔エネルギー)を示す.

1回目のDRISS検層結果からは、左右の連続性を明確 に示す穿孔エネルギーの相関は認められない.ボーリン グで確認された21.0~22.5m区間の約1.5m幅の破砕され た粘土層についても、連続性は確認できない.

2回目のDRISS検層結果も1回目と同様に左右の連続 する大きな不連続面は認められない.特に、ボーリング で確認された11.5mから16.1m付近の約5m幅の粘土化した 破砕帯と、17.1mから21.0m付近の約4m幅の硬質砂岩に おいても、左右の結果に明確には表現されていない.こ れは、地質縦断図に記載されているような明確な連続性 をもった断層破砕帯としてではなく、硬質岩塊を含む地 山脆弱部が断続的に分布している状態、「混在岩相」か らなる地質構造を想定すれば、妥当な結果である.

3回目のDRISS検層結果も、左右の連続する大きな不 連続面は認められなかった.この区間では、TSP探査や 先進ボーリングの結果からは比較的硬質な岩の分布が想 定されていた.しかし、左肩部0.0m~14.0m付近のエネ ルギーの高い区間で硬質岩の分布が想定される以外は、 1回目、2回目と比べて穿孔エネルギーが全体的に小さ く、軟質な岩の分布が想定される結果となっている.こ れは、調査区間が最小土被りが約8mの谷部にあたり、 DRISS検層調査ではトンネル肩部の高い位置から若干上 向きの角度で穿孔を行ったため、表層に近い位置の地山 状況を反映したものと考えられる.

6. 前方探査の活用

実施工において,前方探査結果は,岩質判定時の資料 として有効に活用することができた.岩質判定時に最も 信頼の高い調査結果は先行調査ボーリングといえるが, コストや工程に与える影響が大きいため,広い範囲に適 用することは困難であった.そのため,TSP探査の結果 において,ボーリングを実施した区間での反射面密度と 同程度の反射面分布を示す区間では,同様の地質状況が 続くものと判定することで,支保工選定の判定材料とし た.実際の掘削に際しては,当初CII-bで計画されてい た区間も混在岩相を呈し,脆弱部が広く分布していたた め,DI-bにて施工されており,岩質判定時に想定した 地山状況は実際の地山に合致していたものといえる.

7. まとめ

TSP探査では、ボーリング調査で得られた粘土化した 破砕帯など特に脆弱な部分のみを抽出して特定すること

図-7 DRISS検層調査結果

はできなかったものの、岩塊の境界面の分布をとらえ混 在岩相による地山の脆弱区間を読み取ることができ、実 際の地山状況と整合のとれた前方地山の推測を行うこと ができた.また、TSP探査では、探査範囲が一度で150m までと広い範囲の探査が可能であり、TSPによりある程 度の地質状況の推定を行うことで、ボーリング範囲を最 適化、限定化できると思われる.

先進調査ボーリングでは、PS-WL工法を採用した.パ ーカッションドリルで打撃を加えて掘削を行うためRQD 値は得られないものの、岩石種や岩性状等を容易に観察 できた.また、粘土を伴う地層でもコアを採集でき、粘 土層を含む破砕帯を確認することができた.ただし、削 孔水を多量に使用すると、細粒化した岩や粘土層部分の 流出が見られるため注意が必要である.施工においては、 通常のボーリング調査より探査時間を大幅に短縮可能で あり、30mのボーリング探査を土曜、日曜の昼間で施工 できたため、工程への影響を抑えることができた.直接、 地山試料を確認できることから、今回行った3つの探査 方法の中では、最も信頼性の高い調査方法といえる. DRISS検層調査は、岩種は特定できないものの、くり 粉の性状確認や岩の硬軟変化の把握から、地質変化点を 大まかに推定することができる。今回、地山が付加体の 中でも複雑な地質構造である混在岩相であったため、破 砕帯や同一岩種の明確な連続性は認められなかったが、 比較的単純な地質構造を示す地山では、切羽の左右2箇 所で検層調査を実施し、切羽中央で実施した先進調査ボ ーリングと併用することによって、ボーリングだけでは 把握できない不連続面の走向傾斜や3次元的な地層分布 の想定に有効であると思われる。DRISS検層では、地山 の相対的な硬軟を知るために、全線でデータを採取して 多くのデータを蓄積し、精度を高めることが望ましく、 そうすることで、より有効に活用できるものと思われる。

前方探査の選定においては、工事位置での地質構造や 工事における工程、費用等の条件に応じ、各探査技術の 特徴を踏まえて単体もしくは組み合わせて前方探査を実 施することが重要であり、本稿が同類工事の参考になれ ば幸いである.