長寿命の既設橋梁における床版コンクリートの 材料的評価について

浦西 勝博

近畿技術事務所(〒573-0166大阪府枚方市山田池北町11-1)

近畿技術事務所は、各事務所から依頼を受けて土木材料に関する調査・評価を行っていることもあって、 長寿命の既設橋梁の床版取替を含む大規模修繕を機会に、撤去された旧床版に対して中性化深さ試験、含 有塩化物イオン量試験、圧縮強度・静弾性係数試験、EPMA法によるコンクリート中の元素の面分析を 行うこととした。

今回は、約90年前に施工された旧床版コンクリートを材料的側面から見た場合の性状およびその評価 について報告をするものである。

キーワード 長寿命,既設橋梁,コンクリート構造物,材料的評価

1. 目的

一般国道2号淀川大橋は、昭和20年の大阪大空襲に より米軍の攻撃を受け被災しましたが、その後同じ構造 で復旧される等、歴史的な構造物であり、完成当初から 昭和50年に至るまで阪神電鉄の路面電車が橋の中央を走 行し、鉄道橋としての役割も果たしてきました。

また、近年の調査では、1日あたりの交通量が3万4 千台にもおよび、道路橋として現在でもなお重要な構造 物であることは言うまでもありません。

建設後約90年が経過した淀川大橋で、平成29年2 月より床版を取り替える大規模な工事が実施されました。 そこで、近畿技術事務所は、建設後90年経過したコン クリートの品質はどのようなものかを調べることを通し て、近畿地方整備局管内の長寿命の既設橋梁について、 材料的評価を行うものである。

図-1.1 淀川大橋の全体

図-1.2 淀川大橋の横断面図

試験概要

旧床版コンクリートの健全度を評価するため、旧床 版から採取したコア試料を用いて、(1)~(4)の試験を実 施した。

(1)中性化深さ試験

中性化深さの測定はJISA1152「コンクリートの中性化深さの測定方法」により実施した。

コンクリートカッターを用いてコアを切断し、切 断面にフェノールレイン溶液を噴霧した。中性化深さ は、赤紫色に呈色した部分が安定した後(約10分程 度)、ノギスを使用して表面から呈色した部分までの 距離を10mm間隔で測定をした。(図-2.1参照)

図-2.1 中性化試験

(2)含有塩化物イオン量試験

コア試料を床版仮面から表-2.1に示す深度でスライス した。なお、全試料共通の深度75~85mmはコア試 料高さの中間部に位置したため、コンクリートの内在塩 分量を評価することを目的に設定した。加えて、深度 35~45mm及び75~85mmはコア試料によって は、鉄筋近傍に位置したことから、塩分量が鉄筋の腐食 発生限界値に到達しているかどうかを推定するため当該 深度を設定した。

スライス片をジョークラッシャーで粗粉砕し、粉砕し たものを105℃で乾燥後、ディスクミルで0.15m mふるい全通まで微粉砕した。

各深度において、JISA1154:2012「硬 化コンクリート中に含まれる塩化物イオンの試験方法」 に準拠し、塩化物イオン電極を用いた電位差滴定法によ り塩化物イオンの定量分析を行った。

また、コンクリートの単位容積質量は、2,300kg /m²を使用し、(式5.1)より単位容積あたりの塩化 物イオン量に換算した。

 $c = c - \swarrow 1 \ 0 \ 0 \times \rho$

- c : 単位容積当たりの塩化物イオン量 (kg/ m³)
- c-:塩化物イオン濃度(%)
- ρ :コンクリートの単位容積質量(kg/m³)

(式5.1)

径間 No.	深度(mm)						
116, 100	$35 \sim 45$	$75 \sim 85$	$115 \sim 125$				
P2-P3	0	0	0				
P6-P7		\bigcirc					
P10-P11		0					
P13-P14		0					
P14-P15		0					
P16-P17		\bigcirc					
P19-P20		\bigcirc					
P23-P24		0					
P27-P28	\bigcirc	\bigcirc	\bigcirc				

表-2.1 分析試料の深度一覧

(3) 圧縮強度·静弾性係数試験

圧縮強度・静弾性係数試験は、JIS A 1107 「コンクリートからのコアの採取方法及び圧縮試験方法」およびJIS A 1149「コンクリートの静弾性 試験方法」により実施した。

圧縮強度試験時、コア側面に貼り付けた2枚のひ ずみゲージ(検長60mm)により、縦ひずみの測定を 行い、(式5.2)および(式5.3)で圧縮強度およ び静弾性係数を算出した。また、コア供試体の端面処理 は研磨処理とした。

f_c=P/A (式5.2) f_c:圧縮強度 (N/mm²) P:最大荷重 (N) A:断面積 (mm²)

E_c:静弾性係数(KN/mm²)
S₁:最大荷重の1/3に相当する応力(N/mm²)
S₂:縦ひずみ50×10⁻⁶のときの応力(N/mm²)
ε₁:応力S₁によって生じる縦ひずみ

 $\epsilon_2:50 \times 10^{-6}$

(4) EPMA法によるコンクリート中の元素の面分析

コア試料全断面に対して、JSCE-6574-2013「E PMA法によるコンクリート中の元素の面分析方 法」により、C1(塩素)、C(炭素)、Ca (カルシウム)、及びSi(珪素)の4元素につ いて、面分析を行う。なお、C1およびCは、そ れぞれ塩害および中性化の進行状況を、Caおよ びSiはそれぞれセメントペーストおよび骨材の 分布状況を確認するために選定した。

また、C1については、同基準の付属書3(参 考)「EPMAによるコンクリートの濃度分布の 作成方法」を参考に、塩化物イオンの濃度分布を 作成する。

EPMA用試料の加工概要を図-2.2に示す。EP MA法は分析可能な試料の大きさが最大80mm×80 mmであるため、1回でコアの高さの80mm分しか 分析できない。そこで、同図に示すように、コア を幅80mm×高さ140mm程度の板状に加工し、そ れを更に上下に2分割し、コア1本当たり上下の 2箇所で面分析を行い、上下2箇所の分析結果を 合わせて床版全断面の面分析結果を得ることとし た。

その後、試料サイズが縦80mm、横80mmとなる ように切り出した試料を樹脂埋め込み後、研磨紙 を用いて測定面の鏡面研磨を行った。最後にエタ ノールで超音波洗浄をした後、減圧乾燥により4 8時間以上乾燥させた試料を真空蒸着装置(日本 電子(株)JEE-400)によって金蒸着を行い、EP MA測定用試料とした。 一般部門(安全・安心) I: No.06

3. 試験結果

(1)中性化深さ試験

中性化試験の実施状況写真は以下の写真-3.1 ~写真-3.5のとおりである。

中性化状況;P2-P3

中性化状況;P6-P7

写真-3.1

中性化状況;P14-P15

中性化状況;P19-P20

写真-3.4

	測定値 (mm)								平均 中性化	最大 中性化	
1至月1100.	1	2	3	4	5	6	7	8	9	深さ (mm)	深さ (mm)
P2-P3	28.0	22.0	22.0	28.0	27.0	25.0	20.0	22.0	17.0	23.4	28.0
P6-P7	60.0	57.0	57.0	55.0	55.0	57.0	65.0	65.0	62.0	59.2	65.0
P10-P11	32.0	30.0	30.0	32.0	30.0	25.0	23.0	27.0	21.0	27.8	32.0
P13-P14	55.5	50.0	49.0	54.5	55.0	53.0	53.0	51.0	54.0	52.8	55.5
P14-P15	77.0	78.0	77.0	78.5	75.0	76.0	79.0	77.0	80.0	77.5	80.0
P16-P17	32.0	35.0	40.0	38.0	35.0	30.0	27.0	30.0	40.0	34.1	40.0
P19-P20	15.0	15.0	14.0	13.0	18.0	20.0	21.0	15.0	15.0	16.2	21.0
P23-P24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
P27-P28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

平均中性化深さはコア試料の採取箇所によって大 きく異なり、全く中性化がみられないコアから 80 mm 近くまで中性化が進行しているコアまで様々であった (表-3.1)。これは、淀川大橋建設当初に打設された 床版コンクリートの暴露環境が供用開始以降その位置 によって異なった可能性が考えられる。また、後述す るように圧縮強度及び静弾性係数の試験結果にも大き なばらつきが認められたことから、コア試料の採取箇 所によってコンクリート品質が異なり、これが中性化 の進行に影響を及ぼした可能性が考えられる。

(2) 含有塩化物イオン量試験

含有塩化物イオン量

表-3.2 含有塩化物イオン量試験結果

径間No.	塩化物	gイオン濃度Cl-	(%)	塩化物イオン量C1(kg/m3)			
	35-45 mm	75-85 mm	115-125 mm	35-45 mm	75-85 mm	115-125 mm	
P2-P3	0.025	0.018	0.015	0.58	0.41	0.35	
P6-P7		0.015			0.35		
P10-P11		0.015			0.35		
P13-P14		0.011			0.25		
P14-P15		0.018			0.41		
P16-P17		0.011			0.25		
P19-P20		0.017			0.39		
P23-P24		0.011			0.25		
P27-P28	0.024	0.012	0.012	0.55	0.28	0.28	

コンクリート中の塩化物イオン量について、配合 設計における現在の基準(0.30 kg/m³以下)に照らす と、コア試料の採取箇所や床版の高さ方向によって当 該基準値を超えるものがやや多く認められた(表-3.2)。しかしながら、一般的な鉄筋の腐食発生限界 値(1.2 kg/m³) * に到達するものはなく、 淀川大橋の 旧床版コンクリートにおいて塩害による劣化は生じて いないと考えられる。

※土木学会のコンクリート標準示方書 [維持管理 編] 2018 年制定版では「類似の構造物の点検結 果がない場合には、設計や施工記録等の情報か らセメントの種類および水セメント比を確認し た上で、式により腐食発生限界塩化物イオン濃 度を設定してよい」とされているが、淀川大橋 の床版コンクリートは建設後約 100 年が経過して おり配合条件が不明であるため、ここでは配合 条件によらない 2007 年制定版の値を一般的な鉄 筋の腐食発生限界値とした。

(3) E縮強度·静弾性係数試験

試験結果を表-3.3に、圧縮強度と静弾性係数の関係を 図-3.6に、応力--ひずみ曲線を図-3.7~図-3.9に示す。

なお、表-3.3 には既往文献[1]に基づき、直径 50mm コアの圧縮強度に補正係数 1.12 を乗じて直径 100mmコ アの圧縮強度を推定した値を参考値として表記している。

径間 No.	平均 直径 (mm)	平均 高さ (mm)	h/d	高さ 補正	質量 (g)	最大 荷重 (kN)	圧縮強度 (N/mm²)	圧縮強度 参考値** (N/mm ²)	静弹性 係数 (kN/mm ²)
P2-P3	49.3	98.6	2.00	1.00	446	120.0	62. 8	70.4	38.6
P6-P7	49.3	96.7	1.96	1.00	425	72.5	38.0	42.6	31.2
P10-P11	49.3	98.3	1.99	1.00	439	103.0	54.0	60.5	34.5
P13-P14	49.4	97.8	1.98	1.00	438	70.8	36. 9	41.3	35.8
P14-P15	49.3	97.9	1.98	1.00	433	67.4	35. 3	39.5	19.7
P16-P17	49.4	97.8	1.98	1.00	430	58.3	30.4	34.0	27.0
P19-P20	49.3	98.5	2.00	1.00	425	71.9	37.6	42.1	25.5
P23-P24	49.4	97.8	1.98	1.00	430	59.7	31. 2	34.9	28.9
P27-P28	49.4	98.6	2.00	1.00	436	78.2	40.8	45.7	32.3

表-3.3 圧縮強度、静弾性係数試験結果

※直径 50mm コアの圧縮強度に補正係数 1.12を乗じて、 直径 100mm コアの圧縮強度を推定した値

図-3.6 圧縮強度と静弾性の関係

図-3.9 応力---ひずみ曲線 (左: P19--P20、中: P23--P24、右: P27--P28)

コアの圧縮強度及び静弾性係数は、淀川大橋にお ける採取箇所によって大きく異なることが判明した。 特に、圧縮強度については試験結果に大きなばらつき が認められたが、最低でも 30N/mm²(参考値)の圧縮 強度を有することが確認された。静弾性係数について は一部を除きコンクリート標準示方書 [設計編] 記載 の土木学会式に基づく算定値と概ね同じような傾向を 示した。なお、P14-15 と P19-P20 が土木学会式の値を 下回っている原因としては、骨材の品質の影響も考え られるが、他の径間で使用されている骨材と外観上大 きな違いが認められないことから、恐らく長年の輪荷 重の繰り返し作用の影響で内部に微細なひび割れが発 生し、ひずみが大きくなった可能性の方が高いと考え られる。旧床版のコンクリート配合は不明だが、既往 の調査資料[2]によると淀川大橋建設当時の床版の強 度設計値は 135kgf/cm² (13N/mm²) であり、全ての試料 で当該強度を大きく上回っている。加えて、現在の配

4

合で想定される一般的な設計基準強度 24N/mm²をも満 足している。これは、淀川大橋が建設当時においても 重要構造物であるとの認識の下、より安全側に設計さ れ慎重に施工されたものと考えられる。

(4) EPMA法によるコンクリート中の元素の面分析

各元素のマッピング像を図-3.10 及び図-3.13~図-3.15 に示す。なお、各図中に示されたカラーバーは 元素毎に濃度スケールを示したものであり、赤~橙で 示される部分が高濃度、青~黒で示される部分が低濃 度の領域を表している。

図-3.10 Cl (塩素) のマッピング像 (左: P2-P3、右: P27-P28)

図-3.10は Cl(塩素)の濃度分布を表したものであ る。径間 P2-P3の試料では旧床版コアの上面側及び下 面側に Clの高濃度領域(図中丸印)が認められるも のの、内在塩分量を表しているとみられるコアの中間 部は Clが低濃度でほぼ一様に分布していることが分 かる。一方、径間 P27-P28の試料では旧床版コンクリ ートの下面に敷設されたモルタル層において Clの高 濃度領域(図中破線下)が認められるものの、コンク リート中には高濃度領域がほとんど認められないこと が分かる。これより、旧床版コンクリート中の塩化物 イオン濃度は高さ方向によって異なり、凍結防止剤の 散布や飛来塩分の影響等により旧床版の上下面では塩 化物イオンが浸透し、比較的高濃度に分布するものと 推察される。

図-3.11 は C (炭素)の濃度分布を表したものであ る。マッピング像の外周縁辺部に赤い高濃度領域が認 められる領域は埋め込み樹脂部分に相当し、コンクリ ート組織内部に認められる赤い高濃度領域も同様にコ ンクリートの空隙に浸透した樹脂の組成を示している とみられる。

径間 P2-P3 の試料では旧床版コアの上面側及び下面 側に黄緑色で示される C の高濃度領域(図中丸印)が 認められ、その部分で中性化が進行しているとみられ る。一方、径間 P27-P28 の試料ではコンクリート下面 のモルタル層において黄緑色で示される C の高濃度領 域(図中破線下)が顕著に現れているが、コンクリー ト下層部にも同様の高濃度領域が若干認められ、その 部分で中性化が進行しているとみられる。

なお、(1)中性化深さ試験で示した径間P2-P3 及びP27-28の平均中性化深さはそれぞれ23.4mm及び0.0 mmであったが、用いた試料は同一径間で採取された別 のコアであることに注意が必要である。

図-3.11 C (炭素) のマッピング像 (左: P2-P3、右: P27-P28)

図-3.12 は Ca (カルシウム)の濃度分布を表した ものである。赤色〜黄色で示される高濃度領域はセメ ントペーストの存在領域を示している。ここで P2-P3 と P27-P28 を比較すると、P2-P3 は P27-P28 に比べて カルシウム濃度が高いことが分かる。これは、実際に 打設されたコンクリートの水セメント比が径間によっ て異なったことを表している可能性が考えられる。即 ち、P2-P3 では圧縮強度が 62.8N/m㎡ と最も大きいこと から水セメント比が特に小さくカルシウム濃度が高い のに対し、P27-P28 では 40.8N/m㎡ と十分な圧縮強度を 有するものの水セメント比としては P2-P3 よりも大き くカルシウム濃度が比較的低く検出された可能性が考 えられる。

5

図-3.12 Ca (カルシウム)のマッピング像 (左: P2-P3、右: P27-P28)

図-3.13 は Si (珪素)の濃度分布を表したものであ る。橙色~黄緑色で示される高濃度領域は骨材の存在 領域を示している。これより、珪素の濃度は骨材粒子 毎に異なり粒子内部の分布状況も様々であることから、 様々な岩種から構成される川砂利等が使用されたこと を表していると言える。

図-3.13 Si (珪素) のマッピング像 (左: P2-P3、右: P27-P28)

4. まとめ

大阪国道事務所所管の「国道2号淀川大橋床版取 替他工事」の実施に伴い採取されたコア試料の一部を 用いて室内試験を行った結果は以下のとおりである。 中性化深さはコア試料の採取箇所によって大きく 異なり、全く中性化がみられないコアから80mm近く まで中性化が進行しているコアまで様々であった。そ

の理由として、後述する圧縮強度及び静弾性係数試験

においても大きなばらつきが認められたことから、コ ア試料の採取箇所によってコンクリート品質が異なり、 これが中性化の進行に影響を及ぼした可能性が考えら れる。

含有塩化物イオン量試験では、コア試料の採取箇 所や床版の高さ方向によって配合設計における現在の 基準(0.30 kg/m³以下)をやや超えるもの(0.35~ 0.58kg/m³)が認められたものの、一般的な腐食発生限 界値(1.2kg/m³)に到達するものはなく塩害による劣 化は生じていないものと考えられる。

圧縮強度・静弾性係数試験では、コア試料から鉄 筋を取り除くため直径 50mm の円柱供試体に特殊整形 を施した上で試験を行った。圧縮強度・静弾性係数は、 同様にコア試料の採取箇所によって大きく異なり、大 きなばらつき ($30.4 \sim 62.8$ N/mm²及び $19.7 \sim$ 38.6kN/mm²)が認められた。但し、圧縮強度は参考値 であるが、最低でも 30N/mm²を有することが確認され た。

E PMA法によるコンクリート中の元素の面分析 結果からも、中性化、塩化物イオン濃度については、 それぞれの試験結果とほぼ同様の結果が得られ、橋梁 の区間によって水セメントが異なっていたり、骨材に 川砂利等が使用されていたなど、建設当時の施工状況 がうかがえる。

淀川大橋に係る平成25年度の定期点検結果による と「主桁、主構トラス、縦桁及び対傾構には腐食が生 じ、床版には剥離・鉄筋露出が認められ、建設後約 90年が経過した現状にあっては抜本的な大規模修繕 が必要」と診断された。

従って、淀川大橋の構造物としての健全度は、腐 食や剥離等による損傷が進行し、床版自体を更新する 必要があると評価された次第だが、上記室内試験結果 から旧床版コンクリートの品質に着目すると、建設後 約 90 年が経過した割には塩害による劣化や中性化に よる劣化も少なく、コンクリート組成としては良好な 状態であることが確認出来た。

参考文献

- 1)日本コンクリート工学協会:コンクリート工学年次論文集、 第22巻、第1号、PP427-432、2000年6月
- 2) 大正時代の鉄筋コンクリート床版がどうして長期使用に耐 えられたのか!、日本橋梁建設協会技術委員会床版小委員 会・保全委員会、平成28年度橋梁技術発表会