平成 29 年度

加古川大堰定期報告書

平成 30 年 1 月

国土交通省近畿地方整備局
姫路河川国道事務所
はじめに

この平成29年度 加古川大堰定期報告書は、「ダム等管理フォローアップ定期報告書作成の手引き [平成26年度版] 国土交通省河川局河川環境課」に基づき、治水・利水の動態や堰周边環境の変化等管理に関わる各種の調査手法や結果を客観的・科学的に分析・評価を行い、堰の適切な管理に資することを目的とし、加古川大堰における平成24年度から平成28年度の管理状況についてとりまとめたものである。

なお、加古川大堰における堰管理開始年度である平成元年度以降、平成23年度までの管理状況については、平成19年度 加古川大堰定期報告書及び平成24年度 加古川大堰定期報告書において整理・取りまとめ及び評価が行なわれている。
3. 利水補給

3.1 評価の進め方 3-1
 3.1.1 評価方針 3-1
 3.1.2 評価手順 3-1
 3.1.3 必要資料（参考資料）の収集・整理 3-2
3.2 利水補給計画 3-3
 3.2.1 貯水池運用計画 3-3
 3.2.2 利水補給計画 3-4
3.3 利水補給実績 3-7
 3.3.1 加古川大堰からの取水実績 3-7
 3.3.2 下流への放流実績 3-8
3.4 利水補給効果の評価 3-9
 3.4.1 人口及び生産性向上による評価 3-9
 3.4.2 渇水時の補給効果 3-11
 3.4.3 下流河川の流量の確保 3-13
3.5 まとめ .. 3-14
3.6 文献リスト 3-15

4. 堆砂

4.1 評価の進め方 4-1
 4.1.1 評価方針 4-1
 4.1.2 評価手順 4-1
 4.1.3 必要資料（参考資料）の収集・整理 4-2
4.2 堆砂測量実施状況 4-3
4.3 堆砂実績の整理 4-4
 4.3.1 堆砂量の整理 4-4
 4.3.2 堆砂形状の整理 4-6
 4.3.3 堰直下の中州について 4-8
 4.3.4 河床材料の変化 4-10
4.4 まとめ .. 4-12
4.5 文献リスト 4-13

5. 水 質

5.1 評価の進め方 5-1
 5.1.1 評価方針 5-1
 5.1.2 評価手順 5-2
 5.1.3 加古川大堰の水質に関わる外的要因 5-5
5.2 基本事項の整理 5-7
 5.2.1 環境基準類型指定状況の整理 5-7
 5.2.2 水質調査地点と対象とする水質項目 5-9
 5.2.3 水質調査労働の整理 5-11
5.3 水質状況の整理 5-14
1. 事業の概要
2. 治水
3. 利水補給
4. 堆砂
5. 水質
6. 生物
7. 堰と周辺地域との関わり
1. 事業の概要
1.1 流域の概要
1.1.1 自然環境

流域の概要

加古川は、その源を丹波、但馬、播磨の境界に連なる丹波市青垣町の粟鹿山（標高 962m）に発し、遠阪川、葛野川、柏原川、牧山川、岩屋谷川等を合わせながら氷上低地、柏原盆地を南流し、丹波市山南町井原において、加古川水系の支川としては最大の流域面積を有する篠山川と合流する。さらに、その後、杉原川、野間川等を合わせ、西脇市と加東市の市界付近より国管理区間を流れて東条川、万願寺川、美嚢川等を合わせ、加古川市、高砂市の市界において播磨灘に注ぐ一級河川である。

その流域面積は、約 1,730km²で、兵庫県内の 11 市 3 町を包含する。図 1.1-1 に加古川流域および加古川大堰の位置を示す。
(2) 地形

加古川流域を大別すると、上流部の中国山地からなる山地部と、下流部の六甲山麓および播磨平野に属する平地部とに分けられる。流域内の山地高度は1,000m以下で森林限界に達しておらず、中流部から下流部にかけて丘陵や台地が発達しており、さらに本川および各支川沿いには比較的広い谷底平野が分布している。また、最下流の加古川市付近は砂礫台地が、高砂市付近は扇状に沖積性の播州平野が広がっている。

図1.1-2に加古川流域の概況、図1.1-3に加古川縦断図、図1.1-4に加古川流域の地形を示す。
凡例

山地
大起伏山地
中起伏山地
小起伏山地
山麓地
火山地
大起伏火山地
中起伏火山地
小起伏火山地

丘陵地
大起伏丘陵地
小起伏丘陵地
台地
砂礫台地（上位）
砂礫台地（中位）
砂礫台地（下位）
岩石台地（中・下位）

低地
扇状地形低地
三角州性低地
自然堤防・砂州
（副分類記号）
埋立地
人工変地
付加記号
緩斜面
地すべり地

図1.1-4 加古川流域の地形

（出典：資料1-3）
(3) 地質
加古川流域は、上・中流部の山地の大部分が有馬層群と呼ばれる白亜紀後期から古第三紀に属する流紋岩質凝灰岩から成るが、篠山川上流域から佐治川左岸においては丹波古生層で、砂岩・粘板岩および輝緑凝灰岩等より成っている。中流部および下流部の一部には第三紀層に属する礫・砂・粘土もみられるが、平野部の大半には第四紀層に属する堆積土が分布している。
図1.1-5に加古川流域の表層地質図を示す。

図1.1-5 加古川流域の地質

(出典:資料1-1)
（4）植生
加古川流域の植生は、主にアカマツ林によって覆われている。河川沿いには農耕地が分布しており、自然植生（自然林、自然草原）は少ない。
加古川中上流域ではスギ・ヒノキ等からなる常緑針葉樹植林が主体であり、その他の地域には水田が多く広がっている。加古川大堰下流は、農耕地及び市街地がほとんどを占めている。
図1.1-6に加古川流域の植生図を示す。
(5) 水文・気象

加古川流域の上流部は中国山地の東端にあたり、下流部は瀬戸内海に面した平野となっている。このため気象は、流域上流部と流域中・下流部の2つに分かれる。年間降水量は、流域上流部では約1,600mmと全国平均と同程度である一方、流域中・下流部では約1,200mmと少なく瀬戸内式気候となっている。（全国平均年間降水量は約1,690mm 出典：平成28年版日本の水資源の現況 昭和56年～平成22年（30年間））

図1.1-7 に加古川流域の等雨量線図（H8～18平均）を示す。

図1.1-8 に加古川大堰地点の降水量を示す。加古川大堰地点の降水量は年間約1,171mm程度となっており、管理開始以降の最大は平成27年の1,609mm、管理開始以降の最少は平成6年の610mmとなっている。

図1.1-8 加古川大堰地点の降水量

（出典：資料1-7）
図 1.1-9 に加古川流域における過去 10 年間の年間降水量と平均気温の推移を示す。降水
量、気温ともにばらつきがあり、顕著な傾向はみられない。

図 1.1-9 加古川流域の年降水量・気温の推移
（出典：資料 1-8）
図 1.1-10 に加古川流域の月別降水量を示す。4 地点ともに9月が最も多く、ついで7月、6月が多くなっている。
1.1.2 社会環境
(1) 加古川流域市町村の人口
加古川流域には、図1.1-11に示すとおり、現在11市3町が含まれている。
流域市町の自治体人口推移は

図 1.1-12 に示すとおりで、流域としては昭和 45 年から平成 17 年にかけては増加の傾向にあり、平成 17 年以降はやや減少の傾向となっている。

なお、神戸市は加古川流域内の「北区」（昭和 48 年発足）のみを整理した。また、高砂市は流域内人口が 0 であること、三田市は市の面積に占める加古川流域面積の割合が小さいことから、この 2 市は整理対象外とした。

図 1.1-12 加古川流域に含まれる市町の人口推移（自治体人口）

出典：資料 1-9

※1 篠山市の平成 7 年までの人口は、旧篠山町、旧西紀町、旧丹南町、旧今田町の人口を合計値である。
※2 丹波市の平成 12 年までの人口は、旧山南町、旧青垣町、旧氷上町、旧柏原町の人口の合計値である。
※3 西脇市の平成 12 年までの人口は、旧西脇市、旧黒田庄町の人口の合計値である。
※4 神戸市北区は昭和 48 年に神戸市兵庫区から分割する形で発足した。

赤囲みは評価対象期間（H24~28）のデータを示す。
加古川大堰が位置する加古川市および加古川大堰より下流で加古川を境界に加古川市と接している高砂市の人口および世帯数の推移は、図 1.1-13 に示すとおりである。人口は、昭和 45 年から平成 7 年にかけて増加の傾向にあり、平成 7 年以降はほぼ横ばいである。一方、世帯数は、昭和 45 年から増加傾向にあり、平成 7 年以降は核家族化、一世帯当たり人員の減少が進行していると考えられる。

図 1.1-13 加古川市の人口及び世帯数の推移

出典: 資料 1-9
(2) 加古川流域市町村の産業

加古川流域市町村の産業別人口比率と人口の推移を図 1.1-14 に示す。産業別人口比率は第 3 次産業が増加し、第 1 次、第 2 次産業は減少傾向となっている。

加古川流域市町別の産業別就業者人口は、図 1.1-15 に示すとおりである。

上流域では第 1 次産業が 10%前後となっている市町もあるが、ほとんどが第 2 次、第 3 次産業が主となっている。加古川市では第 3 次産業が約 2/3 を占めている。

図 1.1-14 加古川流域市町村の産業別就業人口比率

※神戸市は加古川流域内の「北区」（昭和 48 年発足）のみを整理。また、高砂市、三田市は整理対象外とした。

図 1.1-14 加古川流域市町村の産業別就業人口比率

（出典: 資料 1-9）
図 1.1-15 加古川流域市町の産業

（出典：資料 1-9）
1.1.3 治水と利水の歴史

(1) 加古川大堰完成以前の洪水被害等の状況

播磨地域の中でもっとも大きい河川である加古川は、大きな降雨がある毎には洪水を繰り返す川で、流域では幾度となく被災してきた。

加古川大堰完成以前の主な洪水被害は表 1.1-1 に示すとおりである。また、過去の洪水の状況を写真 1.1-1 に示す。

表 1.1-1 加古川における主要な洪水被害（戦前）

<table>
<thead>
<tr>
<th>年号・年月日</th>
<th>災害事項</th>
</tr>
</thead>
<tbody>
<tr>
<td>1225 嘉禄 元年</td>
<td>大洪水のため、当時の国包村の屋敷や田畑は残らず流出。一面の河原となった。住民の一部は出屋敷に移り、また別の一部は井の尻と川を隔てて東西に住むようになった。このことから推測すると、洪水と同時に川の流れが一部変わったようである。（最古の洪水の記録）</td>
</tr>
<tr>
<td>1868 明治 元.3.29</td>
<td>洪水</td>
</tr>
<tr>
<td>1870 " 3.9.7 "</td>
<td>"</td>
</tr>
<tr>
<td>1871 " 4.5.18 "</td>
<td>"</td>
</tr>
<tr>
<td>1879 " 12.5.18 "</td>
<td>"</td>
</tr>
<tr>
<td>1880 " 13.9.16 "</td>
<td>"</td>
</tr>
<tr>
<td>1881 " 14.3.11</td>
<td>加古川橋流失</td>
</tr>
<tr>
<td>1882 " 15.8.5</td>
<td>家屋 5 戸、田畑 1500 反流失</td>
</tr>
<tr>
<td>1885 " 18.9.2</td>
<td>死者 2、家屋 5 戸、田畑 170ha 流失</td>
</tr>
<tr>
<td>1888 " 21.10.5</td>
<td>洪水</td>
</tr>
<tr>
<td>1890 " 23.4.23</td>
<td>"</td>
</tr>
<tr>
<td>1892 " 25.7.23</td>
<td>上庄中島船頭村堤防決壊、家屋流失 85 戸、大破 580 戸、耕地浸水 381.8ha</td>
</tr>
<tr>
<td>1896 " 29.8.30</td>
<td>死者 8 名、堤防決壊、家屋流失 149 戸、田畑流失 94ha</td>
</tr>
<tr>
<td>1897 " 30.9.29</td>
<td>死者 8 名、堤防決壊 35 箇所、1500 間、家屋流失 383 戸、破損 1741 戸</td>
</tr>
<tr>
<td>1898 " 31.6.26</td>
<td>洪水</td>
</tr>
<tr>
<td>1899 " 32.7.9</td>
<td>水上村馬渡堤防決壊</td>
</tr>
<tr>
<td>1900 " 33.7.30</td>
<td>天戸堤防決壊</td>
</tr>
<tr>
<td>1903 " 36.7.9</td>
<td>洪水</td>
</tr>
<tr>
<td>1904 " 37.8.31</td>
<td>堤防決壊 431 箇所</td>
</tr>
<tr>
<td>1905 " 38.6.14</td>
<td>洪水</td>
</tr>
<tr>
<td>1906 " 39.6.30</td>
<td>"</td>
</tr>
<tr>
<td>1907 " 40.7</td>
<td>米田新村堤防決、壊避難民 229 人</td>
</tr>
<tr>
<td>1907 " 40.8.24</td>
<td>洪水、死者 7 名、家屋浸水 2999 戸、家屋流失 83 戸、耕地浸水 15.6ha、堤防決壊 1188 箇所</td>
</tr>
<tr>
<td>1909 " 42.9.18</td>
<td>洪水</td>
</tr>
<tr>
<td>1910 " 43.9.6</td>
<td>"</td>
</tr>
<tr>
<td>1911 " 44.6.27</td>
<td>"</td>
</tr>
<tr>
<td>1911 " 44.7.2</td>
<td>"</td>
</tr>
<tr>
<td>1913 大正 2.8.21</td>
<td>"</td>
</tr>
<tr>
<td>1921 " 10.9.26</td>
<td>大洪水増水、死者 6 名</td>
</tr>
<tr>
<td>1928 昭和 3.6.24</td>
<td>洪水</td>
</tr>
<tr>
<td>1932 " 7.7.1</td>
<td>"</td>
</tr>
<tr>
<td>1933 " 8.8.9</td>
<td>"</td>
</tr>
<tr>
<td>1934 " 9.9.21</td>
<td>死者 8 名、家屋流失 312 戸、流失田畑 28ha</td>
</tr>
<tr>
<td>1938 " 13.7.8</td>
<td>死者 5 名、家屋流失 112 戸、流失田畑 154ha</td>
</tr>
</tbody>
</table>

(出典：資料 1-1, 資料 1-10)
<table>
<thead>
<tr>
<th>年次</th>
<th>月日</th>
<th>要因</th>
<th>災害事項</th>
</tr>
</thead>
<tbody>
<tr>
<td>1945</td>
<td>昭和 20年 10月8日~9日</td>
<td>台風</td>
<td>阿久根台風（7,200m³/s） 死者・負傷者31名、家屋流出50戸、田畑浸水74.3ha、堤防破壊6箇所、橋道路災害12箇所</td>
</tr>
<tr>
<td>1950</td>
<td>昭和 25年 9月3日</td>
<td>台風</td>
<td>ジェーン台風、家屋流出20戸、田畑流出93ha、道路破損57箇所、堤防決壊26箇所、橋梁流失14箇所</td>
</tr>
<tr>
<td>1951</td>
<td>昭和 26年 7月9日~16日</td>
<td>前線</td>
<td>田畑流出138ha 死者3名、家屋浸水388戸</td>
</tr>
<tr>
<td>1952</td>
<td>昭和 27年 7月1日</td>
<td>台風</td>
<td></td>
</tr>
<tr>
<td>1953</td>
<td>昭和 28年 9月25日</td>
<td>台風</td>
<td>台風13号 死者1名、家屋流出1戸、田畑流出1.4ha</td>
</tr>
<tr>
<td>1959</td>
<td>昭和 34年 9月25日</td>
<td>台風</td>
<td>伊勢湾台風（3,682m³/s） 堤防決壊777箇所、道路破損93箇所、橋梁流失116箇所</td>
</tr>
<tr>
<td>1961</td>
<td>昭和 36年 6月24日~28日</td>
<td>前線</td>
<td>（4,255m³/s）</td>
</tr>
<tr>
<td>1962</td>
<td>昭和 37年 6月9日~14日</td>
<td>前線</td>
<td>死者1名、負傷者11名（3,623m³/s）、被災戸数6,728戸</td>
</tr>
<tr>
<td>1963</td>
<td>昭和 38年 6月2日~6日</td>
<td>前線</td>
<td>（2,099m³/s）</td>
</tr>
<tr>
<td>1965</td>
<td>昭和 40年 9月13日~17日</td>
<td>台風・前線</td>
<td>死者8名、負傷者290名、堤防決壊6箇所、家屋浸水3,491戸、田畑浸水7,904ha（3,153m³/s）</td>
</tr>
<tr>
<td>1968</td>
<td>昭和 43年 8月29日</td>
<td>台風</td>
<td>台風10号（1,865m³/s）</td>
</tr>
<tr>
<td>1969</td>
<td>昭和 44年 6月25日~7月4日</td>
<td>前線</td>
<td>家屋浸水219戸、田畑浸水517.3ha（2,195m³/s）</td>
</tr>
<tr>
<td>1970</td>
<td>昭和 45年 6月14日〜6月16日</td>
<td>前線</td>
<td>家屋浸水34戸、田畑浸水818.3ha（2,467m³/s）</td>
</tr>
<tr>
<td>1972</td>
<td>昭和 47年 7月9日〜13日</td>
<td>前線</td>
<td>死者1名、負傷者3名、家屋浸水625戸、耕地浸水77ha（2,840m³/s） 死者1名</td>
</tr>
<tr>
<td>1974</td>
<td>昭和 49年 9月9日</td>
<td>台風</td>
<td>台風18号および前線による大雨（2,667m³/s）、死者1名、家屋浸水65戸、田畑浸水65ha</td>
</tr>
<tr>
<td>1976</td>
<td>昭和 51年 9月8日〜13日</td>
<td>台風・前線</td>
<td>前線および台風17号による大雨（2,858m³/s）、死者1名、負傷者3名、堤防決壊12箇所、家屋浸水1,800戸、田畑浸水5,923ha</td>
</tr>
<tr>
<td>1977</td>
<td>昭和 52年 11月16日</td>
<td>前線</td>
<td>家屋浸水3戸、耕地浸水3ha（1,921m³/s）</td>
</tr>
<tr>
<td>1983</td>
<td>昭和 58年 9月26日〜28日</td>
<td>台風</td>
<td>五ヶ井堰付近において法面崩壊などが発生。加古川の中流部（指定区域内）では、西脇市を中心に堤防決壊、溢水、土砂移動等の大災害となった。家屋流出4戸、家屋浸水2,034ha、浸水面積1,013ha（4,828.04m³）</td>
</tr>
</tbody>
</table>

※（ ）内流量は加古川国包地点における最大流量

（出典：資料1-1、昭和58年の状況は資料1-6及び資料1-11）
昭和 40 年 9 月 台風・前線による水害の状況

昭和 49 年 7 月 台風 8 号による水害の状況

昭和 58 年 9 月 台風 10 号による水害の状況

写真 1.1-1 過去の洪水の状況

（出典：資料 1-10）
昭和 58 年 9 月の台風 10 号により加古川が増水し、川沿いでの浸水被害が発生した。また、五ヶ井堰付近の堤防法面が崩壊したが、懸命な水防活動により、加古川本川のはん濫は免れた。図 1.1-16 に昭和 58 年 9 月（台風 10 号）の加古川下流域の浸水状況を示す。
(2) 加古川大堰完成以前の渇水(利水)の状況
加古川は大規模なダム施設がなく、利水は五ヶ井堰、上部井堰、加古川堰堤など、堰により必要な水を取水していた。しかし、流況は不安定でかつ河川水は既得水利権で飽和状態にあり、夏季渇水時には各用水の取水制限の事態がしばしば発生する状況であり、ため池を造るなどの努力を行ってきたが、渇水被害は頻繁に発生し、利水安全度の向上が望まれていた。写真1.1-2に五ヶ井堰と上部井堰の状況写真、写真1.1-3に過去の渇水被害の状況写真を示す。

【五ヶ井堰】
聖徳太子が推古天皇よりいただいた田に引水するために造られた。

【上部井堰】
升田堤を築いた頃、升田川の瀬が変化して取水できなくなった平津・伊保の荘に引水するために造られた。

写真1.1-2 五ヶ井堰と上部井堰の状況
昭和14年 加古川渇水状況
(出典:資料1-12)

写真1.1-3 過去の渇水被害の状況
昭和14年渇水の状況
昭和42年渇水の状況 (加古川堰堤付近)
昭和36年渇水の状況 (加古川堰堤付近)
(出典:資料1-13)
1.2 加古川大堰建設事業の概要

1.2.1 堰事業の経緯

(1) 事業の必要性

加古川の改修事業は基準点国包における計画高水流量を4,450m³/sとして、大正7年から昭和8年まで直轄で実施された。

その後、昭和16年から中小河川改修が実施され、昭和42年6月に一級河川に指定され再び直轄河川改修が実施されるように至った。

直轄河川改修の再開にあたり、計画高水流量は暫定的に国包地点で基本高水流量6,200m³/s、計画高水流量5,600m³/sと決定された。

しかし、この措置は暫定的に行われたものであったため、下流域が播磨工業整備特別地域として発展している重要性に鑑みてさらなる安全度の向上を図ることが必要とされ、国包地点で2日雨量生起確率1/150（流域平均271mm）に対応する基本高水流量を9,000m³/s、計画高水流量を7,400m³/sとする改修計画が昭和57年に設定された。

計画高水流量の変更による流量の河道負担増量分は、河床掘削および低水路断面の拡幅により対処することとした。

五ヶ井堰および上部井堰は、コンクリート固定堰であるため全面的な改築が必要であり、また、県営加古川工業用水道事業（第二期）および東播用水農業水利事業との合併事業である県営東播広域上水道事業の取水堰は、五ヶ井堰および上部井堰と近接した位置に計画されており、河道の阻害施設が少なくなるため、これらの堰を統合する必要があった。

利水面では加古川は大規模なダム施設がなく、流況は不安定でかつ河川水は既得水利権で飽和状態であり、夏期枯水時には各用水の取水制限の事態がしばしば発生しており、緊急に不特定用水の補給による利水安全度の向上が待たれていた。また、加古川大堰の建設計画時の加古川市、高砂市等加古川下流域においては、人口、資産の集中と生活水準の向上に伴い、水需要は年々増大の一途をたどり水需給はきわめて逼迫し、早急な対策が必要となっていた。

したがって、河道疎通能力を著しく阻害している五ヶ井堰、上部井堰を統合し、12.0km地点に可動堰を建設して洪水の安全な流下を図るとともに、加古川大堰による貯留水を利用し、下流部の既得用水の補給と河川維持用水の確保を行い、流水の正常な機能の維持と増進を図るとともに、加古川下流域の逼迫する水需要に対処するため、新規都市用水の開発を行うこととした。

また、五ヶ井農業用水、上部井農業用水および県営加古川工業用水道用水（第一期）、ならびに県営加古川工業用水道用水（第二期）および県営東播広域上水道用水について各用水の所定量の合理的な取水を行うものとした。

（出典：資料1-1）
治水事業の経緯

1) 加古川治水事業の概況

直轄河川改修事業としての治水事業は、加古川改修工事（第一期治水計画）が始まりであった。すなわち、大正 7 年から昭和 8 年にかけて基準地点国包における計画高水流量を 4,450m³/s（明治 40 年 8 月洪水を対象）として美嚢川合流点から下流について、築堤・堀削・護岸工事等が実施された。

その後、昭和 16 年から中小河川改修事業として美嚢川合流地点から上流について築堤、堀削、築堤工事等を実施したが、昭和 42 年 6 月 1 日の一級河川指定を契機として、滝野町から下流については、再び直轄改修事業として、従来の計画高水流量 4,450m³/s を継承した工事実施計画に基づき、築堤、堀削、護岸工事等を実施してきた。

ところが、加古川における既往最大洪水である昭和20年10月出水（阿久根台風）では、国包地点におけるピーク流量は 7,200m³/s と推定され、従来の計画高水流量を上回ったこと、また、下流域における流域内の開発による人口、資産の増大および経済の拡大に対し大幅な安全度の向上を図る必要が生じた。

以上の観点にたって、水系一貫とした基本高水および計画高水流量について再検討を行った結果、基準地点国包における年超過率を 1/150 とし、流域平均 2 日雨量 271mm を対象とした基本高水のピーク流量を 9,000m³/s として、これを上流ダム群により 1,600m³/s 調節し、計画高水流量を 7,400m³/s とした工事実施計画の改定を昭和 57 年に行った。

その後、治水、利水だけでなく環境も含めた総合的な河川整備を実施するため平成 9 年に河川法が改正され、これをうけて平成 20 年 9 月に河川整備基本方針を策定した。また、平成 23 年 12 月に河川整備基本方針の目標を段階的に実現させるため、今後 20〜30 年間における河川整備の内容をとりまとめた河川整備計画を策定した。河川整備基本方針における基本高水は、昭和 57 年改定の工事実施基本計画を踏襲し、基準地点国包において 9,000m³/s、これを上流ダム群により 1,600m³/s 調節し、計画高水流量は 7,400m³/s となっている。

表 1.2-1 に加古川における治水事業の変遷、図 1.2-1 に加古川の計画高水流量配分を示す。

(出典: 資料 1-1, 1-6)
表1.2-1 加古川における治水事業の変遷

<table>
<thead>
<tr>
<th>治水計画</th>
<th>期間</th>
<th>着手の契機</th>
<th>基本高水 (計画高水)</th>
<th>工事区域 (指定区間外区域)</th>
<th>工事内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>加古川改修工事 (第1期治水計画)</td>
<td>大正7年 7月 昭和8年 8月出水</td>
<td>4,450m³/s (4,450)</td>
<td>本川、三木市正法寺 (美濃川合流地点) ～ 海</td>
<td>下流部護岸築堤</td>
<td>加古川堰堤</td>
</tr>
<tr>
<td>加古川中小河川改修工事</td>
<td>昭和16年 7月 昭和42年 8月出水</td>
<td>4,450m³/s (4,450)</td>
<td>本川、三木市正法寺 (美濃川合流地点) ～ 町田柏原 (福田原)</td>
<td>築堤</td>
<td>築堤</td>
</tr>
<tr>
<td>加古川水系工事実施基本計画</td>
<td>昭和42年 7月 昭和57年 8月出水</td>
<td>4,450m³/s (4,450)</td>
<td>本川、加東郡満野町今多井田～河口</td>
<td>東条川築堤万願寺川築堤加古川合流点</td>
<td></td>
</tr>
<tr>
<td>加古川水系工事実施基本計画</td>
<td>昭和57年 7月 平成20年 8月出水</td>
<td>9,000m³/s (7,400)</td>
<td>本川、加東郡満野町今多井田～河口</td>
<td>万願寺川築堤加古川合流点</td>
<td></td>
</tr>
<tr>
<td>加古川水系河川整備基本方針</td>
<td>平成20年 7月</td>
<td>9,000m³/s (7,400)</td>
<td>本川、加東郡満野町今多井田～河口</td>
<td>万願寺川築堤加古川合流点</td>
<td></td>
</tr>
<tr>
<td>加古川水系河川整備計画</td>
<td>平成23年 7月 (概ね30年)</td>
<td>5,700m³/s</td>
<td>万願寺川築堤加古川合流点</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(出典：資料1-1, 資料1-6, 資料1-14)

図1.2-1 加古川の計画高水流量配分

(出典：資料1-14をもとに加古川大堰を記入)
2) 流下能力の向上

加古川大堰地点の計画高水流量 7,400m³/s を安全に流下させるため、加古川の河道改修（拡幅・掘削・護岸整備など）にあわせ、河道の流下能力を著しく阻害している「五ヶ井堰」、「上部井堰」の撤去等を行うことによって流下能力の増大を図り、加古川下流域の治水安全度の向上を図ることとした。

また、加古川大堰には、撤去する五ヶ井堰、上部井堰の機能を統合することとした。
図 1.2-2 に河川改修の状況、図 1.2-3 に井堰の統合の状況を示す。
図1-2-3 井堰の統合の状況

昭和57年3月時点

平成元年3月時点
（加古川大堰建設後）
加古川大堰建設事業の経緯

加古川大堰の事業経緯は、表1.2-2に、加古川大堰事業の経緯は図1.2-3に示すとおりである。
昭和43年から予備調査が開始され、昭和55年11月に工事用道路付替工事の開始をもって建設事業に着手した。加古川大堰本体は、昭和56年11月から昭和59年10月まで、3年間の歳月を経て建設し、試験湛水を経て平成元年4月より管理を行っている。
平成29年度現在、管理開始以降29年が経過している。

表1.2-2 加古川大堰建設事業の経緯

<table>
<thead>
<tr>
<th>年 月</th>
<th>事業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>昭和43年4月〜54年3月</td>
<td>予備調査</td>
</tr>
<tr>
<td>昭和54年4月</td>
<td>実施計画調査</td>
</tr>
<tr>
<td>昭和55年11月</td>
<td>建設事業着手</td>
</tr>
<tr>
<td>昭和56年3月</td>
<td>基本計画告示</td>
</tr>
<tr>
<td>昭和56年11月</td>
<td>本体工事着手</td>
</tr>
<tr>
<td>昭和59年10月</td>
<td>本体完成</td>
</tr>
<tr>
<td>昭和62年4月</td>
<td>試験湛水開始</td>
</tr>
<tr>
<td>平成元年3月</td>
<td>試験湛水終了</td>
</tr>
<tr>
<td>平成元年4月</td>
<td>管理開始</td>
</tr>
<tr>
<td>平成元年7月</td>
<td>竣工式</td>
</tr>
<tr>
<td>平成8年4月</td>
<td>貯水池右岸に「加古川市立漕艇センター」が開設</td>
</tr>
<tr>
<td>平成16年10月</td>
<td>台風23号により管理開始以降最大の流入量を観測</td>
</tr>
</tbody>
</table>

図1.2-4 加古川大堰事業の経緯

（出典：資料1-1および追記）
1.2.2 事業の目的

(1) 治水
加古川大堰地点の改修計画高水流量 7,400m³/s を安全に流下させるため加古川改修計画にあわせ、五ヶ井堰（12.4km地点付近：当時の疎通能力 Q=4,900m³/s）および上部井堰の撤去等によって河道の疎通能力の増大を図り、加古川下流域の水害を防除する。

(2) 流水の正常な機能の維持
下流部の既得用水の補給等、流水の正常な機能の維持と増進を図る。

(3) 都市用水
1）加古川大堰の設置によって加古川下流地域の都市用水として新たに 40,000m³/日の取水を可能とする。
2）東播用水農業水利事業との合併事業である県営東播広域上水道事業および県営加古川工業用水道事業の取水を行うための取水位を確保する。
1.2.3 施設の概要

加古川大堰の施設概要について以下に整理する。

表1.2-3に諸元表、図1.2-5に関連図面、図1.2-6に付帯施設概要図、図1.2-7に貯水池水位-容量曲線、図1.2-8に貯水池容量配分図を示す。
図1.2-5 加古川大堰施設図（平面図、上流面図、断面図）

（出典：資料1-12）
図1.2-6 加古川大堰附帯施設概要及びゲート断面図

（出典：資料1-12, 資料1-15）
図1.2-7 加古川大堰貯水池水位-容量曲線

図1.2-8 加古川大堰貯水池容量配分図

図1.2-7 加古川大堰貯水池水位-容量曲線

図1.2-8 加古川大堰貯水池容量配分図

出典:資料1-12
1.3 管理事業等の概要
1.3.1 堰及び貯水池の管理

加古川大堰管理開始以降の維持管理事業費は、図 1.3-1 に示すとおり近 5 年は概ね横ばいであり、調節ゲート（5号ゲート）の修繕を行った平成 26 年度が若干高くなっている。平成 24 年度〜平成 28 年度の維持管理事業費は 2,444 百万円、1年あたりの平均は約489百万円となっている。近5年における主たる事業は魚道・制水ゲートの修繕、機械設備点検整備、電気・通信施設点検保守等である。表 1.3-1 に平成 24 年度〜平成 28 年度における加古川大堰の主な維持管理事業を示す。

表 1.3-1 平成 24 年度〜平成 28 年度における加古川大堰の主な維持管理事業

<table>
<thead>
<tr>
<th>主な維持管理事業内容</th>
<th>事業費(百万円)</th>
<th>工期実施期間（年度）</th>
</tr>
</thead>
<tbody>
<tr>
<td>機械設備点検整備</td>
<td>208</td>
<td>平成24年〜平成28年</td>
</tr>
<tr>
<td>電気・通信施設点検保守</td>
<td>159</td>
<td>平成24年〜平成28年</td>
</tr>
<tr>
<td>土ゲート修繕（1,2,3,4号ゲート）</td>
<td>300</td>
<td>平成24,25,27,28年</td>
</tr>
<tr>
<td>調節ゲート修繕（5号ゲート）</td>
<td>101</td>
<td>平成26年</td>
</tr>
<tr>
<td>放流制御設備更新工事</td>
<td>373</td>
<td>平成25年〜平成28年</td>
</tr>
<tr>
<td>堰周辺維持作業</td>
<td>37</td>
<td>平成26,27,28年</td>
</tr>
<tr>
<td>管理橋・付属施設塗替塗装</td>
<td>29</td>
<td>平成24年</td>
</tr>
<tr>
<td>水位計改修工事</td>
<td>53</td>
<td>平成24,25年</td>
</tr>
<tr>
<td>魚道週上・滞留調査</td>
<td>36</td>
<td>平成24年〜平成28年</td>
</tr>
<tr>
<td>定期横断測量</td>
<td>18</td>
<td>平成24年〜平成28年</td>
</tr>
<tr>
<td>堰管理運用改善資料作成業務</td>
<td>19</td>
<td>平成25年</td>
</tr>
<tr>
<td>水辺現地調査（動植物プランクトン）</td>
<td>5</td>
<td>平成25年</td>
</tr>
<tr>
<td>堆積土砂掘削工事</td>
<td>80</td>
<td>平成25年</td>
</tr>
</tbody>
</table>

※主な管理事業の事業費を示したものであり、平成 24 年度〜平成 28 年度維持管理事業費の総計とは一致しない。
1.3.2 貯水池の利用実態

(1) 貯水池でのイベント等実施状況
加古川大堰の上流部には、加古川をレガッタのメッカにしていこうとの目的で設置された「加古川市立漕艇センター」があり、貯水池は漕艇場として多くの利用が行われている。
貯水池の上流側は川幅200m、水深2〜5m、直線2,000m等の諸条件がボート競技に適しており、日本漕艇協会から公認コースB級(1000m×5レーン)の認定を受けており、市内外から多数の参加がある夏の加古川市民レガッタ、秋の加古川レガッタ（関西学生リーグ）などのイベントの拠点となっている。
また、国包〜高砂河川公園の加古川河川敷を走る加古川マラソンが毎年開催され、貯水池付近の河川敷道路及び管理橋はマラソンコースの一部として利用されている。
表1.3-2に平成28年度の利用状況、図1.3-2に平成28年度の貯水池の利用写真を示す。

<table>
<thead>
<tr>
<th>開催日</th>
<th>イベント名</th>
<th>参加人数</th>
<th>主催者</th>
</tr>
</thead>
<tbody>
<tr>
<td>4月24日</td>
<td>第6回 KAKOGAWAスプリングカップボート大会</td>
<td>350人</td>
<td>加古川市立漕艇センター</td>
</tr>
<tr>
<td>6月5日</td>
<td>第18回 加古川市長杯ボート競技大会</td>
<td>180人</td>
<td>加古川ボート協会</td>
</tr>
<tr>
<td>6月18日〜19日</td>
<td>いわて国体選手選考会</td>
<td>延べ60人</td>
<td>兵庫県・県体育協会・県教育委員会</td>
</tr>
<tr>
<td>7月30日〜31日</td>
<td>第23回 加古川市民レガッタ</td>
<td>延べ960人</td>
<td>加古川市レガッタ事業実行委員会</td>
</tr>
<tr>
<td>8月27日</td>
<td>第10回 関西熱化学グループレガッタ大会</td>
<td>500人</td>
<td>関西熱化学(株)</td>
</tr>
<tr>
<td>9月11日</td>
<td>第7回 KAKOGAWAオータムカップボート大会 with 県民大会</td>
<td>230人</td>
<td>加古川市立漕艇センター・兵庫県ボート協会</td>
</tr>
<tr>
<td>10月4日</td>
<td>第70回 県民大会兼第3回 加古川ボート協会会長杯大会</td>
<td>中止</td>
<td>加古川ボート協会・兵庫県ボート協会</td>
</tr>
<tr>
<td>11月4日〜6日</td>
<td>第27回 関西学生秋季選手権加古川レガッタ</td>
<td>延べ2,450人</td>
<td>加古川市レガッタ事業実行委員会</td>
</tr>
<tr>
<td>11月12日〜13日</td>
<td>第27回 加古川ツーダーマーチ</td>
<td>延べ2,58人</td>
<td>加古川ツーダーマーチ実行委員会</td>
</tr>
<tr>
<td>12月23日</td>
<td>第28回 加古川マラソン</td>
<td>5,516人</td>
<td>兵庫県マラソン大会実行委員会</td>
</tr>
</tbody>
</table>

（出典：資料 1-17）

図1.3-2 平成28年度の貯水池の利用写真
(2) 河川空間利用実態調査結果

加古川では、3年毎に河川水辺の国勢調査（河川空間利用実態調査）を行い、河川の利用状況を調査している。加古川大堰付近の利用は、散策やスポーツ利用がメインであるが、平成15年度～平成26年度は、貯水池におけるスポーツ（漕艇）などの水面利用が多くなっており、加古川大堰の特徴的な利用形態が表れている。

なお、利用者数は、年間7日間の調査日（春季3日、夏季2日、秋季1日、冬季1日）の実測値合計である。図1.3-3に加古川大堰周辺の利用状況を示す。
1.3.3 加古川の流況

加古川の流況について、加古川大堰への流入量（国包地点流量）で整理した。

流況（豊水流量、平水流量、低水流量、渇水流量）の変動は、表 1.3-3 および図 1.3-4 に示すとおりである。

表 1.3-3 加古川の流況※1（加古川大堰流入量）（単位：m3/s）

<table>
<thead>
<tr>
<th>H1</th>
<th>H2</th>
<th>H3</th>
<th>H4</th>
<th>H5</th>
<th>H6</th>
<th>H7</th>
<th>H8</th>
<th>H9</th>
<th>H10</th>
<th>H11</th>
<th>H12</th>
<th>H13</th>
<th>H14※2</th>
<th>H15※2</th>
<th>H16</th>
<th>H17</th>
<th>H18</th>
</tr>
</thead>
<tbody>
<tr>
<td>豊水流量</td>
<td>61.79</td>
<td>50.73</td>
<td>43.98</td>
<td>33.54</td>
<td>50.84</td>
<td>19.93</td>
<td>20.23</td>
<td>35.18</td>
<td>27.27</td>
<td>60.55</td>
<td>29.00</td>
<td>24.15</td>
<td>29.09</td>
<td>20.24</td>
<td>50.27</td>
<td>37.24</td>
<td>18.82</td>
</tr>
<tr>
<td>平水流量</td>
<td>22.08</td>
<td>22.34</td>
<td>21.45</td>
<td>17.46</td>
<td>23.31</td>
<td>11.61</td>
<td>11.29</td>
<td>17.47</td>
<td>15.87</td>
<td>28.24</td>
<td>17.13</td>
<td>14.78</td>
<td>17.91</td>
<td>13.09</td>
<td>25.62</td>
<td>20.69</td>
<td>13.29</td>
</tr>
<tr>
<td>渇水流量</td>
<td>5.61</td>
<td>5.30</td>
<td>7.88</td>
<td>7.98</td>
<td>9.34</td>
<td>3.45</td>
<td>5.12</td>
<td>7.36</td>
<td>8.32</td>
<td>7.69</td>
<td>5.88</td>
<td>6.49</td>
<td>5.52</td>
<td>7.20</td>
<td>10.00</td>
<td>8.31</td>
<td>5.86</td>
</tr>
</tbody>
</table>

※1 流況 (出典：資料 1-7)
豊水流量：一年を通じて 95 日はこれを下まわらない流量
平水流量：一年を通じて 185 日はこれを下まわらない流量
低水流量：一年を通じて 275 日はこれを下まわらない流量
渇水流量：一年を通じて 355 日はこれを下まわらない流量

※2 H14,15 は点検等により欠測日が多かった（H14:13 日欠測、H15:10 日欠測）ため、以下の流量とした。
豊水流量：[H14:92 日][H15:92 日]はこれを下回らない流量
平水流量：[H14:178 日][H15:180 日]はこれを下回らない流量
低水流量：[H14:265 日][H15:267 日]はこれを下回らない流量
渇水流量：[H14:342 日][H15:345 日]はこれを下回らない流量
1.4 堰管理体制等の概況

1.4.1 日常の管理

(1) 貯水池運用

有効貯水量 1,640,000m³のうち、1,010,000m³により既得利水の補給を行う。

有効貯水量のうち、630,000m³を利用して加古川市水道用水日量 40,000m³ の供給を新たに可能とする。

兵庫県水道用水の取水のため最低取水位 T.P. +9.70m を確保する。

兵庫県加古川工業用水の取水のため最低取水位 T.P. +9.70m を確保する。

図 1.4-1 に貯水池容量配分図を示す。
(2) 放流量の調節
堰の制御（操作）については、河川の流量並びに堰の上流及び下流の水位の状況等に応じ、次の1)～4)を基本として行うこととしている。

1) 洪水時における流水の安全な疎通を図る。
2) 既得用水の取水を可能とし、河川の正常な機能の維持を図るものとし、表1.4-1に示す水量を上限として必要な流水を放流する。
3) 加古川市水道用水最大0.463m³/sの取水が可能とする。
4) 兵庫県水道用水、及び兵庫県工業用水の取水のためにT.P.+9.7mの水位を確保する。

なお、上記2)の制御（操作）は、魚類の遡上に十分配慮し、魚道の機能を維持するために必要な流水を堰から放流しなければならないとしている。

| 表1.4-1 農業用水及び下流の必要水量（種別、期別の最大値） |
| --- | --- | --- |
| 種別 | 期間 | 水量(m³/s) |
| 五ヶ井農業用水 | 1月1日～4月30日 | 0.722 |
| | 5月1日～6月9日 | 1.300 |
| | 6月10日～6月30日 | 3.650 |
| | 7月1日～9月30日 | 2.000 |
| | 10月1日～12月31日 | 0.722 |
| 新井農業用水 | 1月1日～4月30日 | 0.240 |
| | 5月1日～6月4日 | 0.486 |
| | 6月5日～6月25日 | 1.000 |
| | 6月26日～9月30日 | 0.662 |
| | 10月1日～12月31日 | 0.240 |
| 上部井農業用水 | 1月1日～4月30日 | 0.533 |
| | 5月1日～6月4日 | 1.000 |
| | 6月5日～6月25日 | 2.390 |
| | 6月26日～9月30日 | 1.703 |
| | 10月1日～12月31日 | 0.533 |
| 塩下流 | 1月1日～6月23日 | 2.294 |
| | 6月24日～7月2日 | 3.243 |
| | 7月3日～9月30日 | 2.458 |
| | 10月1日～12月31日 | 2.294 |

（出典：資料1-18）
(3) 堆砂測量
堰直下流及び貯水池の河川測量は毎年の定期横断測量にて実施している。また、貯水池内は、音響法にて測量を行っている。なお、堆砂測量は、毎年10月~12月頃に実施している。
図1.4-2に加古川大堰測量位置（測線図）を示す。
(4) 水質調査

加古川大堰の定期水質調査は1回/月、管理開始の前年の昭和63年から毎年調査を行い、「堰水質調査要領H11.3」「堰における溶存酸素調査についてH6.7」を基本として、表1.4-2に示す方法、図1.4-3の地点にて実施している。

表1.4-2 水質調査項目と頻度

<table>
<thead>
<tr>
<th>項目</th>
<th>頻度</th>
<th>項目</th>
<th>頒度</th>
</tr>
</thead>
<tbody>
<tr>
<td>水温</td>
<td>毎月</td>
<td>鉛</td>
<td></td>
</tr>
<tr>
<td>色相</td>
<td></td>
<td>クロム（六価）</td>
<td></td>
</tr>
<tr>
<td>臭気</td>
<td></td>
<td>ヒ素</td>
<td></td>
</tr>
<tr>
<td>透視度</td>
<td></td>
<td>総水銀</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>PCB</td>
<td></td>
</tr>
<tr>
<td>DO</td>
<td></td>
<td>トリクロロエチレン</td>
<td></td>
</tr>
<tr>
<td>BOD</td>
<td></td>
<td>テトラクロロエチレン</td>
<td></td>
</tr>
<tr>
<td>COD</td>
<td></td>
<td>四塩化炭素</td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td></td>
<td>ジクロロメタン</td>
<td></td>
</tr>
<tr>
<td>大腸菌群数</td>
<td>2月・5月・8月・11月</td>
<td>1.2-ジクロロエタン</td>
<td></td>
</tr>
<tr>
<td>T-N</td>
<td></td>
<td>1.1.1-トリクロロエタン</td>
<td></td>
</tr>
<tr>
<td>T-P</td>
<td></td>
<td>1.1.2-トリクロロエタン</td>
<td></td>
</tr>
<tr>
<td>濁度</td>
<td></td>
<td>1.1-ジクロロエチレン</td>
<td></td>
</tr>
<tr>
<td>カドミウム</td>
<td>2月・5月・8月・11月</td>
<td>シス-1.2-ジクロロエチレン</td>
<td></td>
</tr>
<tr>
<td>全シアン</td>
<td></td>
<td>1.3-ジクロロプロペン (D-D)</td>
<td></td>
</tr>
</tbody>
</table>

※調査方法：採水薬液固定のうえ、分析機関へ運搬分析

（出典：資料1-20）
(5) 巡視

加古川大堰及び周辺の巡視は、表 1.4-3 に示すとおり実施している。
警報局舎等位置図は、図 1.4-4 に示すとおりである。

<table>
<thead>
<tr>
<th>巡視及び点検項目</th>
<th>巡視及び点検等の内容</th>
<th>巡視等の頻度</th>
</tr>
</thead>
<tbody>
<tr>
<td>土木設備関係</td>
<td>大堰本体、護床工、堤防、取水施設など</td>
<td>外観上の異常を監視、点検する。</td>
</tr>
<tr>
<td>貯水池の形状、堆砂など</td>
<td>変化の状況等を監視する。</td>
<td>5, 8, 11, 2 月を基本とした年 4 回</td>
</tr>
<tr>
<td>警報局舎、標識など</td>
<td>状態を監視する。</td>
<td>1 回/2ヶ月</td>
</tr>
<tr>
<td>電気設備等</td>
<td>警備設備、受変電設備、カメラ、テレメータなど</td>
<td>動作状態、汚れ、錆等の巡視点検を行う。</td>
</tr>
<tr>
<td>機械設備等</td>
<td>大堰本体</td>
<td>外観上の異常、機械設備の作動状態の巡視確認及び点検を行う。</td>
</tr>
<tr>
<td>取水施設、関連施設、草谷川水門など</td>
<td>外観上の異常、機械設備の作動状態の巡視確認及び点検、管理運転等を行う。</td>
<td>1 回/週</td>
</tr>
</tbody>
</table>

（出典:資料 1-20）
1.4.2 出水時の管理計画

加古川大堰操作規則・細則及び姫路河川国道事務所河川関係風水害対策部運営計画書に従い、次のとおり実施している。

(1) 洪水警戒体制

体制部長は次に該当すると認めたときは遅滞なく、それぞれの防災体制を発令して編成表に従い、要員を配備するものとし、その必要のなくなったときはこれを解除するものとする。表1.4-4に加古川大堰災害対策部編成表を示す。

1) 準備体制

a) 神戸海洋気象台から阪神（神戸市、三田市）、北播丹波（西脇市、多可町、篠山市、丹波市）、播磨南東部（加古川市、三木市、小野市、加西市、加東市）に警報（大雨・洪水）が発せられた時。

b) 流入量が330m3/sに達する概ね4時間前を目標とする。

<table>
<thead>
<tr>
<th>Qin (m3/s)</th>
<th>30 ≦ Qin (m3/s) < 150</th>
<th>150 ≦ Qin (m3/s) < 240</th>
<th>240 ≦ Qin (m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 ≦ Σ6Rave (mm)</td>
<td>Σ6Rave ≧ 12.5mm</td>
<td>Σ6Rave ≧ 7.5mm</td>
<td>Σ6Rave ≧ 2.5mm</td>
</tr>
</tbody>
</table>

ただし Qin (m3/s) は、大堰流入量
Σ6Rave は、加古川流域平均前6時間雨量

2) 予備警戒体制

a) 流入量が330m3/sに達する概ね3時間前を目標とする。

<table>
<thead>
<tr>
<th>Qin (m3/s)</th>
<th>45 ≦ Qin (m3/s) < 150</th>
<th>150 ≦ Qin (m3/s) < 240</th>
<th>240 ≦ Qin (m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 ≦ Σ6Rave (mm)</td>
<td>Σ6Rave ≧ 20.0mm</td>
<td>Σ6Rave ≧ 10.0mm</td>
<td>Σ6Rave ≧ 2.5mm</td>
</tr>
</tbody>
</table>

その他水文情報により予備警戒体制が必要とされたとき。

3) 洪水警戒体制

a) 流入量が330m3/sに達する概ね2時間前を目標とする。

<table>
<thead>
<tr>
<th>Qin (m3/s)</th>
<th>50 ≦ Qin (m3/s) < 100</th>
<th>100 ≦ Qin (m3/s) < 190</th>
<th>190 ≦ Qin (m3/s) < 240</th>
<th>240 ≦ Qin (m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ≦ Σ6Rave (mm)</td>
<td>Σ6Rave ≧ 25.0mm</td>
<td>Σ6Rave ≧ 20.0mm</td>
<td>Σ6Rave ≧ 15.0mm</td>
<td>Σ6Rave ≧ 2.5mm</td>
</tr>
</tbody>
</table>

その他水文情報により洪水警戒体制が必要とされたとき。

4) 貯留回復体制

洪水警戒体制解除（流入量が330m3/s以下に低下又は、1000m3/sに低下し阪神、北播丹波、播磨南東部の降雨に関する注意報、警報が解除され、気象、水象その他の状況より洪水に対して安全と認められる時。）後、貯水位が常時満水位（平常時に確保する水位）（T.P.+12.50m）まで回復し、かつ本体ゲートが平常時の状態（下段扉全閉、上段扉定水位自動制御）になるまで。

（出典：資料1-21）
表1.4-4 加古川大堰災害対策部編成表

<table>
<thead>
<tr>
<th>班名</th>
<th>係名又は職種</th>
<th>要員配置基準</th>
<th>業務内容</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>準備体制 予備警戒 洪水警戒 貯留回復</td>
<td>大堰操作班全般的指揮</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 1 1 1</td>
<td>体制の発令等</td>
</tr>
<tr>
<td></td>
<td>業務内容</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>気象水文状況の把握</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>等の予測</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>操作計画の作成</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>操作の実施及び連絡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>電通・機械係</td>
<td>3 3 1</td>
<td></td>
<td>電気設備の点検監視</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>放流警報の制御</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>警報バトロールとの無線交信</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>操作の実施補助</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>機械設備の点検整備</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>機械設備の監視</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>操作の実施（機側）</td>
</tr>
<tr>
<td>巡視係</td>
<td>2 (1) 2 (1)</td>
<td></td>
<td>警報バトロール実施</td>
</tr>
<tr>
<td>運転手</td>
<td>2 2</td>
<td></td>
<td>警報バトロール車の運転</td>
</tr>
<tr>
<td>合計</td>
<td>1 11 (9) 11 (9) 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(出典：資料1-21)

(2) 洪水警戒体制時における措置

近畿地方整備局及び下表に掲げる機関との連絡を行う。

表1.4-5に洪水時の連絡機関を示す。

表1.4-5 洪水時の連絡機関

<table>
<thead>
<tr>
<th>通知の相手方</th>
<th>担当機関の名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>近畿地方整備局長</td>
<td>河川管理課</td>
</tr>
<tr>
<td>兵庫県知事</td>
<td>加古川土木事務所</td>
</tr>
<tr>
<td>加古川市長</td>
<td>加古川消防本部</td>
</tr>
<tr>
<td>高砂市長</td>
<td>高砂消防本部</td>
</tr>
<tr>
<td>加古川警察署長</td>
<td>加古川警察署 警備課</td>
</tr>
<tr>
<td>高砂警察署長</td>
<td>高砂警察署 警備課</td>
</tr>
</tbody>
</table>

(出典：資料1-20)
また、洪水時情報発令と関係機関への連絡の目安等は、以下のとおりである。
図1.4-5に洪水時における情報等の連絡体制を示す。
(3) 洪水の疎通機能を確保するための操作
図 1.4-6 に洪水制御概念図を示す。

1) 流入量が 330m³/s に達したときは、貯水池の水位を T.P.+10.0m まで低下させる。
2) 貯水位の水位が T.P.+10.0m まで低下したときは、流入量に相当する水量の流水を放流する。
3) 操作中において流入量が 1,000m³/s を越え、かつ堰上下流の水位差が 1m 以内になったときは、本体ゲートを全開する。
4) 流入量が最大に達した後、貯水池の水位が T.P.+10.0m に低下したあとにおいては、その水位を保つために流入量に相当する水量、流水を放流する。

(出典: 資料 1-20)

(4) 貯留回復のための操作
流入量が 330m³/s まで低下した場合、又は流入量が 1,000m³/s に低下し、阪神、北播丹波、播磨南東部の降雨に関する注意報、警報が解除され、気象、水象その他の状況より洪水に対して安全と認められる場合は、流水を貯留して貯水池の水位を平常時最高貯水位に上昇させるよう努める。

(出典: 資料 1-21)
1.4.3 渇水時の管理計画

渇水時においては、以下に示す対応を行うこととしている。表1.4-6に加古川下流部渇水調整協議会関係者一覧表を示す。

(1) 加古川下流部渇水調整協議会

1) 目的

協議会は加古川下流部の渇水時における必要な水文などの情報の交換及び関係利水者間の水利使用の調整に関する事項の協議を行い、加古川大堰の適正な運用や合理的な水利使用の推進を図ることを目的とする。

2) 組織

協議会は、下記に掲げる関係者をもって組織する。

表1.4-6 加古川下流部渇水調整協議会関係者一覧表

| 近畿地方整備局姫路河川国道事務所 |
| 近畿農政局 |
| 兵庫県 |
| 加古川市 |
| 高砂市 |
| 五ヶ井土地改良区 |
| 新井土地改良区 |
| 上部井土地改良区 |
| 加古川六ヶ井土地改良区 |
| 日本毛織（株）印南工場 |

3) 会議

協議会は、次の会議により必要な情報の交換を行うとともに、必要な事項を協議し決定する。

(2) 情報連絡会議

情報連絡会議は、水文、気象、水利使用等、情報連絡のために毎年1回、及び渇水に関し必要とする時に開催する。

(3) 渇水調整会議

渇水調整会議は、渇水時あるいは、渇水が予想される場合に開催する。

（出典：資料1-21）
1.5 文献リスト

<table>
<thead>
<tr>
<th>NO.</th>
<th>文献・資料名</th>
<th>発行者・出典</th>
<th>発行年月</th>
<th>引用ページ・箇所</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>加古川大堰工事誌</td>
<td>近畿地方建設局</td>
<td>平成5年3月</td>
<td>1.1.1自然環境</td>
</tr>
<tr>
<td>1-2</td>
<td>ランドサットマップ</td>
<td>東京大学技術情報センター</td>
<td>1987</td>
<td>1.1.1自然環境(2)地表</td>
</tr>
<tr>
<td>1-3</td>
<td>土地分類図(地形分類)兵庫県</td>
<td>経済企画庁総合開発局</td>
<td>昭和49年</td>
<td>1.1.1自然環境(3)地質</td>
</tr>
<tr>
<td>1-4</td>
<td>土地分類図(表層地質図・平面的地質図)兵庫県</td>
<td>経済企画庁総合開発局</td>
<td>昭和49年</td>
<td>1.1.1自然環境(4)植生</td>
</tr>
<tr>
<td>1-5</td>
<td>生物多様性センターホームページ</td>
<td>環境省自然環境庁</td>
<td>～</td>
<td>1.1.1自然環境(4)植生</td>
</tr>
<tr>
<td>1-6</td>
<td>加古川水系河川整備計画(国管理区間)</td>
<td>近畿地方建設局</td>
<td>平成23年12月</td>
<td>1.1.1自然環境(5)水文・気象</td>
</tr>
<tr>
<td>1-7</td>
<td>加古川大堰降雨量・流入量</td>
<td>加古川大堰管理年報</td>
<td>平成元年～平成28年</td>
<td>1.1.1自然環境(5)水文・気象</td>
</tr>
<tr>
<td>1-8</td>
<td>気象庁アメダスデータ(関西、四国、三木の降水量、気温)</td>
<td>気象庁</td>
<td>平成14年～平成28年</td>
<td>1.1.2社会環境</td>
</tr>
<tr>
<td>1-9</td>
<td>国勢調査結果(市町の人口・世帯数・産業別従業者数)兵庫県ホーム</td>
<td>兵庫県</td>
<td>(昭和30年～平成27年のデータ)</td>
<td>1.1.3治水と利水の歴史(2)治水事業の始め</td>
</tr>
<tr>
<td>1-10</td>
<td>姫路河川国道事務所ホーム</td>
<td>姫路河川国道事務所</td>
<td>～</td>
<td>1.1.3治水と利水の歴史</td>
</tr>
<tr>
<td>1-11</td>
<td>台風10号とその爪あと</td>
<td>近畿地方建設局</td>
<td>昭和58年9月26日～9月28日</td>
<td>1.1.3治水と利水の歴史(3)過去の洪水被害等の状況</td>
</tr>
<tr>
<td>1-12</td>
<td>パンフレット「加古川大堰」</td>
<td>国土交通省近畿地方整備局</td>
<td>平成22年12月</td>
<td>1.1.3治水と利水の歴史(3)過去の洪水(利水)の状況</td>
</tr>
<tr>
<td>1-13</td>
<td>パンフレット「加古川大堰」</td>
<td>姫路河川国道事務所</td>
<td>平成22年2月</td>
<td>1.1.3治水と利水の歴史(3)過去の洪水(利水)の状況</td>
</tr>
<tr>
<td>1-14</td>
<td>加古川水系河川整備基本方針</td>
<td>国土交通省河川局</td>
<td>平成20年9月</td>
<td>1.1.1自然環境(2)地形、(4)植生</td>
</tr>
<tr>
<td>1-15</td>
<td>パンフレット「加古川大堰 機械設備編」</td>
<td>姫路河川国道事務所</td>
<td>～</td>
<td>1.2.3施設の概要</td>
</tr>
<tr>
<td>1-16</td>
<td>河川空間利用実態調査結果</td>
<td>姫路河川国道事務所</td>
<td>平成12年度、平成18年度、平成21年度、平成26年度</td>
<td>1.3.2貯水池の利用実態</td>
</tr>
<tr>
<td>1-17</td>
<td>加古川大堰貯水池の利用状況</td>
<td>姫路河川国道事務所</td>
<td>平成28年度</td>
<td>1.4.2出水時の管理計画</td>
</tr>
<tr>
<td>1-18</td>
<td>加古川大堰操作規則</td>
<td>姫路河川国道事務所</td>
<td>～</td>
<td>1.4.1日常の管理</td>
</tr>
<tr>
<td>1-19</td>
<td>加古川大堰定期横断測量業務報告書</td>
<td>姫路河川国道事務所</td>
<td>平成24年3月</td>
<td>1.4.1日常の管理(3)堆砂測量</td>
</tr>
<tr>
<td>1-20</td>
<td>姫路河川国道事務所加古川大堰災害対策部運営計画書</td>
<td>姫路河川国道事務所</td>
<td>平成24年4月</td>
<td>1.4.3渇水時の管理計画</td>
</tr>
</tbody>
</table>
2. 治水
2.1 評価の進め方
2.1.1 評価方針
加古川大堰の治水の目的は、洪水の安全な流下（流下能力7,400m³/sを確保）、流水の正常な機能の維持（農業用水、工業用水、水道用水、維持流量の確保）である。
治水に関する評価は、流域の情勢（想定氾濫区域の状況）を踏まえた上で、洪水時制御の運用計画及び洪水時制御実績を整理し、これらの状況について堰ありなしの比較を行うことで評価を行うこととする。
基本的な流量及び水位低減効果の評価について堰ありなしの比較による評価を行う。
具体的には、図2.2-1に治水の評価手順を示す。

2.2 評価手順
(1) 想定氾濫区域の状況整理
想定氾濫区域の状況については、これまでのとりまとめ資料の整理とする。工事誌や治水経済調査、事業再評価、河川整備基本計画など関係する資料を基に、堰計画時点の状況と最新の状況の比較を行う。

(2) 治水の状況
洪水時制御の運用計画および洪水時制御実績について整理する。
防災操作計画は主にパンフレット等を参考とし、防災操作実績は洪水操作報告等から整理を行い、一覧表等にとりまとめる。

(3) 治水の効果
(2)で整理した実績洪水を対象に、流量低減効果、水位低減効果の評価を行うとともに、放流量算出システムの改善状況について評価する。
図 2.2-1 治水の評価手順

2.2.1 必要資料(参考資料)の収集・整理
基本計画、パンフレット他、評価に必要となる資料について収集し、リストを作成した。収集した資料は、「2.6 文献リスト」において整理する。
2.3 想定氾濫区域の状況

2.3.1 浸水想定区域の指定状況

図2.3-1に示す「浸水想定区域図」は、加古川水系加古川の洪水予報区間について、水防法の規定により指定された浸水想定区域と、浸水した場合に想定される水深等を示した平成14年6月時点の既存成果である。

この浸水想定区域は、平成14年時点（検討当時）の河道の整備状況を勘案して、加古川の洪水防御に関する計画の基本となる洪水（板波地点：概ね100年に1回程度起こる大雨、国包地点：概ね150年に1回程度起こる大雨）で加古川が氾濫した場合に想定される浸水の状況をシミュレーションにより求めたものである。なお、計画の基本となる基本高水流量、計画高水流量は加古川水系河川整備基本方針で定められており、これは昭和51年の17号台風など主要な9洪水の実績をもとに加古川水系工事実施基本計画（昭和58年3月）で設定されている値を踏襲したものとなっている。加古川の浸水想定区域には、流域の14市町のうち4市1町が含まれる。

なお、平成27年の水防法改正により、浸水想定区域の指定の前提となる降雨を、従来の計画規模の降雨から想定し得る最大規模の降雨（計画規模を上回るもの）に変更するとともに、内水・高潮の浸水想定区域制度の創設に伴い名称が洪水浸水想定区域へと変更された。このため、加古川においても、平成28年5月31日に指定・告示を行っている。

加古川の浸水想定区域を図2.3-1〜図2.3-3に示す。浸水想定区域に含まれる市町村は兵庫県加東市、小野市、加西市、三木市、加古川市、高砂市、姫路市、播磨町の7市1町である。

| 表2.3-1 加古川流域の概況と浸水想定区域に含まれる自治体：既存成果 |
|---------------------|---|
| 流域面積 | 1,730km² (山地:1,160km² 平地:570km²) |
| 流路延長 | 96km（幹川延長） |
| 計画高水流量 | 基準地点：国包 |
| | 基本高水流量：9,000m³/s |
| | 計画高水流量：7,400m³/s |
| 流域内市町 | 篠山市、丹波市、多可町、西脇市、加東市、加西市、小野市、三木市、粟美町、加古川市、高砂市、三田市、神戸市、播磨町 |
| 浸水想定区域内市町 | 加東市、小野市、加古川市、高砂市、播磨町 |

（出典：資料2-1に市町村合併を更新及び流域界変更を考慮）
※市町村名は平成14年6月時点のものである。

図2.3-1 加古川流域の浸水想定区域：既存成果

（出典：資料2-1）
図 2.3-2 加古川流域の洪水浸水想定区域：想定最大規模

（出典：資料 2-13）
図 2.3-3 加古川流域の洪水浸水想定区域：計画規模

（出典：資料 2-13）
2.4 洪水時の管理計画

2.4.1 洪水時制御の運用計画

加古川大堰では、出水時における貯水池への流入量 330m³/s を洪水時制御開始流量※、さらに 1,000m³/s を全開放流制御移行流量として設定し、洪水時のゲート操作を行い、洪水を安全に流下させる管理を行っている。（表 2.4-1 参照）

加古川大堰の洪水時の操作を含むゲート操作模式図は図 2.4-1 に、加古川大堰操作概念図は図 2.4-2 に示すとおりである。

※なお、平成10年6月2日までは洪水時制御開始流量は250m³/sとして運用を行っている。

表 2.4-1 洪水時制御時のゲート操作方法

<table>
<thead>
<tr>
<th>制御パターン</th>
<th>管理水位</th>
<th>開始条件</th>
<th>制御内容</th>
<th>操作ゲート（●：操作対象ゲート）</th>
</tr>
</thead>
<tbody>
<tr>
<td>平水時制御</td>
<td>定水位制御</td>
<td>T.P.+12.5m</td>
<td>堰流入量<330m³/s</td>
<td>平常時最高貯水位（T.P.+12.5m）に固定し貯水位を確保する。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>主ゲート</td>
</tr>
<tr>
<td>事前放流制御</td>
<td>T.P.+12.5m</td>
<td>堰流入量330m³/s～</td>
<td></td>
<td>主ゲート</td>
</tr>
<tr>
<td></td>
<td>T.P.+10.0m</td>
<td></td>
<td></td>
<td>主ゲート</td>
</tr>
<tr>
<td>定水位制御</td>
<td>T.P.+10.0m</td>
<td>堰流入量 ～1,000m³/s</td>
<td></td>
<td>主ゲート</td>
</tr>
<tr>
<td>全開放流制御</td>
<td></td>
<td></td>
<td></td>
<td>主ゲート</td>
</tr>
<tr>
<td>貯留回復制御</td>
<td>T.P.+12.5m</td>
<td>堰流入量<330m³/sかつ引き続き洪水のおそれのないとき。</td>
<td></td>
<td>主ゲート</td>
</tr>
<tr>
<td></td>
<td>T.P.+10.0m</td>
<td></td>
<td></td>
<td>主ゲート</td>
</tr>
</tbody>
</table>

(出典：資料 2-2)

図 2.4-1 ゲート操作模式図

【平常時制御】

- 定水位制御（越流）
 流入量が330m³/sまでの時は、1.5号（調節ゲート）は定水位制御、2〜4号（主ゲート）は定開度制御を行う。

【洪水時制御】

- 事前放流制御
 流入量が330〜1,000m³/sの時、事前放流を開始し貯水位をT.P.+10.0mまで低下させる。

- 定水位制御
 貯水位をT.P.+10.0mに維持する。

- 全開放流制御
 流入量が1,000m³/s以上で、貯水位と堰下流との水位差が1m以内の時、ゲートを全開にする。

(出典：資料 2-2)
図 2.4-2(1) 加古川大堰操作概念図

図 2.4-2(2) 加古川大堰操作概念図

運用区分

貯水位 調節主ゲート開度

貯水位 事前放流 制御

洪水時制御

洪水時制御

流入量 放流量

設定流量取水 取水 一部停止 設定流量取水
2.4.2 洪水時制御開始流量及び体制基準の変更

加古川大堰は平成元年から本格的な運用を開始したが、管理の実態（洪水時制御、体制等）を踏まえて、より確実でかつ省力化を目指した操作方法への改善について検討を行い、平成10年1月に操作規則・細則を一部変更し、平成10年6月13日の出水より、新操作規則・細則で運用している。

洪水時の体制および制御に関する主な変更点は、表2.4-2に示すとおりである。

表 2.4-2 操作規則・細則の主な改正点

<table>
<thead>
<tr>
<th>項目</th>
<th>改正前</th>
<th>改正後（平成10年6月13日より運用）</th>
</tr>
</thead>
<tbody>
<tr>
<td>洪水時制御開始流量</td>
<td>流入量:250m³/s</td>
<td>流入量:330m³/s</td>
</tr>
<tr>
<td>洪水警戒体制基準</td>
<td>注意報・警報</td>
<td>警報のみ（注意報は除外）</td>
</tr>
<tr>
<td></td>
<td>水文指標</td>
<td>水文指標は新たに作成</td>
</tr>
<tr>
<td></td>
<td>台風情報</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[洪水警戒体制を執ることができる場合]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>○流入量が40m³/s未満の場合、流域平均6時間雨量が30mmに達したとき。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>○流入量が40m³/s以上100m³/s未満の場合、流域平均6時間雨量が10mmに達したとき。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>○流入量が100m³/s以上150m³/s未満の場合、流域平均6時間雨量が7.5mmに達したとき。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>○流入量が150m³/s以上の場合、流域平均6時間雨量が2.5mmに達したとき。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>○台風の中心が東経125度から137度の範囲において北緯30度に達したとき。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[洪水警戒体制の解除]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>○流入量が250m³/s以下に減少し、気象、水象の状況から洪水警戒体制を維持する必要がなくなったとき。</td>
<td></td>
</tr>
<tr>
<td>平常時の水位調節方式</td>
<td>定開度制御</td>
<td>定水位制御</td>
</tr>
<tr>
<td></td>
<td>ただし、流入量が55m³/s以下は微調節ゲートによる定水位制御</td>
<td></td>
</tr>
<tr>
<td></td>
<td>○操作対象ゲート</td>
<td>○操作対象ゲート</td>
</tr>
<tr>
<td></td>
<td>水調節ゲート</td>
<td>微調節ゲート</td>
</tr>
<tr>
<td></td>
<td>魚道ゲート</td>
<td>魚道ゲート</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5号上段扉</td>
</tr>
<tr>
<td></td>
<td>○放流制限</td>
<td>○放流制限</td>
</tr>
<tr>
<td></td>
<td>20cm/30分</td>
<td>30cm/30分</td>
</tr>
</tbody>
</table>

（出典：資料2-3,2-4）
参考: 事前操作開始流量を250m³/sから330m³/sに変更することの妥当性について

1-1 事前操作開始流量（330m³/s）の設定理由

平成4年4月より加古川大堤の管理・運用に適用されてきた従来の操作規制（案）では、事前操作開始流量を、昭和54年2月～5月にかけて3回にわたって覚定された「加古川大堤ゲートクロス検討委員会」の検討を経て350m³/sとされていた。しかし、この流量（350m³/s）では、下流に示すように実績操作流量が計画流量での予想を上回っていた。

洪水時操作の実態

洪水警戒体制形成時の実態と計画段階での予想値

<table>
<thead>
<tr>
<th>項目</th>
<th>水位</th>
<th>実績</th>
<th>サイズ</th>
</tr>
</thead>
<tbody>
<tr>
<td>洪水警戒体制形成度</td>
<td>年平均279回</td>
<td>年平均161回 (65～58)</td>
<td></td>
</tr>
<tr>
<td>本体ゲート操作頻度</td>
<td>年平均96回</td>
<td>年平均67回（同上）</td>
<td></td>
</tr>
</tbody>
</table>

また、昭和42年以降に当時の管理業務に従事した職員の操作実績から、管理業務上問題となったのは、次の2点であった。

- 操作頻度が多い。
- 洪水警戒体制形成時間（警戒時間）が長い。

そこで、洪水警戒体制形成時間を安全かつ操作頻度を確率に減少する方策を検討した。その結果、事前操作開始流量は330m³/sに修正することとしたが、その根拠は以下のとおりである。なお、当初事前操作開始流量を250m³/sと設定した理由もあわせて以下に示す。

【現行の操作方式において事前操作開始流量を250m³/sと設定された理由】

① 平成7年の土砂災害の影響を受けてゲートをできるだけ動かさないことによって管理の効果化を図る常設体制方式が採用され、そのうえで、昭和43年～昭和54年までの主要22洪水と防災実績の計画対象11洪水の実績33式の洪水に伴ってゲートを安全に全開するための事前操作開始流量を検討した。

その結果、昭和42年6月3日洪水を除いて250m³/sから事前操作を開始し、下流放流制限30cm/30分～50cm/30分の放流を行うことでゲートを安全に全開することが可能であった。

② 昭和47年6月3日洪水は、500m³/s～1000m³/sまでの流量増加が洪水発生帯に言って1/390程度であり、放流制限30cm/30分から50cm/30分、70cm/30分0分、90cm/30分0分とラックアップすることで対応することとした。

③ 250m³/sの年平均発生頻度は概ね27回であり、頻度的にも妥当であると判断された。

【事前操作開始流量を330m³/sに改正する妥当性】

① 昭和47年～平成7年の国報発生が250m³/sを下回った実績218洪水を対象に、現行流量330m³/s・500m³/sの眼鏡での水位増加計を増加表を図った。その結果、水位上昇が最も急な9.0k前後の1/8尺を3基として、平均30cm/30分と上回る流量が23洪水あり、最大75cm/30分であった。

従って、事前操作における下流放流制限は、30cm/30分を基準とする、必要に応じて70cm/30分、90cm/30分とラックアップすることとした。

② 放流制限を一つとした場合実績218洪水と、計画流量（支障後計算の計画流量）の実績4洪水（11/140）対象を対象に、事前操作開始流量を現行の250m³/sより大きくするよう検討した結果、ゲートを安全に全開するためには330m³/sの必要がある。

③ 事前操作開始流量を330m³/sにしたことの実績洪水の変化と1/140確率洪水の3洪水で流入量が150m³/sに達した時点で全開することが不可欠であるが、通常洪水位は1洪水を除いて数値が高水位以上であり問題ない。

④ 以上の実績及び計画発生流量を上回る1洪水（45.61/150確率）については、流入量の増加が115cm/30分に達して我々、このような洪水の発生頻度は少ないものと考えられることから非常時操作において対応することとする。
参考：定開度制御から定水位制御への変更

【事前操作開始流量 250m³/s：平成 9 年まで】

【平常時制御】
● 定開度制御
流入量が 250m³/s までの時は、全ゲートは定開度制御を行う。

ゲートを T.P.12.5m にしておくため、流入量が 250m³/s まで水位が上昇する。

流入量が 250m³/s になってから、T.P.12.5m 以上の水位から事前放流制御で水位低下操作にはいる。

【事前操作開始流量 330m³/s：平成 10 年から】

【平常時制御】
● 定水位制御(越流)
流入量が 330m³/s までの時は、1,5号(調節ゲート)は定水位制御、2〜4号(主ゲート)は定開度制御を行う。

1,5号(調節ゲート)は定水位制御で、水位を T.P.12.5m に保つ操作を行う。

流入量が 330m³/s になってから、水位 T.P.12.5m から事前放流制御で水位低下操作にはいる。

したがって、事前操作開始流量を 330m³/s に大きく変更しても、洪水時制御が可能となった。
2.5 洪水時の対応状況
2.5.1 出水の状況

加古川大堰では試験湛水中の操作も含め、昭和 62 年度から平成 28 年度までに計 219 回もの洪水時制御を行っている。

なお、洪水時制御開始流量が 250m3/s であった期間（昭和 62 年 4 月～平成 10 年 5 月）は計 115 回（年平均 10 回以上）であったが、洪水時制御開始流量を 330m3/s に変更した後（平成 10 年 6 月～平成 29 年 3 月）は、計 104 回（年平均 5～6 回程度）となっており、操作規則・細則の一部変更により操作回数が減少し、操作の負担が軽減された。

図 2.5-1 に実施状況一覧、表 2.5-1 に洪水時制御を行った洪水一覧を示す。

図 2.5-1 (1) 月別洪水時制御（操作）回数

（出典：資料 2-5）
図 2.5-1(1) 月別洪水時制御（操作）回数（近 5 ヶ年）

近 5 ヶ年の年平均制御（操作）回数は 5.6 回であり、平成 10 年の操作規則・細則の一部変更後全体の平均 5.7 回とほぼ同程度となっている。近年の急激な変化は見られない。
<table>
<thead>
<tr>
<th>No.</th>
<th>年度</th>
<th>実施日</th>
<th>要因</th>
<th>最大流入量</th>
<th>総雨量</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>9月14日</td>
<td>秋雨前線</td>
<td>370</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>9月13日</td>
<td>秋雨前線</td>
<td>620</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>8月15日</td>
<td>台風12号</td>
<td>359</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>7月8日</td>
<td>梅雨前線</td>
<td>483</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>3月17日</td>
<td>低気圧</td>
<td>256</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>7月13日</td>
<td>梅雨前線</td>
<td>302</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>6月4日</td>
<td>低気圧</td>
<td>277</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>5月15日</td>
<td>低気圧</td>
<td>586</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>5月12日</td>
<td>寒冷前線</td>
<td>1834</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>7月8日</td>
<td>梅雨前線</td>
<td>337</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>H6</td>
<td>4月12日</td>
<td>低気圧</td>
<td>500</td>
<td>48</td>
</tr>
<tr>
<td>80</td>
<td>9月4日</td>
<td>台風13号</td>
<td>351</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>8月15日</td>
<td>低気圧</td>
<td>1790</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>7月28日</td>
<td>台風5号</td>
<td>546</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>6月29日</td>
<td>梅雨前線</td>
<td>1465</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>6月19日</td>
<td>梅雨前線</td>
<td>325</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>12月8日</td>
<td>低気圧</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>10月8日</td>
<td>低気圧</td>
<td>363</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>9月29日</td>
<td>低気圧</td>
<td>385</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>8月19日</td>
<td>台風11号</td>
<td>1526</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>H4</td>
<td>4月10日</td>
<td>低気圧</td>
<td>305</td>
<td>37</td>
</tr>
<tr>
<td>56</td>
<td>7月21日</td>
<td>梅雨前線</td>
<td>361</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>6月2日</td>
<td>前線</td>
<td>585</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>5月9日</td>
<td>低気圧</td>
<td>318</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>H3</td>
<td>4月8日</td>
<td>低気圧</td>
<td>530</td>
<td>54</td>
</tr>
<tr>
<td>47</td>
<td>3月23日</td>
<td>低気圧</td>
<td>391</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>11月9日</td>
<td>低気圧</td>
<td>339</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>10月6日</td>
<td>台風21号</td>
<td>757</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>7月15日</td>
<td>梅雨前線</td>
<td>470</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>4月13日</td>
<td>低気圧</td>
<td>291</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>H2</td>
<td>4月8日</td>
<td>寒冷前線</td>
<td>441</td>
<td>39</td>
</tr>
<tr>
<td>31</td>
<td>9月22日</td>
<td>低気圧</td>
<td>359</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>9月19日</td>
<td>台風22号</td>
<td>435</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>9月14日</td>
<td>秋雨前線</td>
<td>464</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>7月13日</td>
<td>梅雨前線</td>
<td>913</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>6月16日</td>
<td>梅雨前線</td>
<td>321</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>5月3日</td>
<td>低気圧</td>
<td>306</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4月3日</td>
<td>低気圧</td>
<td>298</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2月26日</td>
<td>前線</td>
<td>338</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>9月25日</td>
<td>台風22号</td>
<td>457</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>8月20日</td>
<td>局地的な強い雨</td>
<td>568</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>8月16日</td>
<td>台風11号</td>
<td>427</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>7月15日</td>
<td>梅雨前線</td>
<td>1125</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>6月25日</td>
<td>梅雨前線</td>
<td>330</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5月25日</td>
<td>梅雨前線</td>
<td>335</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5月20日</td>
<td>梅雨前線</td>
<td>335</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5月22日</td>
<td>低気圧</td>
<td>494</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5月7日</td>
<td>低気圧</td>
<td>527</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7月19日</td>
<td>低気圧</td>
<td>1539</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6月9日</td>
<td>1293</td>
<td>91</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※※上表の最大流入量は、洪水時制御実施時の速報値であるため、公表値と異なる場合もある。

※平成3年度(平成4年度)3月18日、平成4年度12月8日、平成8年度12月は本体ゲート塗装工事、ゲート修繕等により、堰からの放流量が通常時より少ないため、200m3/sを上回った時点で、本体ゲート操作を開始した。

*:赤丸は評価対象期間(H24～28)のデータを示す。

※※上表の最大流入量は、洪水時制御実施時の速報値であるため、公表値と異なる場合もある。

(出典:資料2-5)
2.5.2 洪水時の体制の状況

各年の体制発令回数と最大流入量等の状況は表2.5-2に示すとおりである。
昭和62年度から平成28年度までに、洪水時の体制が発令されたのは713回で、このうち219回の洪水時制御（操作）を実施している。

表2.5-2 洪水時の体制発令状況

<table>
<thead>
<tr>
<th>年度</th>
<th>体制発令回数</th>
<th>洪水時制御（操作）実施回数</th>
<th>各年の最大流入量（発生月日）</th>
<th>要因</th>
<th>総雨量</th>
</tr>
</thead>
<tbody>
<tr>
<td>S62</td>
<td>20回</td>
<td>4回</td>
<td>1,866m³/s（10月17日）</td>
<td>台風</td>
<td>120mm</td>
</tr>
<tr>
<td>S63</td>
<td>34回</td>
<td>15回</td>
<td>2,861（6月3日）</td>
<td>梅雨前線</td>
<td>154</td>
</tr>
<tr>
<td>H1</td>
<td>31回</td>
<td>13回</td>
<td>1,336（9月3日）</td>
<td>秋雨前線</td>
<td>104</td>
</tr>
<tr>
<td>H2</td>
<td>37回</td>
<td>16回</td>
<td>3,385（9月20日）</td>
<td>台風19号</td>
<td>250</td>
</tr>
<tr>
<td>H3</td>
<td>30回</td>
<td>13回</td>
<td>845（7月4日）</td>
<td>前線</td>
<td>51</td>
</tr>
<tr>
<td>H4</td>
<td>31回</td>
<td>10回</td>
<td>1,526（8月20日）</td>
<td>台風11号</td>
<td>109</td>
</tr>
<tr>
<td>H5</td>
<td>28回</td>
<td>12回</td>
<td>1,791（8月15日）</td>
<td>前線</td>
<td>196</td>
</tr>
<tr>
<td>H6</td>
<td>11回</td>
<td>3回</td>
<td>501（4月12日）</td>
<td>前線</td>
<td>48</td>
</tr>
<tr>
<td>H7</td>
<td>25回</td>
<td>7回</td>
<td>1,834（5月12日）</td>
<td>低気圧</td>
<td>119</td>
</tr>
<tr>
<td>H8</td>
<td>33回</td>
<td>7回</td>
<td>2,217（8月28日）</td>
<td>秋雨前線</td>
<td>185</td>
</tr>
<tr>
<td>H9</td>
<td>29回</td>
<td>10回</td>
<td>1,571（8月5日）</td>
<td>前線</td>
<td>105</td>
</tr>
<tr>
<td>H10</td>
<td>36回</td>
<td>9回</td>
<td>2,999（10月18日）</td>
<td>台風10号・秋雨前線</td>
<td>149</td>
</tr>
<tr>
<td>H11</td>
<td>23回</td>
<td>9回</td>
<td>3,253（6月30日）</td>
<td>梅雨前線</td>
<td>123</td>
</tr>
<tr>
<td>H12</td>
<td>18回</td>
<td>5回</td>
<td>1,911（11月2日）</td>
<td>台風20号</td>
<td>125</td>
</tr>
<tr>
<td>H13</td>
<td>16回</td>
<td>4回</td>
<td>1,167（6月20日）</td>
<td>梅雨前線</td>
<td>95</td>
</tr>
<tr>
<td>H14</td>
<td>16回</td>
<td>5回</td>
<td>907（7月10日）</td>
<td>台風6号</td>
<td>85</td>
</tr>
<tr>
<td>H15</td>
<td>33回</td>
<td>8回</td>
<td>1,484（7月14日）</td>
<td>前線</td>
<td>59</td>
</tr>
<tr>
<td>H16</td>
<td>28回</td>
<td>9回</td>
<td>5,492（10月20日）</td>
<td>台風23号</td>
<td>225</td>
</tr>
<tr>
<td>H17</td>
<td>16回</td>
<td>2回</td>
<td>401（7月4日）</td>
<td>梅雨前線</td>
<td>62</td>
</tr>
<tr>
<td>H18</td>
<td>26回</td>
<td>4回</td>
<td>3,261（7月19日）</td>
<td>前線</td>
<td>238</td>
</tr>
<tr>
<td>H19</td>
<td>25回</td>
<td>1回</td>
<td>1,498（7月12日）</td>
<td>前線・台風4号</td>
<td>146</td>
</tr>
<tr>
<td>H20</td>
<td>25回</td>
<td>4回</td>
<td>843（3月13日）</td>
<td>低気圧</td>
<td>71</td>
</tr>
<tr>
<td>H21</td>
<td>18回</td>
<td>5回</td>
<td>1,983（8月1日）</td>
<td>上空寒気</td>
<td>126</td>
</tr>
<tr>
<td>H22</td>
<td>20回</td>
<td>8回</td>
<td>3,863（5月23日）</td>
<td>低気圧</td>
<td>171</td>
</tr>
<tr>
<td>H23</td>
<td>22回</td>
<td>8回</td>
<td>4,253（9月3日）</td>
<td>台風12号</td>
<td>217</td>
</tr>
<tr>
<td>H24</td>
<td>26回</td>
<td>6回</td>
<td>2,067（7月7日）</td>
<td>梅雨前線</td>
<td>79</td>
</tr>
<tr>
<td>H25</td>
<td>21回</td>
<td>6回</td>
<td>4,938（9月16日）</td>
<td>台風18号</td>
<td>205</td>
</tr>
<tr>
<td>H26</td>
<td>14回</td>
<td>5回</td>
<td>2,922（8月9日）</td>
<td>台風11号</td>
<td>224</td>
</tr>
<tr>
<td>H27</td>
<td>10回</td>
<td>4回</td>
<td>4,233（7月17日）</td>
<td>台風11号</td>
<td>220</td>
</tr>
<tr>
<td>H28</td>
<td>11回</td>
<td>7回</td>
<td>2,151（9月18日）</td>
<td>台風16号・秋雨前線</td>
<td>198</td>
</tr>
</tbody>
</table>

計 713回 219回

※1 洪水時は、「準備体制」「予備警戒体制」「洪水警戒体制」「貯留回復体制」の4段階での体制をとることとしている。

準備体制の発令基準は、
1) 神戸海洋気象台から兵庫県南部及び阪神、北播丹波、播磨南東部に警報（大雨・洪水）が発せられたとき、
2) 大堰流入量及び加古川流域平均前6時間雨量から、流入量が330m³/sに達する概ね4時間前と判断されたとき、

としている。

※2 平成10年度は、6月13日より洪水時制御開始流量を250m³/sから330m³/sに変更した。

※3 上表の最大流入量は、洪水時制御実施時の速報値であるため、公表値と異なる場合もある。

（出典：資料2-5,資料2-6）
また、洪水時の体制の状況は、図 2.5-2、図 2.5-3 に示すとおりである。

年間回数については、体制の発令基準が見直されたことにより、平成 10 年 6 月 13 日以降は洪水時の体制の年平均延べ日数が減少している。

今後も体制発令の負担を少しでも軽減させられるよう検討していく必要がある。

図 2.5-2 洪水時の体制延べ日数の推移

図 2.5-3 洪水時体制の継続日数別の回数

※24 時間単位でなく、日付による日数として整理している。
参考：体制の発令回数（職員の負担）を減らす方法はあるのか。（前回の FU 委員会での意見）

・平成 25 年度に「加古川大堰管理運用改善資料作成業務報告書 平成 26 年 3 月」で検討を行っており、次のような提案がなされている。
・気象警報発令時に準備体制を執ることになっている発令対象地域は、阪神、北播丹波、播磨南東部の 3 地域としているが、これを北播丹波、播磨南東部の 2 地域に発令された場合とするに変更する。

※「加古川大堰管理運用改善資料作成業務報告書 平成 26 年 3 月」での提案事項

4. 洪水警戒体制発令指標
・気象警報発令時に準備体制を執ることになっているが、発令対象地域を北播丹波（西脇市、多可町、篠山市、丹波市）、播磨南東部（加古川市、三木市、小野市、加西市、加東市）に変更する。
2.5.3 洪水時の対応状況

近5ヶ年の洪水から、表2.5-3に示す最大流入量の上位3位までの洪水及び参考として既往最大である平成16年10月洪水の状況を抽出し、それぞれの対応状況について整理を行った。

表2.5-3 整理対象洪水（近5ヶ年の最大流入量上位3位及び既往最大）

<table>
<thead>
<tr>
<th>順位</th>
<th>生起年</th>
<th>実施日</th>
<th>要因</th>
<th>最大流入量（m³/s）</th>
<th>総雨量（mm）</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1位</td>
<td>H25</td>
<td>9月15日</td>
<td>台風18号</td>
<td>4,938※</td>
<td>205</td>
<td>既往第2位</td>
</tr>
<tr>
<td>2位</td>
<td>H27</td>
<td>7月17日</td>
<td>台風11号</td>
<td>4,233※</td>
<td>220</td>
<td>既往第4位</td>
</tr>
<tr>
<td>3位</td>
<td>H26</td>
<td>8月8日</td>
<td>台風11号</td>
<td>2,922※</td>
<td>224</td>
<td>既往第11位</td>
</tr>
<tr>
<td>参考</td>
<td>H16</td>
<td>10月19日</td>
<td>台風23号</td>
<td>5,492</td>
<td>225</td>
<td>既往最大</td>
</tr>
</tbody>
</table>

※ 上表の最大流入量は、洪水時制御実施時の速報値であるため、公表値と異なる場合もある。
(1) 平成 25 年 9 月 15 日〜9 月 17 日洪水（台風 18 号）

西日本では台風 18 号による影響で雨が強く降った。

平成 25 年 9 月 15 日 2 時の降り始めから 16 日 12 時までの総雨量は、流域平均205.3 mm、
青垣 239 mm、氷上 218 mm、柏原 292 mm、福住 312 mm、火打岩 275 mm、船町 88 mm、杉原 203 mm、八千代 205 mm、柏原 151 mm、今田 160 mm、北条 156 mm、天神 152 mm、加古川 190 mm、小野 195 mm、谷上 302 mm、細川 194 mm、加古川 181 mm であった。
降り始めから約 17 時間後の 15 日 18 時 53 分に事前放流開始流入量の 330 m³/s を上まわっ
た。

事前放流開始から約 29 時間後の 16 日 7 時 04 分、流入量は最大 4938.0 m³/s に達し、加古川大堰史上第 2 位の記録となった。
その後流入量は低下し、事前放流開始から約 56 時間半後の 17 日 10 時 23 分、330 m³/s を下回った。
この出水による堰下流および貯水池周辺の被害は無かった。
図 2.5-4 に平成 25 年 9 月 15 日〜9 月 17 日の洪水時の対応状況（台風 18 号）を示す。
図 2.5-4 平成 25 年 9 月 15 日～9 月 17 日の洪水時の対応状況（台風 18 号）

※事前放流から全開放流までは、ゲート開度と上下流水位による計算値を使用し、全開放流中は国包の流量に切り替えるため、現状では繋がらない状況。
(2) 平成 27 年 7 月 17 日〜7 月 19 日洪水 (台風 11 号)
西日本では台風 11 号による影響で雨が強く降った。
7 月 16 日 4 時の降り始めから 18 日 8 時までの総雨量は、流域平均 219.9mm、青垣 155mm、
氷上 175mm、柏原 185mm、福住 195mm、火打岩 184mm、船町 191mm、杉原 257mm、八千代 281mm、
板波 247mm、今田 262mm、北条 194mm、天神 243mm、吉川 246mm、小野 256mm、谷上 415mm、細
川 268mm、加古川 260mm であった。
降り始めから約 28.3 時間後の 17 日 8 時 20 分に事前放流開始流入量の 330m3/s を上まわっ
た。
事前放流開始から約 13.0 時間後の 17 日 21 時 26 分、流入量は最大 4232.98m3/s に達し、
加古川大堰史上第 4 位の記録となった。
その後流入量は低下し、事前放流開始から約 38.5 時間の 18 日 23 時 10 分、330m3/s を下
回った。
この出水による堰下流および貯水池周辺の被害は無かった。
図 2.5-5 に平成 27 年 7 月 16 日〜7 月 19 日の洪水時の対応状況 (台風 11 号) を示す。
図 2.5-5 平成 27 年 7 月 16 日〜7 月 19 日の洪水時の対応状況（台風 11 号）

（出典：資料 2-5）
(3) 平成26年8月8日〜8月11日洪水（台風11号）

西日本では台風11号による影響で雨が強く降った。

8月8日13時の降り始めから10日21時までの総雨量は、流域平均223.8mm、青垣257mm、
氷上226mm、柏原248mm、福住306mm、火打岩289mm、船町83mm、杉原220mm、八千代226mm、
板波183mm、今田224mm、北条167mm、天神228mm、吉川248mm、小野188mm、谷上346mm、細
川200mm、加古川208mmであった。

降り始めから約20時間後の9日9時6分に事前放流開始流入量の330m3/sを上まわった。
事前放流開始から約32.5時間後の10日17時24分、流入量は最大2921.5m3/sを記録した。
その後流入量は低下し、事前放流開始から約52.5時間の11日13時33分、330m3/sを下回った。

この出水による堰下流および貯水池周辺の被害は無かった。

図2.5-6に平成26年8月8日〜8月11日の洪水時の対応状況（台風11号）を示す。
図 2.5-6 平成 26 年 8 月 8 日～8 月 11 日の洪水時の対応状況（台風 11 号）
（出典：資料 2-5）
(4) 平成16年10月19～21日洪水（台風23号）【既往最大・参考】

大型で非常に強い台風23号の北上に伴い、前線も活発化し、10月19日より激しい降雨となった。

この降雨で、時間雨量40mm/hr（青垣：20日15:00～16:00、39mm/hr）（谷上：20日16:00～17:00、37mm/hr）（吉川：20日15:00～16:00、36mm/hr）（柏原：20日15:00～16:00、その他の地域（船町、北条、細川）除く）でも15:00～16:00時の間で時間雨量20mm/hr以上を観測した。
総雨量224.9mm（19日2:00～22日1:00）で、上流域で雨が多く降った。
なお、降雨期間中の気象情報（大雨・洪水）としては、次のものが発表された。

<table>
<thead>
<tr>
<th>地域</th>
<th>大雨・洪水警報</th>
<th>発表日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>播磨南東部・阪神地区・北播丹波</td>
<td>大雨・洪水警報</td>
<td>20日11:00発表</td>
</tr>
<tr>
<td>阪神地区</td>
<td>大雨・洪水警報</td>
<td>20日23:00解除</td>
</tr>
<tr>
<td>播磨南東部・北播丹波</td>
<td>大雨・洪水警報</td>
<td>21日6:10解除</td>
</tr>
</tbody>
</table>

以上、神戸海洋気象台発表

加古川大堰への流入量は25m³/s前後で推移していたが、19日11:00頃から雨脚が強まるのと同様に流入量も次第に増加し始め、19日16:50に100m³/s、19日18:40に200m³/s、19日21:20に300m³/sと増加し続けた。

雨は、秋雨前線の通過とともに19日19:00頃には一端小康状態となったが、台風23号の接近に伴い、20日6:00頃から再び全流域で雨が観測され流入量はその後も20日13:10に400m³/s、20日13:50に500m³/sと増加し続け、20日15:05には全開制御流量1,000m³/s以上となり本体ゲートの全開操作を行った。その後も流入量は1時間1,000m³/sの速度で増加し続け20日21:43に過去最大流入量5,492m³/sを記録した。

雨は、台風23号の通過とともに20日23:00には全域で降り止んだ。

流入量は1時間250m³/s程度の速度で低下し、21日21:50に330m³/sを下回った。

図2.5-7に平成16年10月19～21日の洪水時の対応状況（台風23号）を示す。
図2.5-7 平成16年10月19〜21日の洪水時の対応状況（台風23号）

出典：資料2-5
参考：事前放流でＴＰ10．0mまで下がっていないことに対して課題はないのか。また、治水上的問題はないのか。ＴP10．0mまで下げる理由、事前放流の目的、意義について。

・大堰上流地点の貯水池水位をT.P+10.0mにしておけば、流入量が1,000m³/sに達した時に本体ゲートを全開にすることで放流量も1,000m³/sとなることから、事前放流を行うこととしている。
・ただし、本体ゲートの全開条件は、「流入量が1,000m³/s以上かつ堰の上下流水位差が1m以内となること」であり、「定水位操作（T.P+10.0mに維持）を経ず、事前放流操作から直接全開操作へと移行する場合もある」ことから、大堰上流水位T.P+10.0mは、本体ゲートの全開条件とはなっていない。
・したがって、大堰上流水位T.P+10.0mまでの低下操作（事前放流操作）は、上下流水位差を1m以内にするため及び本体ゲート全開にともなう放流量の大きな変化を防ぐことを目的としている。

・操作規則及び細則の解説より、①事前放流操作では次の通り記載されている。
【事前放流操作による貯水池水位低下目標(T.P+10.0m)の設定理由】
「堰はあくまで低水管理を主目的とした施設であることから、少しでも早く本体ゲートを全開して、洪水を安全に流下させたい。河川防災上、この本体ゲートの全開は指定水位対応流量程度で行うものとし、国包地点の同流量（概ね1,000m³/s）に対応する大堰上流地点の貯水池水位T.P+10.0mを低下目標水位とした。」
・また、③全開放流操作では、次の通り記載されている。
「全開放流操作は、本体ゲートを全開とし、洪水の疎通機能を確保するための操作をいう。全開条件は、流入量が1,000m³/s以上でかつ堰の上下流水位差が1m以内となることである。なお、この条件を満足すれば②の定水位操作を経ず、①の事前放流操作から直接全開操作へと移行する場合もある。」
・上下流水位差が1m以内については、次の通り記載されている。
「洪水時の操作によって、貯水池の水位がT.P+10.0mまで下降したのち、この水位を維持する定水位操作を行い、堰上下流水位差が自然河道状態で生ずる水位差となれば主ゲートを全開してでも段波等の発生は無い。自然河道状態で生ずる水位差は、計画洪水勾配（1/780）から推定して、ΔH＝540m／780≒0.70mであり、これに堰柱による堰上げ分を見込んで本体ゲートの全開移行条件を上下流水位差1.0m以内とした。」
参考: 放流量の不連続については、前回FU委員会以降、どのような改善取り組みと行ったのか。

- 洪水初期および洪水後期において、放流量が正しく計算されていないが、計算の問題であり、ゲート全開の最中（放流中）なので問題はない。
- 平成25年度に「加古川大堰管理運用改善資料作成業務報告書 平成26年3月」で検討を行っており、次のような提案がなされており、放流量データとしての必要性からも、今後洪水時のデータを蓄積したのち、放流量の算定式の係数や切り替えるタイミング等を検証し、堰放流制御装置に組み込む予定である。

※「加古川大堰管理運用改善資料作成業務報告書 平成26年3月」での提案事項

1. 流入量の精度向上
- ダイサー水位観測所、別所橋水位観測所からの時差を1時間から30分に変更する。

2. 放流量の精度向上
①下段扉放流量の演算に使用する堰下流水位の補正方法
- 下段扉放流量の演算に使用する堰下流水位を堰直下流水位に補正する。
 なお、堰下流水位計データ：Hx、堰直下流水位：Hyとする。
 \[Hx < T.P. +10.0 \text{m} \text{のとき: } Hy = 0.8107 \times Hx + 2.2019 \]
 \[Hx \geq T.P. +10.0 \text{m} \text{のとき: } Hy = 0.9619 \times Hx + 0.6899 \]
②収縮係数の補正方法
- 放流量演算に使用する収縮係数を以下のとおり変更する。
 なお、収縮係数：Cc、ゲート開度：a、堰上流水深：h1とする。
 \[Cc = 0.156 \times h_1 / a + 0.1863 \quad (h_1 / a < 2.1) \]
③放流量算定式の切り替えタイミング方法
- 下段扉全開直前、直後の放流量算定方法のヘンリー式とHQ式適用の切り替えタイミングを以下のとおり変更する。
 ■全開直前: 全開モードスイッチをオン以降、国包地点流量に放流量を切り替える。
 ■全開から定水位制御へ移行直後: 全ゲートが目標開度に到達以降、ヘンリー式により放流量を算定する。
2.5.4 洪水時の水位低減効果

加古川大堰事業により洪水時の流下能力が向上したことについて近5ヶ月で最大の流入量を記録した平成25年9月15日の洪水（大堰建設後第2位の流入量）をもとに水位低減効果の整理を行った。

平成25年9月15日に最大流入量4,938m³/sとなり、加古川大堰水位基準点の国包地点においての最高水位としてT.P.+16.42mを記録した。この管理開始以来第2位の洪水が加古川大堰建設前の加古川に流れていたと想定（昭和54年時点H-Q式にて算定）すると、当時の国包地点での水位は約T.P.+18.1mまで上昇していたと考えられる。これは左岸の居住地側標高（約T.P.+17.4m）より若干高い水位であり、内水が排水できない状態となる。加古川大堰事業がなければ堤内地域に大きな被害をもたらした可能性があると考えられる。

しかしながら、上下流堰の撤去や加古川大堰建設に伴う河道改修（拡幅、掘削）等により、約1.7mの水位低減効果が得られたことで改修した区間の治水安全度が向上したと考えられる。

図2.5-8 に国包地点（加古川14.2k地点）における加古川大堰建設前後の水位低減効果模式図を示す。

![図2.5-8 国包地点（加古川14.2k地点）における加古川大堰建設前後の水位低減効果模式図](image)
2.5.5 洪水時の対応に関する課題

加古川大堰では、流入量と堰上下流の水位との関係からゲート毎に操作を行い、洪水を安全に流下させる制御を行っているが、放流量の算出方法に関する現在の状況と課題について、以下に整理した。

(1) 放流量の算出方法（従来）

放流量の算出は、ゲート毎に以下の計算式を用いて、堰放流制御装置が自動算出を行っている。なお、主ゲートの操作は、上段扉を全閉としたあとにゲート（下段扉）を上昇させアンダーフローに移行するため、同一ゲートでオーバーフローとアンダーフローが同時に発生することはない。

1) オーバーフロー時（全ゲート）

放流量算出式： \[Q = CBh^{3/2} \]

C: 流量係数 B: 越流幅 h: 越流量水深

2) アンダーフロー時（主ゲートのみ：1〜5 号ゲート）

a) ゲート接水時の放流量算出式： \[Q = CaB(2gh)^{1/2} \]

C: 流量係数（堰上下流の水位とゲート開度の関係から、自由流出時と溢れ流出時を区別している。）
a: ゲート開度 B: ゲート幅 h: 堰上水位

b) 全開制御でゲート離水時の放流量：

\[Q \] は国包地点（堰より上流 2.2km）の流量 = 流入量
(2) 課題とその要因
これまでの洪水時の状況から、次に示す課題が明らかとなっている。

・事前放流から全開放流まではゲート開度と上下流水位差から算出した計算値を「堰放流量」としている。
・全開放流(Q=1,000m³/s 超)に移行した段階で基準点・国包の流量に自動的に切り替わる。
・全開前後において堰上下流水位から換算される流量値(堰放流制御装置算出流量)が実流量と乖離してしまい、流量の不連続が生じているような記録となっている。
・これは、流量換算のために設定している計算式や流量係数などが適合しないケースがあるためである。

課題の例を図 2.5-9 に示す。

図 2.5-9 洪水時と発生する放流量算定の課題（例・平成 28 年 9 月台風 18 号洪水）
(3) 課題への対応
前述のように現在の堰放流制御装置で算定している放流量は、実放流量と乖離しているが、原因は算定式の切り替えタイミングであると考えられる。現状では、堰操作に影響はないことから、今後洪水時のデータを蓄積したのち、放流量の算定式を切り替えるタイミングを検討していく。
ただし、現時点では、十分な分析が出来るデータが不足しているため、堰下流の水位詳細観測を実施することとし、見直しを行っている。また、近年中州の掘削が行われているため、現状の河道状況を十分に考慮した見直しを行う。
以上を踏まえ、堰下流の定期横断測線上に水位計を配置し、5分間隔で水位の計測を行いデータの蓄積を行っている。なお、設置断面は既設水位観測所を起点に上下游80m間隔で両岸に計6地点、及び大気圧補正用として1地点の計7箇所である。
図2.5-10に堰下流の水位計観測配置図を示す。
水位計はロガー内蔵の圧力式水位計を用い、堰下流側壁に単管内に設置した水位計をアンカーボルトで固定した。

図 2.5-11 に圧力式水位計の設置状況を示す。
また、堰直下流に発達していた中州については、一部を切り下げるとともに樹木伐採を行った。図 2.5-12 に堰下流の中州の状況、図 2.5-13 に加古川大堰下流の河床の発達と切り下げの状況を示す。

図 2.5-12 堰下流の中州の状況

図 2.5-13 加古川大堰下流の河床の発達と切り下げの状況

（出典：資料 2-9、資料 2-10）
2.6 まとめ

(1) 治水のまとめ

平成10年に事前放流開始流量を250m³/sから330m³/sに変更してから、操作実施回数が一桁の回数で収まっている。

平成25年9月には既往2番目に大きな流入量を記録する洪水があったが、堰の適切な対応（操作）により、安全に流下させ、堰下流および貯水池周辺の被害はなかった。また、大堰建設に伴う河道整備等により、水位低減効果が得られた。

洪水初期および洪水後期において、放流量が正しく計算されないことがわかっており、原因は算定式に使用する値や係数、切り替えタイミングであると考えられることから、管理上問題はない。

洪水対応では、T.P.+10.0mまで下がりきる前に全開放流に移行している。管理上は少しでも早く本体ゲートを全開として、洪水を安全に流下させたいが、段波等の発生から堰上下流水位差を1.0m以内としているものである。なお、全開時の放流量が1000m³/sとなる目安が水位がT.P.+10.0mであり、全開時の流量変化を小さくする目安であり、T.P.+10.0mまで下がりきらなくても管理上問題はない。

(2) 今後の方針

洪水初期および洪水後期において、放流量が正しく計算されていないが、放流量の計算式の問題であることが判明しており、ゲート全開への操作起動後、全開動作中にフリーフローになったタイミングにおいて生じる問題なので操作上の問題はない。今後洪水時のデータを蓄積したのち、放流の計算方法に関する改善内容を確定させて堰コンに組み込む予定である。

また、放流量の改善により、水位変化と流入量、堰放流量の変動の関係が分かりやすいよう工夫し表示する。
2.7 文献リスト

表 2.7-1 「2.治水」に使用した文献・資料リスト

<table>
<thead>
<tr>
<th>NO.</th>
<th>文献・資料名</th>
<th>発行者</th>
<th>発行年月</th>
<th>引用ページ・箇所</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>加古川浸水想定区域図</td>
<td>姫路工事事務所</td>
<td>平成14年6月</td>
<td>2.1.2浸水想定区域の状況</td>
</tr>
<tr>
<td>2-2</td>
<td>パンフレット「加古川大堰 機械設備編」</td>
<td>姫路河川国道事務所</td>
<td>-</td>
<td>2.2.1洪水時制御時の運用計画</td>
</tr>
<tr>
<td>2-3</td>
<td>加古川大堰操作規則・細則基礎資料とりまとめ作業報告書</td>
<td>姫路河川国道事務所 (姫路工事事務所)</td>
<td>平成11年3月</td>
<td>2.2.2洪水時制御開始流量及び体制基準の変更</td>
</tr>
<tr>
<td>2-4</td>
<td>平成9年度加古川大堰操作検討とりまとめ（その2）業務報告書</td>
<td>姫路河川国道事務所 (姫路工事事務所)</td>
<td>平成9年12月</td>
<td></td>
</tr>
<tr>
<td>2-5</td>
<td>加古川大堰洪水操作報告</td>
<td>姫路河川国道事務所 (姫路工事事務所)</td>
<td>昭和62年～平成28年</td>
<td>2.3.1出水の状況 2.3.2洪水時の体制の状況 2.3.3洪水時の対応状況</td>
</tr>
<tr>
<td>2-6</td>
<td>加古川大堰洪水体制操作状況</td>
<td>姫路河川国道事務所 (姫路工事事務所)</td>
<td>昭和62年～平成28年</td>
<td></td>
</tr>
<tr>
<td>2-7</td>
<td>平成13年度加古川大堰放流量検討業務報告書</td>
<td>姫路工事事務所</td>
<td>平成14年3月</td>
<td>2.3.5洪水時の対応に関する課題</td>
</tr>
<tr>
<td>2-8</td>
<td>加古川大堰放流量算定方法検討業務報告書</td>
<td>姫路河川国道事務所</td>
<td>平成18年1月</td>
<td></td>
</tr>
<tr>
<td>2-9</td>
<td>平成18年度加古川大堰定期横断測量業務報告書（1/2）堆積物調査</td>
<td>姫路河川国道事務所</td>
<td>平成19年3月</td>
<td></td>
</tr>
<tr>
<td>2-10</td>
<td>平成23年度加古川大堰定期横断測量業務報告書</td>
<td>姫路河川国道事務所</td>
<td>平成28年3月</td>
<td></td>
</tr>
<tr>
<td>2-11</td>
<td>平成23年度加古川大堰流況計測業務報告書</td>
<td>姫路河川国道事務所</td>
<td>平成28年3月</td>
<td></td>
</tr>
<tr>
<td>2-12</td>
<td>加古川大堰下流水位計測関連資料</td>
<td>姫路河川国道事務所</td>
<td>平成28年4月</td>
<td></td>
</tr>
<tr>
<td>2-13</td>
<td>加古川水系浸水想定区域図</td>
<td>姫路河川国道事務所</td>
<td>平成28年5月</td>
<td>2.1.2浸水想定区域の状況</td>
</tr>
</tbody>
</table>
3. 利水補給

3.1 評価の進め方

3.1.1 評価方針

加古川大堰の利水の目的は、加古川市の水道用水、兵庫県の工業用水、水道用水の取水位の確保である。

利水補給が計画通りに行われているか、また、大堰により渇水被害をどれだけ軽減できたのかの検証を行うことを基本的な方針とする。

3.1.2 評価手順

以下の手順で評価を行う。評価のフローは図3.1-1に示すとおりである。

(1) 利水補給計画の整理

加古川大堰の利水補給等計画について目的別に整理を行う。特に農業用水、工業用水、水道用水については、補給対象が明確になると、また、水道用水については、取水方法（大堰からの取水かダムや地下水からの取水かなど）が明確になると図等を用いて整理する。主にパンフレット及び統計資料からの整理とする。

(2) 利水補給実績の整理

加古川大堰からの補給実績の整理を行う。水使用状況年表等より、目的別に近年の整理を行うこととし、加古川大堰地点における補給実績、下流基準点における補給実績等について整理するものとする。なお、計画補給量に対する達成状況等についても整理する。

(3) 利水補給効果の評価

補給による効果として、流況の改善効果、農業・工業出荷額（生産高）、給水人口等を指標として新規水源開発の効果について評価する。また、渇水時における加古川大堰の利水補給による被害軽減の効果の評価を行う。

さらに、加古川大堰の利水補給により副次的に得られた効果がある場合、副次効果として整理する。
図3.1-1 評価手順

【利水補給計画の整理】
・貯水池運用計画
・加古川市の水道用水
・兵庫県の工業用水、水道用水の取水位の確保

【利水補給実績の整理】
・利水目的（用途）別の実績の整理と計画達成状況の整理

【利水補給効果の評価】

下流基準点における利水補給の効果
・加古川大堰ありなしによる流況改善効果

人口及び生産性向上等による評価
・かんがい用水補給による農業生産性向上効果
・水道用水補給による給水人口の増加・安定、工業生産性の向上効果

渇水被害軽減効果
・渇水被害状況の整理

3.1.3 必要資料（参考資料）の収集・整理
基本計画やパンフレットほか、補給実績等、評価に必要となる資料について収集し、リストを作成する。収集した資料は、「3.6 文献リスト」において整理する。
3.2 利水補給計画
3.2.1 貯水池運用計画
(1) 貯水量
加古川大堰の平常時最高貯水位（旧常時満水位）は、T.P.+12.50m とし、総貯水容量は1,960,000m³とする。
また、最低水位は、T.P.+9.70m とし、有効貯水容量は総貯水容量のうち、T.P.+12.50mからT.P.+9.70mまでに対応する貯水量1,640,000m³とする。

(2) 加古川市水道用水
加古川市の水道用水として、加古川大堰貯水池内において新たに1日最大40,000m³の取水が可能なものとする。
加古川市水道用水のための貯水量は、T.P.+12.50mからT.P.+9.70mまで容量1,640,000m³のうち、630,000m³とする。

(3) 流水の正常な機能の維持
加古川大堰の貯水池容量配分図を図3.2-1に示す。
堰下流への河川維持用水を流下させるとともに、五ヶ井、新井、上部井農業用水および加古川下流部で取水している高砂市水道用水・工業用水、日本毛織工業用水、六ヶ井農業用水の不足に対して、T.P.+12.50mからT.P.+9.70mまで容量1,640,000m³のうち、1,010,000m³を利用して補給する。
3.2.2 利水補給計画

加古川大堰は、五ヶ井、新井、上部井の農業用水、加古川市及び兵庫県の水道用水、兵庫県の工業用水の合わせて最大 20.32m³/s の取水が可能となるよう運用を行うこととしている。

○農業用水等の補給は、表 3.2-1に示す期間及び量を上限として必要な流水を放流する。
○加古川市の水道用水（新規開発量）0.463m³/s（1日最大 40,000m³）の取水は、貯水池の T.P.+12.50m から T.P.+9.70m までの容量を利用して行う。
○下流に対しては、六ヶ井農業用水、高砂市の水道用水・工業用水、日本毛織工業用水の取水に支障を来さない量、及び、河川維持用水を加古川大堰より放流する。
○兵庫県の上水及び工業用水の取水が出来るよう、T.P.+9.70m の取水位を確保する。ただし、「流水の正常な機能の維持」及び「加古川市の水道用水」に支障を与えないように行うものとする。

利水補給系統模式図を図 3.2-2に、農業用水の必要水量は表 3.2-1に、農業用水、工業用水の補給範囲図は図 3.2-3に示すとおりである。

【加古川大堰からの取水】
農業用水
○五ヶ井農業用水 (3.65m³/s)
○新井農業用水 (1.00m³/s)
○上部井農業用水 (2.39m³/s)
水道用水
○加古川市水道用水【新規】 (0.46m³/s)
○兵庫県東播広域上水 (0.74m³/s)
工業用水
○兵庫県工業用水 (12.077m³/s)

【下流への補給（加古川大堰より放流）】
農業用水
○六ヶ井農業用水 (0.974m³/s)
水道用水
○高砂市水道用水 (0.544m³/s)
工業用水
○日本毛織工業用水 (0.045m³/s)
○高砂市工業用水 (1.362m³/s)
河川維持用水 (0.278m³/s)

図3.2-2 加古川大堰の利水補給計画模式図
（出典：資料 3-2に最新の水利権量に更新）
表3.2-1 農業用水及び下流の必要水量（種別、期別の最大値）

<table>
<thead>
<tr>
<th>種別</th>
<th>期間</th>
<th>水量(m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>五ヶ井農業用水</td>
<td>1月 1日 ～ 4月30日</td>
<td>0.722</td>
</tr>
<tr>
<td></td>
<td>5月 1日 ～ 6月 9日</td>
<td>1.300</td>
</tr>
<tr>
<td></td>
<td>6月10日 ～ 6月30日</td>
<td>3.650</td>
</tr>
<tr>
<td></td>
<td>7月 1日 ～ 9月30日</td>
<td>2.000</td>
</tr>
<tr>
<td></td>
<td>10月 1日 ～ 12月31日</td>
<td>0.722</td>
</tr>
<tr>
<td>新井農業用水</td>
<td>1月 1日 ～ 4月30日</td>
<td>0.240</td>
</tr>
<tr>
<td></td>
<td>5月 1日 ～ 6月 4日</td>
<td>0.486</td>
</tr>
<tr>
<td></td>
<td>6月 5日 ～ 6月25日</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>6月26日 ～ 9月30日</td>
<td>0.662</td>
</tr>
<tr>
<td></td>
<td>10月 1日 ～ 12月31日</td>
<td>0.240</td>
</tr>
<tr>
<td>上部井農業用水</td>
<td>1月 1日 ～ 4月30日</td>
<td>0.533</td>
</tr>
<tr>
<td></td>
<td>5月 1日 ～ 6月 4日</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>6月 5日 ～ 6月25日</td>
<td>2.390</td>
</tr>
<tr>
<td></td>
<td>6月26日 ～ 9月30日</td>
<td>1.703</td>
</tr>
<tr>
<td></td>
<td>10月 1日 ～ 12月31日</td>
<td>0.533</td>
</tr>
<tr>
<td>堰下流</td>
<td>1月 1日 ～ 6月23日</td>
<td>2.294</td>
</tr>
<tr>
<td></td>
<td>6月24日 ～ 7月 2日</td>
<td>3.243</td>
</tr>
<tr>
<td></td>
<td>7月 3日 ～ 9月30日</td>
<td>2.458</td>
</tr>
<tr>
<td></td>
<td>10月 1日 ～ 12月31日</td>
<td>2.294</td>
</tr>
</tbody>
</table>

（出典：資料3-2）
図3.2-3 農業用水及び工業用水利水補給区域図
（出典：資料3-1）
3.3 利水補給実績
3.3.1 加古川大堰からの取水実績

加古川大堰では、流量の変動に関わらず、年間140〜150百万m³の取水を可能としている。取水量は兵庫県工業用水が最多で、加古川市水道や、五ヶ井、新井、上部井の各農業用水に対しては、低水流量、渇水流量が少ない場合にも、加古川大堰により安定した取水が可能となっている。

図3.3-1に加古川大堰における利水補給の状況を示す。

※1 データの出典は、管理月報(平成元年4月より)、管理年報。
※2 平成15年1月〜2月は堰放流制御装置切り替え期間のため一部データ欠測となっている。

図3.3-1 加古川大堰における利水補給の状況

出典:資料3-3
3.3.2下流への放流実績

加古川大堰から下流河川への放流量及び下流河川での取水実績は図3.3-2、図3.3-3に示すおりである。加古川大堰の放流量は年による変動が大きいものの、下流での取水量に支障を来さない量を放流しており、安定した取水が可能となっている。

図3.3-2 加古川大堰から下流への補給（放流）の状況
(出典：資料3-3)

図3.3-3 下流における都市用水の取水実績
(出典：資料3-4)
3.4 利水補給効果の評価

3.4.1 人口及び生産性向上による評価

(1) 上水道の補給効果

加古川大堰では、新規に加古川市の水道用水として、日量40,000m³が取水出来るよう運用しており、前記(図3.2-1)に示したとおり、管理開始以降年間約14百万m³の安定した取水が行われている。図3.4-1に加古川市の総人口の推移を示す。

加古川市の人口は、昭和40年代より急激に増加し、昭和30年代と比較すると約3倍に増加している。加古川大堰管理開始以降も増加傾向にあり、近年は横ばい傾向であり平成28年時点で約27万人となっている。このような中で加古川市全体の水道用水は安定して供給されており、現在同市内において使用される上水の約8割を加古川大堰から取水している。

加古川市の水道用水の実績給水量は図3.4-2に示すとおり、加古川大堰管理開始以降、増減はあるものの、近年は節水等の影響で若干減少傾向であるが概ね80,000m³/日と安定している。
(2) 工業用水の補給効果
加古川大堰では、定水位の一定制御により、水位を安定して管理しているため、貯水池から兵庫県内への工業用水の安定した取水を可能にしている。また、下流で取水する高砂市工業用水や日本毛織への用水が安定して取水できるよう下流へ放流を行っている。
加古川市、高砂市の製造品出荷額の推移、及び播磨臨海工業地帯の主産業である加古川市の鉄鋼業の製造品出荷額の推移は図3.4-3に示すとおりである。
加古川大堰の補給と製造品出荷額等との関係は、製造品出荷額が社会的な景気動向等の影響も大きいことから、用水補給のみでの評価は困難である。

図3.4-3 加古川市、高砂市の製造品及び加古川市の鉄鋼業製造品出荷額の推移
出典:資料3-7,資料3-8
※H27、H28の製造品出荷額は未公表
3.4.2 渇水時の補給効果

加古川大堰では、渇水時（流入量が各取水権量と下流の維持流量の合計である必要水量を下回った場合）には有効容量を最大限に活用し、大堰貯水池から補給を行う。

評価対象期間である平成24年～28年の近5ヵ年においては、平成24年6月に流入量の低下により、有効貯水率70%の直前まで大堰貯水位から補給を行う状況となったが、降雨により貯水量を回復し取水制限には至らなかった。

平成24年6月上旬、加古川の下流域が渇水傾向になり、6月8日には加古川大堰の有効貯水率が81%まで下がった。

上記を受け、加古川下流部渇水調整協議会の渇水調整会議が召集され、11日午前9時時まで70%を下回った場合、農業用水25%、工業用水15%の取水制限を行うことで合意され、水道用水については制限を設けず、家庭などの節水を呼びかけることとされた。

しかしながら、6月8日から9日にかけて降雨があり、加古川大堰の水位が回復し、11日の午前には有効貯水率が100%に回復したため、取水制限を延期することとなった（なお、当該時期は農業取水量が増える時期であるため、すぐに取水制限解除の決定はされず状況を観ながらの運用とされた。）。

図3.4-4に加古川大堰貯水状況等（平成24年6月11日9：00時点）を示す。
＜参考＞取水制限実施時の渇水補給効果

平成 21 年 6 月には、二日間（6/20、6/21）の取水制限を伴う渇水となった。この際、流入量が必要水量を下回った時点から不足する水量を大堰から補給し、貯水池の有効貯水率が 70%を割り込んだ段階より、各利水者の調整による取水制限が実施されたが、下流での取水や河口までの維持流量を含めて影響を生じることはなかった。

図 3.4-5に加古川大堰貯水状況図（平成 21 年 6 月 12 日～6 月 23 日）を示す。
3.4.3 下流河川の流量の確保

加古川大堰の下流では、高砂市水道用水および工業用水、日本毛織工業用水の他、六ヶ井農業用水の取水も行われている。

平成 24 年 6 月上旬、加古川の下流域が渇水傾向になり、加古川大堰の有効貯水率が 81%まで下がった。加古川大堰の放流量のうち、河川に残存する量、すなわち、放流量から大堰下流における取水量を除いた量について、渇水傾向となった平成 24 年の状況を図 3.4-6 に整理した。

加古川の河口部における維持流量は 1m³/s（厳しい渇水になり加古川大堰貯水池からの補給が必要になった場合は 0.278m³/s）であるが年間を通じて維持流量を確保できた状況になっている。

図3.4-6 下流河川の環境維持のために確保した量（平成 24 年実績）

（出典：資料 3-3, 3-4）
3.5 まとめ

(1) 利水補給のまとめ

加古川大堰は、有効貯水容量1,640,000m³のうち1,010,000m³を利用して、下流域の農業用水及び下流の高砂市水道用水・工業用水等の補給を行うとともに、630,000m³を利用して、加古川市水道用水に供給しており、流水の正常な機能を維持している。

近年は特に渇水がないことから、加古川大堰の運用により、流入量の変動に関わらず、利水容量を維持し、安定した取水を可能とすることで、地域の発展に貢献している。

(2) 今後の方針

今後も安定した営農、水道用水の補給、工業用水の補給に貢献するため、適切な堰管理を継続していく。
3.6 文献リスト

<table>
<thead>
<tr>
<th>NO.</th>
<th>文献・資料名</th>
<th>発行者</th>
<th>発行年月</th>
<th>引用ページ・箇所</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>パンフレット「加古川大堰」</td>
<td>姫路河川国道事務所</td>
<td>平成22年12月</td>
<td>3.1.1貯水池運用計画（容量配分図）</td>
</tr>
<tr>
<td>3-2</td>
<td>加古川大堰工事誌</td>
<td>近畿地方建設局姫路工事事務所</td>
<td>平成5年3月</td>
<td>3.1.2利水補給計画</td>
</tr>
<tr>
<td>3-3</td>
<td>加古川大堰管理年報、管理月報</td>
<td>近畿地方建設局姫路工事事務所</td>
<td>平成元年 〜 平成28年</td>
<td>3.2.1利水補給実績</td>
</tr>
<tr>
<td>3-4</td>
<td>取水・排水実績について報告書</td>
<td>(高砂市、日本毛織(株))</td>
<td>平成元年1月 〜 平成28年12月</td>
<td>3.2.2下流への補給実績</td>
</tr>
<tr>
<td>3-5</td>
<td>加古川市統計書</td>
<td>加古川市</td>
<td>平成24年度 〜 平成28年度</td>
<td>3.3.1人口及び生産性向上による評価</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1)上水道の補給効果</td>
</tr>
<tr>
<td>3-6</td>
<td>加古川市給水統計資料</td>
<td>加古川市水道局</td>
<td>昭和40年〜平成28年</td>
<td></td>
</tr>
<tr>
<td>3-7</td>
<td>「工業統計アーカイブス」ホームページ(http://www.meti.go.jp/statistics/tyo/kougyo/archives/index.html)</td>
<td>経済産業省</td>
<td>昭和50年〜平成19年</td>
<td>3.3.1人口及び生産性向上による評価</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2)工業用水の補給効果</td>
</tr>
</tbody>
</table>
4. 堆砂
4.1 評価の進め方

4.1.1 評価方針
現在の堆砂状況及び経年的な整理により堆砂傾向を把握して評価を行う。

4.1.2 評価手順
以下の手順で作業を行う。作業のフローは図 4.1-1に示すとおりである。

(1) 堆砂測量方法の整理
堆砂測量（深浅測量）の方法について、手法・測線（測量断面位置）・測量時期等について整理する。

(2) 土砂流入等の状況整理
集水域の開発状況、崩壊地の状況、砂利採取の状況等、土砂流入に影響する事柄について位置、規模、内容等を整理する。

(3) 堆砂実績の整理
測量結果（堆砂状況調査報告書、深浅測量結果等）をもとに、堆砂状況について経年的に図表に整理する。また、縦横断図を示し、堆砂形状を把握する。

(4) 堆砂傾向及び堆砂対策の評価
実績堆砂量の経年変化より、堆砂の進行状況や堆積箇所等の傾向について評価を行う。また、堆砂対策の概要を示し、効果について評価する。
4.1.3 必要資料（参考資料）の収集・整理
測量成果や堆砂対策に関わる資料等、まとめに必要となる資料について収集し、リストを作成する。収集した資料は、「4.6 文献リスト」において整理する。
4.2 堆砂測量実施状況

堰直下流及び貯水池の堆砂量を把握するため、毎年、定期横断測量を実施して横断面図を作成し、前年度との比較を行っている。なお、測量は毎年10月〜12月に実施している。

河川区域内の陸上部及び水深が1m未満の箇所は直接水準測量を、水深が1m以上の箇所は音響測深器を使用した深浅測量で、縦断方向に堰上流側は200m間隔で4.4km上流まで、下流側は40m間隔で0.4km下流まで実施している。

図4.2-1に加古川大堰測量位置（測線図）を示す。
4.3 堆砂実績の整理

4.3.1 堆砂量の整理

表 4.3-1 に掘削量、表 4.3-2 に加古川大堰の堆砂状況、図 4.3-1 に加古川大堰貯水池の堆砂経年変化を示す。

平成 3 年の測量開始以降、出水や河道掘削等により河床の堆砂状況が変動し、堆砂量も増減を繰り返している。

管理移行後、全体的に堆砂量は増加傾向である。近年、堆砂量は平成 20 年度、平成 22 年度、平成 25 年度の河道掘削等により減少したが、増加傾向は変わらず、平成 28 年の総堆砂量は約 277 千 m³である。

堆砂量の増減に関し、要因としては、次に示すことが考えられる。

- 平成 20 年…左岸 14.2K 付近〜14.6K+10 付近の河道掘削（10,400m³）
- 平成 21 年…台風 18 号の接近による出水
- 平成 22 年…5 月の 3,863m³/s の出水
- 平成 23 年…台風 2 号、15 号の接近による出水と台風 12 号接近時の 4,253m³/s の出水
- 平成 25 年…台風 18 号の接近に伴う 4,938m³/s の出水
- 平成 25 年…貯水池内の河道掘削実施（20,500 m³）
- 平成 27 年…台風 11 号接近時の 4,233 m³/s の出水

平成 28 年時点における総堆砂量は 276.84 千㎥、全堆砂率は 14.12% となっている。現状では堆砂による問題は生じていないが、今後の動向について継続して調査していく必要がある。

なお、加古川大堰では「計画堆砂量」は設定していない。

表4.3-1 掘削量（m³）

<table>
<thead>
<tr>
<th>年度</th>
<th>大堰上流</th>
<th>大堰下流</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成 20 年</td>
<td>10,400</td>
<td>-</td>
</tr>
<tr>
<td>平成 21 年</td>
<td>-</td>
<td>9,400</td>
</tr>
<tr>
<td>平成 22 年</td>
<td>90,400</td>
<td>8,000</td>
</tr>
<tr>
<td>平成 23 年</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>平成 24 年</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>平成 25 年</td>
<td>20,500</td>
<td>-</td>
</tr>
<tr>
<td>平成 26 年</td>
<td>-</td>
<td>16,235</td>
</tr>
<tr>
<td>平成 27 年</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>平成 28 年</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
表4.3-2 加古川大堰の堆砂状況

<table>
<thead>
<tr>
<th>年</th>
<th>経過年数</th>
<th>総堆砂量(千 m³)</th>
<th>全堆砂率※1(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成3年</td>
<td>3</td>
<td>67.00</td>
<td>3.42</td>
</tr>
<tr>
<td>平成4年</td>
<td>4</td>
<td>7.00</td>
<td>0.36</td>
</tr>
<tr>
<td>平成5年</td>
<td>5</td>
<td>42.00</td>
<td>2.14</td>
</tr>
<tr>
<td>平成6年</td>
<td>6</td>
<td>106.00</td>
<td>5.41</td>
</tr>
<tr>
<td>平成7年</td>
<td>7</td>
<td>49.00</td>
<td>2.50</td>
</tr>
<tr>
<td>平成8年</td>
<td>8</td>
<td>15.00</td>
<td>0.77</td>
</tr>
<tr>
<td>平成9年</td>
<td>9</td>
<td>31.00</td>
<td>1.58</td>
</tr>
<tr>
<td>平成10年</td>
<td>10</td>
<td>53.00</td>
<td>2.70</td>
</tr>
<tr>
<td>平成11年</td>
<td>11</td>
<td>101.00</td>
<td>5.15</td>
</tr>
<tr>
<td>平成12年</td>
<td>12</td>
<td>64.00</td>
<td>3.27</td>
</tr>
<tr>
<td>平成13年</td>
<td>13</td>
<td>100.00</td>
<td>5.10</td>
</tr>
<tr>
<td>平成14年</td>
<td>14</td>
<td>68.00</td>
<td>3.47</td>
</tr>
<tr>
<td>平成15年</td>
<td>15</td>
<td>104.00</td>
<td>5.31</td>
</tr>
<tr>
<td>平成16年</td>
<td>16</td>
<td>167.00</td>
<td>8.52</td>
</tr>
<tr>
<td>平成17年</td>
<td>17</td>
<td>135.00</td>
<td>6.89</td>
</tr>
<tr>
<td>平成18年</td>
<td>18</td>
<td>129.20</td>
<td>6.59</td>
</tr>
<tr>
<td>平成19年</td>
<td>19</td>
<td>214.50</td>
<td>10.94</td>
</tr>
<tr>
<td>平成20年</td>
<td>20</td>
<td>218.70</td>
<td>11.16</td>
</tr>
<tr>
<td>平成21年</td>
<td>21</td>
<td>161.10</td>
<td>8.22</td>
</tr>
<tr>
<td>平成22年</td>
<td>22</td>
<td>145.11</td>
<td>7.40</td>
</tr>
<tr>
<td>平成23年</td>
<td>23</td>
<td>150.12</td>
<td>7.66</td>
</tr>
<tr>
<td>平成24年</td>
<td>24</td>
<td>233.63</td>
<td>11.92</td>
</tr>
<tr>
<td>平成25年</td>
<td>25</td>
<td>226.30</td>
<td>11.55</td>
</tr>
<tr>
<td>平成26年</td>
<td>26</td>
<td>252.31</td>
<td>12.87</td>
</tr>
<tr>
<td>平成27年</td>
<td>27</td>
<td>321.63</td>
<td>16.41</td>
</tr>
<tr>
<td>平成28年</td>
<td>28</td>
<td>276.84</td>
<td>14.12</td>
</tr>
</tbody>
</table>

※1 全堆砂率: 総貯水容量に占める総堆砂量の割合

図4.3-1 堆砂の経年変化

※2 全堆砂量: 各年堆砂量の累計

赤囲みは評価対象期間(H24~28)のデータを示す。 (出典: 資料4-1)
4.3.2 堆砂形状の整理

図4.3-2、図4.3-4の至近5ヵ年の状況をみると大堰上流付近（およそ12.0km～14.2kmの範囲）で堆積傾向がみられる。また、上流の15.2km付近〜16.4km付近は、平成25年度（平成25年度横断測量後）に貯水池内において、河道掘削が行われ、やや低下傾向がみられる。

堰直下流は、平成26年度に中州の伐採及び掘削が行われ、河床は低下傾向がみられる。

図4.3-3より利水容量の測量値は近年、概ね横ばいで推移している。また、図4.3-5に示すとおり、土砂のたまりやすい支川の流入部や堰下流部等の横断図をみると、適切に維持掘削を実施しているものと考えられる。

従って、現状においては、堆砂による堰機能への影響はないものと推察される。

![図4.3-2 加古川大堰の堆砂・掘削状況](image1)

![図4.3-3 加古川大堰の利水容量・死水容量標高間の貯水量の変化](image2)
加古川大堰上下流の平均河床高

※ 平均河床高は、低水路分析を対象とし、以下の式で算出している。

平均河床高 = 計画高水敷高 - (当初低水路河積 / 計画高水敷高の現況幅長)

図4.3-4 貯水池の河床縦断図

図4.3-5 貯水池の河床横断図
4.3.3 堰直下の中州について

加古川大堰直下の中州については、平成21年度、22年度及び26年度に樹木の伐採及び掘削が行われている。伐採・掘削エリアは以下のとおりであり、前述の堰直下における河床の低下は該工事によるものである。写真4.3-1に掘削前後の壊下流の状況写真を示す。

・平成21年度…11.6K付近～11.8K付近の河道掘削（9,400m³）
・平成22年度…11.6K-140～11.6K付近の河道掘削（8,000m³）
・平成26年度…11.4K～12.0K付近の河道掘削
（16,235m³（一次掘削：1,796.8m³、二次掘削：14,438.5m³））
参考：放流方法の変更による土砂のフラッシュ効果の検討

表 8.3.10 洪水対応操作方法における改善案の提案事項【急流制御ゲート操作方法】

7. 洪水対応操作方法の立案

＜検討概要＞
・現行操作規則、既往の加古川大堰水理模型実験報告書、ゲート操作順位の変更による土砂の堆積防止に関する既往検討結果を参考に、塩下流の土砂のフラッシュ効果が得られるゲート操作方法を検討した。

＜主な検討結果＞
・ゲート操作方法の改善案については、操作の安全性、確実性、操作員の負担軽減といった観点を考慮し、洪水末期の不確定度制御期間における操作順序変更案を立案した。
・今回立案した低水路中央部からの流量を卓越させる変更案は、現行操作に比べて塩下流の土砂フラッシュ効果を促進することが確認できた。

出典：加古川大堰管理運用改善資料作成業務報告書 平成 26 年 3 月
4.3.4 河床材料の変化

加古川大堰貯水池の水質調査の一環として、底質調査を平成4年より毎年5月に実施している。調査地点は、加古川大堰直上流となる河口より12km地点から、400mおきに15.8km地点まで実施している。

調査方法は、12.0kmから14.6km付近までの比較的水深が深い地点においては、エクマンバージ採泥器や潜水などによる採泥、14.6kmより上流の比較的浅い地点においては、スコップや柄杓による採泥とした。

堰直上の12km地点、13.0km地点、美嚢川合流（貯水池末端）付近の15.8km地点における河床材料の粒度組成の変化の概況は、図4.3-7に示すとおりである。

年によって変動するものの、概して堰に近い方で細粒分が多くなっている。
参考：支川流入前後の粒度組成

図 底質（河床材料）の粒度組成
4.4 まとめ

(1) 堆砂のまとめ

堆砂は、堰直上流付近で堆積傾向がみられるが、堰直上の堆砂は、ゲート操作に支障はない。

土砂の掘削しやすい湛水域の末端部や堰下流部等において、適切に維持掘削を実施している。
適切に維持掘削を実施することで、流下能力も維持できている。
現在においては、堆砂による堰機能への影響はない。
掘削土砂は、下流の堤防強化工事に再利用している。

(2) 今後の方針

今後も河川測量などを継続して堆砂量を把握し、利水容量（有効貯水容量）を維持するよう、堆積土砂の除去を検討していく。
また、堆砂が進行しやすい堰直上流付近については、流下能力の低下などが懸念されるため、今後の動向に留意する。
表4.5-1 「4. 堆砂」に使用した文献・資料リスト

<table>
<thead>
<tr>
<th>NO.</th>
<th>文献・資料名</th>
<th>発行者</th>
<th>発行年月</th>
<th>引用ページ・箇所</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>加古川大堰定期横断測量業務報告書</td>
<td>姫路河川国道事務所</td>
<td>平成19年度〜平成28年度</td>
<td>4.1 堆砂測量実施状況 4.2 堆砂実績の整理 4.2.1 堆砂量の整理 4.2.2 堆砂形状の整理</td>
</tr>
<tr>
<td>4-2</td>
<td>水質試験作業加古川関連調査分析結果報告書</td>
<td>姫路河川国道事務所</td>
<td>平成4年度〜平成28年度</td>
<td>4.2 堆砂実績の整理 4.2.3 河床材料の変化</td>
</tr>
</tbody>
</table>
5. 水質
5.1 評価の進め方
5.1.1 評価方針
当該施設における水質に関する評価を以下の方針に従って行うこととする。
(1)評価の方針
(2)評価期間
(3)評価範囲

(1)評価の方針
「5.水質」では評価として「水質の評価」を行う。
「水質の評価」では、加古川大堰貯水池内、流入河川及び下流河川における水質調査結果をもとに、流入・下流水質の関係から見た貯水池の影響、経年的水質変化から見た流域及び貯水池の影響、水質障害の発生状況について評価するとともに、改善の必要性を評価する。

(2)評価期間
加古川大堰の水質データは、国包地点(加古川大堰供用開始に伴い、平成元年から加古川大堰貯水池内となる)において昭和42年4月(1967年4月)から存在する。このうち、水質における評価期間は加古川大堰が管理開始となった平成元年(1989年)から平成28年12月(2018年12月)を対象とする。
なお、加古川大堰建設前と建設後の水質を比較するため、加古川大堰建設前の評価期間として、水質調査を開始した昭和42年4月(1967年4月)から加古川大堰管理開始前の昭和63年(1988年)についても整理の対象とする。

(3)評価範囲
水質の評価範囲は、加古川大堰上流の環境基準点(板波)から加古川大堰下流の環境基準点(池尻橋)、並びに感潮区間である相生橋について行った。
5.1.2 評価手順
当該施設における水質に関する評価を以下の手順で検討するものとする。

(1) 必要資料の収集・整理
評価に必要となる基礎資料として、自然・社会環境に関する資料、加古川大堰の水質調査状況、水質調査結果、加古川大堰の諸元を収集整理する。

(2) 基本事項の整理
水質に関わる評価を行うにあたり基本的な事項となる、環境基準の類型指定、水質調査地点及び評価期間と水質調査状況を整理する。

(3) 水質状況の整理
定期水質調査を基本として、流入・下流河川及び加古川大堰貯水池内の水質状況及び加古川大堰貯水池内の底質状況を整理するとともに、水質障害の発生有無についても整理する。

(4) 社会環境からみた汚濁源の整理
加古川大堰貯水池内及び放流先河川の水質は、貯水池の存在による影響だけでなく、流域の土地利用の変化や生活排水対策状況の変化の影響も受ける。特に水質状況が経年的に変化している場合には流域社会環境の変遷について調査・整理し、水質変化の要因の考察に資するものとする。

(5) 水質の評価
水質の評価項目の選定内容を図 5.1-1 に示す。考え方としては、対象水系にあって、大堰が存在することによって水質に及ぼす影響項目を選定する。
加古川大堰の存在によって変化する事象としては、止水環境の形成、貯水池出現による利活用が挙げられる。これに伴い、水質に及ぼす影響項目としては、水温躍層の形成、洪水後の微細土砂の浮遊、基礎生産者の変遷、流域負荷のため込み、大堰操作が考えられる。
これら水質に及ぼす影響項目から、加古川大堰で評価すべき事項として、環境基準項目、水温の変化、土砂による水の濁り、富栄養化、底質、下流河川への影響を取り上げることにする。

5-2
【水質の評価 細目】

1) 流入・下流水質の比較による評価
流入水質と下流水質を比較することにより、加古川大堰の出現による水質変化の状況を把握する。

2) 経年水質変化の評価
流入水質と下流水質の経年変化から大堰の存在による影響を評価する。

3) 冷水・濁水長期化・富栄養化現象に関する評価
流入・放流量、流入・下流水温、流入・下流SS、管理・運用情報等を整理し、発生原因の分析を行い、改善の必要性を検討する。

図 5.1-1 加古川大堰の存在によるインパクトレスポンスを踏まえた水質評価項目の選定

(6) まとめ
水質に関する評価の検討手順を図 5.1-2 に示す。
水質の評価、水質保全施設の評価を整理し、改善の必要性等を整理した。
【必要資料の収集・整理】
・自然・社会環境に関する資料
・水質に関する資料

【基本事項の整理】
・環境基準類型化状況の整理
・評価する水質調査地点・項目
・水質調査状況の整理

【水質状況の整理】
・加古川大堰貯水池内水質の経年・経月変化
・加古川大堰貯水池内水質の鉛直分布の変化
・栄養塩の構成形態別変化
・植物プランクトンの生息状況変化
・底質の変化
・水質障害発生の状況

【社会環境からみた汚濁源の整理】
・人口・観光客数
・畜産頭数
・土地利用状況
・生活排水処理状況
・下水処理水量

【水質の評価】
・生活環境項目の評価
・健康項目の評価
・水温の変化に関する評価
・土砂による水の濁りに関する評価
・富栄養化現象に関する評価
・DOと底質に関する評価
・水質縦断変化による大堰の影響評価

【まとめ】
・水質の評価
・今後の課題

図 5.1-2 水質に関する評価の検討手順
5.1.3 加古川大堰の水質に関する外的要因
以下に示す加古川大堰の水質に関する特性・条件を念頭におき、加古川大堰の水質に関する整理・評価を行っていくものとする。

(1) 加古川流域の下流に位置する
加古川大堰は、加古川の河口から12km地点に位置しており、加古川の流域面積1,730km²に対して加古川大堰の流域面積は1,657km²となっている。
図5.1-3に加古川大堰の流域概要を示す。

図5.1-3 加古川大堰の流域概要
（出典：資料5-19）
(2) 回転率が大きい貯水池
加古川大堰総貯水容量(196万m³)に対して、年間流入量の平均が約14億m³/年(平成元年(1989年)〜平成28年(2016年)平均)であり、回転率が約710回/年と大きい。回転率が大きいということは、貯水池の水交換が促進されやすいことを意味し、水質上は良い方向に位置づけられる。

(3) 加古川大堰放流施設の条件
加古川大堰は平水時には大堰左岸にある取水口より水道用水、農業用水の取水を、大堰右岸にある取水口より農業用水、工業用水の取水を行う。左岸取水口、右岸取水口ともに自然取水であり、最低取水位はT.P.+9.70mである。なお、左岸導水路に自然取水が不可能になったときに農業用水必要量の取水を行う揚水ポンプを設置している。
また、流入量が330m³/sまでは、平常時制御として1・5号(調節ゲート)は定水位制御、2〜4号(主ゲート)は定開度制御を行う(平常時確保水位T.P.+12.50m)。流入量が1,000m³/s以上で、貯水位と堰下流との水位差が1m以内の時、洪水時制御としてゲートを全開にする。加古川大堰放流施設の概要を図5.1-4に示す。
5.2 基本事項の整理
5.2.1 環境基準類型指定状況の整理

環境基準とは、人の健康の保護および生活環境の保全のための目標であり、環境基本法第16条に基づいて設定されるものである。環境基準は「維持されることが望ましい基準」であり、水質汚濁についても対象となっている。

加古川大堰の類型指定状況は表5.2-1に示すとおりである。

加古川（兵庫県）は昭和45年9月（1970年9月）に篠山川合流点より上流の区間が河川A類型に、篠山川合流点より下流、山陽線鉄橋までの区間が河川B類型にそれぞれ指定された。また、昭和46年5月（1971年5月）に山陽線鉄橋より下流の区間が河川B類型に指定された。なお、加古川の環境基準は井原橋（篠山川合流点より上流）、板波・池尻橋（篠山川合流点より下流）の3地点となっている。

加古川大堰の環境基準は河川B類型となっており、湖沼としての指定はなされていない。

<table>
<thead>
<tr>
<th>ダム名</th>
<th>環境基準指定年</th>
<th>環境基準類型</th>
<th>環境基準値</th>
</tr>
</thead>
<tbody>
<tr>
<td>加古川大堰</td>
<td>昭和45年9月（篠山川合流点～山陽線鉄橋）</td>
<td>河川B類型</td>
<td>BOD 3mg/L以下 pH 6.5以上 SS 8.5以下 DO 25mg/L以下</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>大腸菌群数 5,000MPN/100mL以下</td>
</tr>
</tbody>
</table>

（出典：資料5-1）

※加古川大堰は、湖沼の環境基準の指定がなされていない

なお、平成15年11月（2003年11月）には水生生物保全の観点から全亜鉛が生活環境項目に追加され、国において類型当てはめ方法等を検討しているところである。今現在のところ、加古川大堰では指定されていない。

表5.2-2に水質環境基準（河川）を示す。
表 5.2-2 水質環境基準（河川）

<table>
<thead>
<tr>
<th>項目</th>
<th>利用目的の対応性</th>
<th>基準値</th>
<th>該当水域</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>水素イオン濃度 (pH)</td>
<td>生物化学的酸素要求量 (BOD)</td>
</tr>
<tr>
<td>AA</td>
<td>水道1級</td>
<td>自然環境保全及びA以下の欄に掲げるものの</td>
<td>6.5 以上</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.5 以下</td>
<td>以下</td>
</tr>
<tr>
<td>A</td>
<td>水道1級・水産1級</td>
<td>水浴及びB以下の欄に掲げるものの</td>
<td>6.5 以上</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.5 以下</td>
<td>以下</td>
</tr>
<tr>
<td>B</td>
<td>水産2級・水産2級</td>
<td>及びC以下の欄に掲げるものの</td>
<td>6.5 以上</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.5 以下</td>
<td>以下</td>
</tr>
<tr>
<td>C</td>
<td>水産3級・工業用水1級及びD以下の欄に掲げるものの</td>
<td>6.5 以上</td>
<td>5mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.5 以下</td>
<td>以下</td>
</tr>
<tr>
<td>D</td>
<td>工業用水2級・農業用水及びEの欄に掲げるものの</td>
<td>6.0 以上</td>
<td>8mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.5 以下</td>
<td>以下</td>
</tr>
<tr>
<td>E</td>
<td>工業用水3級環境保全</td>
<td>6.0 以上</td>
<td>10mg/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.5 以下</td>
<td>以下</td>
</tr>
</tbody>
</table>

（注）
1. 自然環境保全：自然探勝等の環境保全
2. 水道1級：ろ過等による簡易な浄水操作を行うもの
 水道2級：沈殿ろ過等による通常の浄水操作を行うもの
 水道3級：前処理等を伴う高度の浄水操作を行うもの
3. 水産1級：ヒメマス等貧栄養湖型の水域の水産生物用並びに水産2級及び水産3級の水産生物用
 水産2級：サケ科魚類及びアユ等貧栄養湖型水域の水産生物用並びに水産3級の水産生物用
 水産3級：コイ、フナ等富栄養湖型の水域の水産生物用
4. 工業用水1級：沈殿等による通常の浄水操作を行うもの
 工業用水2級：薬品注入等による硬度の浄水操作、又は特殊な浄水操作を行うもの
 工業用水3級：特殊な浄水操作を行うもの
5. 環境保全：国民の日常生活（沿岸の遊歩等を含む）において不快感を生じない限度
6. 水産1種：サケ科魚類及びアユ等貧栄養湖型の水域の水産生物用並びに水産2種及び水産3種の水産生物用
 水産2種：ワカサギ等の貧栄養湖型の水域の水産生物用および水産3種の水産生物用
 水産3種：コイ、フナ等の水産生物用

（出典：資料5-2）
5.2.2 水質調査地点と対象とする水質項目

加古川大堰においては、大堰管理者(国土交通省)により堰直上、国包、万才橋（流入河川）、美嚢川橋（流入支川）の4地点において水質調査を実施している。

これに加え、堰上流の水質を評価するため、河川管理者(国土交通省)が水質調査を実施している板波（流入河川）、大住橋（流入河川）の2地点、大堰下流河川の水質を評価するため池尻橋及び感潮区間の相生橋の2地点も含めて計8地点を対象に整理を行う（図5.2-1参照）。

本報告書で評価対象とする水質項目は、以下の通りである。

- 水温、濁度
- 生活環境項目：pH、DO、BOD、COD、SS、大腸菌群数
- 健康項目：カドミウム、全シアン、鉛、六価クロム、砒素、総水銀、アルキル水銀、PCB、ジクロロメタン、四塩化炭素、1,2-ジクロロエタン、1,1-ジクロロエチレン、シス-1,2-ジクロロエチレン、1,1,1-トリクロロエタン、トリクロロエチレン、テトラクロロエチレン、1,3-ジクロロプロペン、チウラム、シマジン、チオベンカルブ、ベンゼン、セレン、硝酸性窒素及び亜硝酸性窒素、ふっ素、ほう素、1,4-ジオキサン
- クロロフィル a、T-N、T-P、アンモニウム態窒素、亜硝酸態窒素、硝酸態窒素、無機態リン

図5.2-1 類型指定状況と水質測定位置及び各支川流域面積

（出典：資料5-3）
また、加古川大堰貯水池内の深さ方向の水質調査（採水）位置は図 5.2-2 の通りである。加古川大堰は美嚢川合流点より上流までが湛水区間となっており、万才橋、大住橋は順流区間になっている。

国包は加古川大堰供用開始前の昭和 63 年度より 8 割水深においても調査を実施している。図 5.2-3 に加古川大堰湛水区間を示す。
5.2.3 水質調査状況の整理
加古川大堰において実施している水質調査の概要を表5.2-3に示す。

<table>
<thead>
<tr>
<th>調査項目</th>
<th>調査地点</th>
<th>調査深度</th>
<th>調査頻度</th>
</tr>
</thead>
<tbody>
<tr>
<td>水温、DO(計器測定)</td>
<td>板波、大住橋、万才橋、美嚢川橋(流入支川)</td>
<td>噴直上の計器測定(水深、DO)は原則上層(0.5m)、中層(1/2水深)、下層(底上0.5m)</td>
<td>概ね1回/月</td>
</tr>
<tr>
<td>生活環境項目</td>
<td>国包、堰直上、池尻橋、相生橋</td>
<td>上層(堰直上1m程度、国包0.5〜1m(2割水深)、その他の地点0.2〜0.5m程度) (国包は下層(3〜4m程度)(8割水深)も採水)</td>
<td>概ね1回/月</td>
</tr>
<tr>
<td>T-N, T-P, 無機態窒素、無機態リン</td>
<td>板波、大住橋、万才橋、美嚢川橋(流入支川)、国包</td>
<td>上層(堰直上1m程度、国包0.5〜1m(2割水深)、その他の地点0.2〜0.5m程度)</td>
<td>2〜12回/年(項目に応じて)</td>
</tr>
<tr>
<td>クロロフィルα</td>
<td>板波、美嚢川橋(流入支川)、国包</td>
<td>上層(堰直上1m程度、国包0.5〜1m(2割水深)、その他の地点0.2〜0.5m程度)</td>
<td>概ね1回/月</td>
</tr>
<tr>
<td>健康項目</td>
<td>板波、大住橋、万才橋、美嚢川橋(流入支川)、国包、堰直上、池尻橋、相生橋</td>
<td>上層(堰直上1m程度、国包0.5〜1m(2割水深)、その他の地点0.2〜0.5m程度)</td>
<td>概ね1回/月</td>
</tr>
<tr>
<td>底質(強熱減量、COD、T-N、T-P、硫化物、鉄、マンガング、カドミウム、鉛、六価クロム、ヒ素、総水銀、アルキル水銀、PCB)</td>
<td>国包</td>
<td>堆積泥表層1層</td>
<td>1回/年(5月)</td>
</tr>
<tr>
<td>養便性大腸菌群数</td>
<td>板波、大住橋、万才橋、国包、池尻橋</td>
<td>上層(堰直上1m程度、国包0.5〜1m(2割水深)、その他の地点0.2〜0.5m程度)</td>
<td>概ね1回/月</td>
</tr>
</tbody>
</table>

・生活環境項目（DOを除く）：pH, BOD, COD, SS, 大腸菌群数
・健康項目：ガドミウム, 全ジアン, 鉛, 六価クロム, ヒ素, 総水銀, アルキル水銀, PCP, ジクロロメタン,
四塩化炭素, 1,2-ジクロロエタン, 1,1-ジクロロエチレン, シス-1,2-ジクロロエチレン,
1,1,1-トリクロロエタン, 1,1,2-トリクロロエタン,トリクロロエチレン, テトラクロロエチレン,
1,3-ジクロロプロペン, チラウム, シマジン, チオベンカルブ, ベンゼン, セレン, ふっ素, ほう素
・無機態窒素：アンモニウム態窒素, 亜硝酸態窒素, 硝酸態窒素
・無機態リン：オルトリン酸態リン
次に、水質調査開始年（昭和42年（1967年））以降での生活環境項目と健康項目の調査実施状況を整理して示す。本定期報告では、主に近5ヶ年における水質状況に着目した整理を行うが、加古川大堰供用前後での水質変化についても確認することも踏まえ、水質調査開始から平成28年に至る期間についてデータ整理を行った。

生活環境項目及びT-N、T-P、クロロフィルaは表5.2-4に示すとおりである。調査開始から昭和44年（1969年）までは調査頻度にばらつきがあるものの、昭和45年（1970年）以降は概ね年12回の調査を実施している。また、加古川大堰が供用開始となった平成元年（1989年）以降に流入支川である美嚢川橋の調査も追加している。

健康項目は表5.2-4に示すとおりである。加古川大堰貯水池内調査地点においては、堰直上と国包で調査を実施している。

図5.2-4に、これら水質調査の実施方法のイメージを示す。
表 5.2-4 主要水質調査状況

| 水質項目 | 水質調査地点 | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 | H10 | H11 | H12 | H13 | H14 | H15 | H16 | H17 | H18 | H19 | H20 | H21 | H22 | H23 | H24 | H25 | H26 | H27 | H28 |
|----------|--------------|
| 生活環境項目 | 相生橋 | 9 | 12 |
| 池尻橋 | 9 | 12 |
| 塩直上 | 9 | 9 | 4 | 12 |
| 美の川橋 | 9 | 12 |
| 板波 | 9 | 9 | 4 | 12 |

T-N・T-P	相生橋	9	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
池尻橋	9	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	
塩直上	9	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	
美の川橋	9	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	
板波	9	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	

グロロフィルa	相生橋	9	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
池尻橋	9	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	
塩直上	9	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	
美の川橋	9	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	
板波	9	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	

※表中の網掛けは調査実施を示す。
() 書きは主要項目年1回だけ実施した場合を示す。
5.3 水質状況の整理
5.3.1 水理・水文・気象特性
(1) 流入量と降水量
加古川大堰管理開始以降の平成元年(1989年)から平成28年(2016年)のダム諸量と日降水量の推移を図5.3-1に示す。また、図5.3-2に加古川大堰の年降水量を示す。流入量と放流量の散布図に見られるように、加古川大堰はほぼ流入量=放流量となっている。年降水量は平成19年(2007年)から平成28年(2016年)の平均で1,295mmであり、最大が平成27年(2015年)で1,609mm、最小が平成26年(2014年)で1,118mmとなっている。

図5.3-1 ダム諸量と加古川大堰の日降水量
図5.3-2 加古川大堰の年降水量
(2) 流況と回転率
加古川大堰管理開始以降（平成元年以降）の流況（流入量）を表5.3-1及び図5.3-3に示す。

表5.3-1 加古川大堰流況（流入量）整理結果表

<table>
<thead>
<tr>
<th>年度</th>
<th>最大流量 (m³/s)</th>
<th>豊水量流量 (m³/s)</th>
<th>平水量流量 (m³/s)</th>
<th>低水量流量 (m³/s)</th>
<th>渇水量流量 (m³/s)</th>
<th>最小流量 (m³/s)</th>
<th>年平均流量 (m³/s)</th>
<th>年総流量 (×10⁶m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成元年</td>
<td>878.90</td>
<td>76.97</td>
<td>25.87</td>
<td>12.18</td>
<td>5.34</td>
<td>4.93</td>
<td>69.07</td>
<td>1581.51</td>
</tr>
<tr>
<td>平成2年</td>
<td>1118.42</td>
<td>49.84</td>
<td>22.25</td>
<td>13.37</td>
<td>5.13</td>
<td>4.41</td>
<td>56.39</td>
<td>1637.10</td>
</tr>
<tr>
<td>平成3年</td>
<td>557.67</td>
<td>45.71</td>
<td>22.30</td>
<td>12.83</td>
<td>7.92</td>
<td>6.81</td>
<td>45.91</td>
<td>1348.69</td>
</tr>
<tr>
<td>平成4年</td>
<td>842.41</td>
<td>34.98</td>
<td>17.95</td>
<td>12.05</td>
<td>7.93</td>
<td>6.97</td>
<td>39.18</td>
<td>1150.97</td>
</tr>
<tr>
<td>平成5年</td>
<td>969.02</td>
<td>54.80</td>
<td>23.66</td>
<td>15.37</td>
<td>9.38</td>
<td>7.26</td>
<td>68.02</td>
<td>1980.51</td>
</tr>
<tr>
<td>平成6年</td>
<td>315.63</td>
<td>19.74</td>
<td>11.49</td>
<td>6.52</td>
<td>3.56</td>
<td>2.78</td>
<td>20.09</td>
<td>598.75</td>
</tr>
<tr>
<td>平成7年</td>
<td>1088.93</td>
<td>21.67</td>
<td>11.98</td>
<td>8.10</td>
<td>4.85</td>
<td>4.57</td>
<td>38.51</td>
<td>1088.14</td>
</tr>
<tr>
<td>平成8年</td>
<td>1233.37</td>
<td>37.24</td>
<td>17.58</td>
<td>11.73</td>
<td>7.21</td>
<td>3.87</td>
<td>41.97</td>
<td>1221.94</td>
</tr>
<tr>
<td>平成9年</td>
<td>951.59</td>
<td>28.01</td>
<td>15.79</td>
<td>11.63</td>
<td>8.44</td>
<td>6.28</td>
<td>47.93</td>
<td>1445.38</td>
</tr>
<tr>
<td>平成10年</td>
<td>1535.27</td>
<td>61.43</td>
<td>29.24</td>
<td>15.01</td>
<td>7.03</td>
<td>6.05</td>
<td>62.84</td>
<td>1878.47</td>
</tr>
<tr>
<td>平成11年</td>
<td>1599.32</td>
<td>30.19</td>
<td>17.34</td>
<td>10.68</td>
<td>5.89</td>
<td>5.42</td>
<td>44.76</td>
<td>1557.52</td>
</tr>
<tr>
<td>平成12年</td>
<td>1054.90</td>
<td>25.06</td>
<td>15.01</td>
<td>11.34</td>
<td>6.68</td>
<td>4.88</td>
<td>28.30</td>
<td>853.40</td>
</tr>
<tr>
<td>平成13年</td>
<td>753.44</td>
<td>29.09</td>
<td>17.91</td>
<td>12.30</td>
<td>5.52</td>
<td>4.12</td>
<td>31.85</td>
<td>1004.33</td>
</tr>
<tr>
<td>平成15年</td>
<td>634.14</td>
<td>50.27</td>
<td>25.62</td>
<td>16.64</td>
<td>10.00</td>
<td>8.07</td>
<td>47.21</td>
<td>1440.01</td>
</tr>
<tr>
<td>平成16年</td>
<td>2059.85</td>
<td>37.24</td>
<td>20.89</td>
<td>13.38</td>
<td>8.40</td>
<td>7.20</td>
<td>53.40</td>
<td>1688.58</td>
</tr>
<tr>
<td>平成17年</td>
<td>213.62</td>
<td>18.87</td>
<td>13.30</td>
<td>9.48</td>
<td>6.26</td>
<td>4.52</td>
<td>20.21</td>
<td>637.31</td>
</tr>
<tr>
<td>平成18年</td>
<td>1621.05</td>
<td>44.27</td>
<td>19.68</td>
<td>13.01</td>
<td>7.28</td>
<td>6.99</td>
<td>45.96</td>
<td>1449.31</td>
</tr>
<tr>
<td>平成19年</td>
<td>935.21</td>
<td>20.53</td>
<td>12.60</td>
<td>8.90</td>
<td>4.66</td>
<td>3.95</td>
<td>27.90</td>
<td>875.04</td>
</tr>
<tr>
<td>平成20年</td>
<td>238.40</td>
<td>24.06</td>
<td>15.60</td>
<td>11.15</td>
<td>7.41</td>
<td>6.57</td>
<td>25.22</td>
<td>797.57</td>
</tr>
<tr>
<td>平成21年</td>
<td>1065.80</td>
<td>29.03</td>
<td>15.19</td>
<td>11.38</td>
<td>8.40</td>
<td>7.68</td>
<td>37.84</td>
<td>1193.21</td>
</tr>
<tr>
<td>平成22年</td>
<td>2076.09</td>
<td>24.06</td>
<td>15.60</td>
<td>11.15</td>
<td>7.41</td>
<td>5.73</td>
<td>47.87</td>
<td>1509.60</td>
</tr>
<tr>
<td>平成23年</td>
<td>2139.06</td>
<td>24.06</td>
<td>15.60</td>
<td>11.15</td>
<td>7.41</td>
<td>5.66</td>
<td>56.44</td>
<td>1779.60</td>
</tr>
<tr>
<td>平成24年</td>
<td>920.20</td>
<td>33.47</td>
<td>19.86</td>
<td>14.04</td>
<td>7.07</td>
<td>6.04</td>
<td>40.05</td>
<td>1266.36</td>
</tr>
<tr>
<td>平成25年</td>
<td>3792.85</td>
<td>32.32</td>
<td>20.59</td>
<td>14.90</td>
<td>8.34</td>
<td>5.52</td>
<td>50.88</td>
<td>1604.70</td>
</tr>
<tr>
<td>平成26年</td>
<td>1378.57</td>
<td>30.26</td>
<td>19.77</td>
<td>15.44</td>
<td>10.62</td>
<td>7.90</td>
<td>45.42</td>
<td>1432.28</td>
</tr>
<tr>
<td>平成27年</td>
<td>2100.27</td>
<td>55.86</td>
<td>29.69</td>
<td>19.97</td>
<td>11.14</td>
<td>7.34</td>
<td>57.50</td>
<td>1813.21</td>
</tr>
<tr>
<td>平成28年</td>
<td>1042.67</td>
<td>44.66</td>
<td>23.97</td>
<td>15.67</td>
<td>10.76</td>
<td>9.17</td>
<td>55.83</td>
<td>1765.50</td>
</tr>
<tr>
<td>平均値</td>
<td>1165.69</td>
<td>35.85</td>
<td>18.91</td>
<td>12.47</td>
<td>7.44</td>
<td>5.96</td>
<td>44.04</td>
<td>1328.81</td>
</tr>
</tbody>
</table>

注1) 最大流量は、日流量の最大
注2) 最小流量は、日流量の最小
注3) 「-」は流量の欠測により算定されないことを示す

(出典：資料5-20)
加古川大堰の年回転率経年変化を図 5.3-4 に、回転率経月変化を図 5.3-5 に示す。加古川大堰では、管理開始となった平成元年（1989 年）～平成 28 年（2016 年）の平均年回転率が 710 回/年、近 5 年の平均年回転率が 804 回/年であり、一般的なダム貯水池と比べ回転率が非常に大きいといえる。

経月変化については、7 月の梅雨期、及び 10 月の台風、秋雨期の降雨による流入により大きくなる傾向がうかがえる。特に大きな出水があった平成 25 年 9 月、平成 27 年 7 月の回転率が大きい。

回転率が小さい場合、上流域より栄養塩が流入し、長期的に滞留することで貯水池の富栄養化現象を引き起こすことがあるが、加古川大堰では出水時にはゲートを全開して、流入＝放流の操作を行うため、上述の現象の可能性は低いものと考えられる。
参考：回転率と雨量の関係（加古川大堰、加古川流域）

![関係図](image)

图 回転率と雨量の関係（加古川大堰、加古川流域）

(3) 基準地点流量との比較
加古川大堰の治水・利水計画の基準地点である国包地点は加古川大堰貯水池内に位置し、加古川大堰の流域面積ともほぼ同程度（国包地点は1,656km²、加古川大堰は1,657km²）である。

(4) 気象
加古川大堰流域内の気象庁観測所として西脇観測所（兵庫県）、加古川大堰近傍の姫路測候所（兵庫県）で観測している年平均気温の経年変化を示す。全体として若干上昇傾向にあり、近年も上昇している。

図 5.3-6 に近隣気象観測所における気温の経年変化を示す。
5.3.2 加古川大堰水質の経年・経月変化

加古川大堰の流入河川、加古川大堰貯水池内、及び下流河川の水質観測地点は、流入本川が3地点（板波、大住橋、万才橋）、流入支川が1地点（美嚢川橋）、加古川大堰貯水池内が2地点（国包、堰直上）、下流河川が2地点（池尻橋、相生橋）あり、この計8地点を対象に10項目の経年及び経月変化をとりまとめた。表5.3-2に加古川大堰周辺の水質経年変化とりまとめ結果を示す。

(1) 経年変化

経年変化のとりまとめを図5.3-7に、また水質調査地点ごとの年最大値、年平均値（BODとCODは75％値）、年最小値の経年変化を図5.3-8に示す。

経年変化によると、SS、クロロフィルa、T-N、T-Pは、流入河川、加古川大堰貯水池内、下流河川いずれも、全体的には改善傾向にある。流入河川と下流河川を比較すると、流入河川（大住橋）と下流河川（池尻橋）は概ね同等程度となっている。また、流入支川（美嚢川橋）については、流入本川よりも全体的に濃度が高い傾向にある。

<table>
<thead>
<tr>
<th>項目</th>
<th>単位</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>水温</td>
<td>℃</td>
<td>水温は近年、やや上昇傾向を示している。放流水温は流入水温よりも若干高い傾向となっている。</td>
</tr>
<tr>
<td>pH</td>
<td>-</td>
<td>pHは環境基準を概ね満足している。近年、pHは横這い傾向を示している。流入支川の美嚢川は他の地点よりも高い傾向を示している。</td>
</tr>
<tr>
<td>DO</td>
<td>mg/L</td>
<td>DOは環境基準を満足している。近年、DOは概ね横這い傾向である。</td>
</tr>
<tr>
<td>BOD75%値</td>
<td>mg/L</td>
<td>BOD75％値は概ね環境基準を満足している。BOD75％値は概ね2mg/L程度である。近年は横這い傾向である。</td>
</tr>
<tr>
<td>SS</td>
<td>mg/L</td>
<td>SSは環境基準を概ね満足している。近年、SSは横這いもしくは低下傾向を示している。</td>
</tr>
<tr>
<td>大腸菌群数</td>
<td>MPN/100ml</td>
<td>大腸菌群数は環境基準を超える傾向にある。近年、大腸菌群数は概ね横這いもしくは低下傾向を示している。なお、最下流の相生橋では変動は大きいものの、環境基準を満足している。</td>
</tr>
<tr>
<td>COD75%値</td>
<td>mg/L</td>
<td>近年、COD75％値は横這いもしくは低下傾向で推移している。本川に比べ流入支川の美嚢川で高い値を示している。</td>
</tr>
<tr>
<td>T-N</td>
<td>mg/L</td>
<td>近年、T-Nは低下傾向を示している。</td>
</tr>
<tr>
<td>T-P</td>
<td>mg/L</td>
<td>近年、T-Pは河川としては比較的高い値である。全体的には低下傾向である。流入支川の美嚢川は他の地点よりも高い傾向を示している。</td>
</tr>
<tr>
<td>クロロフィルa</td>
<td>μg/L</td>
<td>クロロフィルaは横這いもしくは低下傾向を示している。なお、平成6年に国包で高い値を示したが渇水による回転率の低下などの影響と推測される。</td>
</tr>
</tbody>
</table>
図 5.3-7(1) 流入・加古川大堰貯水池内・下流水質の経年変化
※河川の環境基準値(B 類型)をグラフ中に表示している。

大住橋、相生橋は夏場の水温だけのデータがあるためそちらに引っ張られた。
図 5.3-7(2) 流入・加古川大堰貯水池内・下流水質の経年変化
※河川の環境基準値（B 類型）をグラフ中に表示している。

図 5.3-7(2) 流入・加古川大堰貯水池内・下流水質の経年変化
※河川の環境基準値（B 類型）をグラフ中に表示している。
図5.3-7(3) 流入・加古川大堰貯水池内・下流水質の経年変化
※河川の環境基準値（B類型）をグラフ中に表示している。

（出典：資料5-12，資料5-13，資料5-20）
図 5.3-7(4) 流入・加古川大堰貯水池内・下流水質の経年変化

※河川の環境基準値 (B 類型) をグラフ中に表示している。

（出典：資料 5-12, 資料 5-13, 資料 5-20）

図 5.3-7(4) 流入・加古川大堰貯水池内・下流水質の経年変化
※河川の環境基準値 (B 類型) をグラフ中に表示している。
図 5.3-8(1) 地点ごと流入・加古川大堰貯水池内・下流 BOD75%値の経年変化

（出典：資料 5-12，資料 5-13）

図 5.3-8(1) 地点ごと流入・加古川大堰貯水池内・下流 BOD75%値の経年変化

BOD (mg/L)

流入河川（板波）

流入河川（大住橋）

流入河川（万才橋）

流入河川（美襄川橋）

貯水池内（国包）

貯水池内（堰直上）

下流河川（池尻橋）

下流河川（相生橋）

環境基準河川B類型（3mg/L以下）

加古川大堰供用開始

年最大値

75%値

年最小値
図5.3-8（2）地点ごと流入・加古川大堰貯水池内・下流pH年平均値の経年変化
図 5.3-8(3) 地点ごと流入・加古川大堰貯水池内・下流 DO 年平均値の経年変化

（出典：資料 5-12，資料 5-13）

<table>
<thead>
<tr>
<th>地点</th>
<th>入流河川</th>
<th>年最大値</th>
<th>年平均値</th>
<th>年最小値</th>
</tr>
</thead>
<tbody>
<tr>
<td>流入河川（板波）</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>流入河川（大住橋）</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>流入河川（万才橋）</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>流入支川（美嚢川橋）</td>
<td>環境基準河川B類型（5.0mg/L以上）</td>
<td>環境基準河川B類型（5.0mg/L以上）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>貯水池内（国包）</td>
<td>環境基準河川B類型（5.0mg/L以上）</td>
<td>環境基準河川B類型（5.0mg/L以上）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>貯水池内（堰直上）</td>
<td>環境基準河川B類型（5.0mg/L以上）</td>
<td>環境基準河川B類型（5.0mg/L以上）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>下流河川（池尻橋）</td>
<td>環境基準河川B類型（5.0mg/L以上）</td>
<td>環境基準河川B類型（5.0mg/L以上）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>下流河川（相生橋）</td>
<td>環境基準河川B類型（5.0mg/L以上）</td>
<td>環境基準河川B類型（5.0mg/L以上）</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

加古川大堰供用開始

測定データなし
図 5.3-8(4) 地点ごと流入・加古川大堰貯水池内・下流 SS 年平均値の経年変化

（出典：資料 5-12, 資料 5-13）

図 5.3-8(4) 地点ごと流入・加古川大堰貯水池内・下流 SS 年平均値の経年変化
図 5.3-8 (5) 地点ごと流入・加古川大堰貯水池内・下流大腸菌群数年平均値の経年変化 (1)

（平均値は算術平均 \((x_1+x_2+...+x_n)/n\) で算定している）
図 5.3-8(6) 地点ごと流入・加古川大堰貯水池内・下流大腸菌群数年幾何平均値の経年変化（2）
（平均値は幾何平均 \sqrt[n]{x_1 \times x_2 \times \cdots \times x_n} で算定している）
<table>
<thead>
<tr>
<th>地点</th>
<th>加古川大堰供用開始</th>
<th>年最大値</th>
<th>75%値</th>
<th>年最小値</th>
</tr>
</thead>
<tbody>
<tr>
<td>流入河川(板波)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流入河川(大住橋)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流入河川(万才橋)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流入支川(美嚢川橋)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>貯水池内(国包)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>貯水池内(堰直上)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>下流河川(池尻橋)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>下流河川(相生橋)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（出典：資料5-12, 資料5-13）

図5.3-8(7) 地点ごと流入・加古川大堰貯水池内・下流COD75%値の経年変化
図5.3-8(8) 地点ごと流入・加古川大堰貯水池内・下流T-N年平均値の経年変化

出典：資料5-12，資料5-13
図 5.3–8(9) 地点ごと流入・加古川大堰貯水池内・下流 T-P 年平均値の経年変化

(出典：資料 5-12, 資料 5-13)
図5.3-8(10) 地点ごと流入・加古川大堰貯水池内・下流クロロフィルα年平均値の経年変化

（出典：資料5-12、資料5-13）
(2) 経月変化

経月変化的とりまとめを表5.3-3及び図5.3-9～図5.3-18に示す。

経月変化により、夏期に加古川大堰貯水池内でpHや大腸菌群数が高くなり、DOは低くなる傾向が確認され、その他については流入本川と概ね同程度となっている。SSについては経月的な変化は出水後に一時的に高くなる場合、また流入支川において農繁期前の2月から農繁期の5月にかけて高くなる傾向が見られる。クロロフィルaは加古川大堰貯水池だけでなく流入本川でも夏期に高くなる場合がある。その他の項目(BOD、COD、T-N、T-P)については、出水などの影響を受けた場合以外では、環境基準を満たす良好な水質であり、流入本川と概ね同様の傾向を示している。貯水池内BODやクロロフィルaは、流入河川に追随しており流入河川と同程度であり、極端に高くなっていない。

<table>
<thead>
<tr>
<th>水質項目 (環境基準値※)</th>
<th>流入河川</th>
<th>加古川大堰貯水池内</th>
<th>下流河川</th>
</tr>
</thead>
<tbody>
<tr>
<td>水温</td>
<td>流入本川は概ね5~35℃の範囲で年間的に変動している。流入支川(美嚢川橋)では、春期から夏期にかけて8.5℃を越える場合がある。</td>
<td>流入本川と概ね同傾向を示している。入</td>
<td>加古川大堰貯水池内と概ね同傾向を示している。</td>
</tr>
<tr>
<td>pH (6.5以上 8.5以下)</td>
<td>流入本川は概ね7.0~8.0程度で、流入支川(美嚢川橋)では、春期から夏期にかけて8.5℃を越える場合がある。</td>
<td>流入本川よりも若干低くない傾向を示している。</td>
<td>加古川大堰貯水池内も概ね概ね同傾向を示しているが、相生橋では8.5℃を越えることはない。</td>
</tr>
<tr>
<td>DO (5mg/L以上)</td>
<td>夏期に低く、冬期に高い季節変動を示しており、8~15mg/L程度を推移している。池尻橋は流入本川と概ね同傾向を示している。相生橋は若干低いい傾向を示している。</td>
<td>流入本川と概ね同傾向を示している。</td>
<td>流入本川と概ね同傾向を示している。</td>
</tr>
<tr>
<td>BOD (3mg/L以下)</td>
<td>流入本川は概ね1~3mg/Lで推移している。流入支川(美嚢川橋)では春期から夏期にかけてやや高くなる場合がある。</td>
<td>流入本川と概ね同傾向を示している。</td>
<td>流入本川と概ね同傾向を示している。</td>
</tr>
<tr>
<td>SS (25mg/L以下)</td>
<td>流入本川は概ね1~3mg/Lで推移している。流入支川(美嚢川橋)では春期から夏期にかけて100000MPN/100mLを越える場合がある。</td>
<td>流入本川と概ね同傾向を示している。</td>
<td>流入本川と概ね同傾向を示している。</td>
</tr>
<tr>
<td>大腸菌群数 (5,000MPN/100mL以下)</td>
<td>流入本川は概ね10000MPN/100mLを越える場合がある。</td>
<td>流入本川と概ね同傾向を示している。</td>
<td>流入本川と概ね同傾向を示している。</td>
</tr>
<tr>
<td>COD</td>
<td>本川は概ね25mg/L程度を推移している。流入支川(美嚢川橋)では510mg/L程度で推移している。</td>
<td>流入本川と概ね同傾向を示している。</td>
<td>流入本川と概ね同傾向を示している。</td>
</tr>
<tr>
<td>T-N</td>
<td>本川は概ね0.5~1.0mg/L程度で推移している。流入支川(美嚢川橋)では春期に若干高くなる傾向がある。</td>
<td>流入本川と概ね同傾向を示している。</td>
<td>流入本川と概ね同傾向を示している。</td>
</tr>
<tr>
<td>T-P</td>
<td>本川は概ね0.05~0.15mg/Lで推移しているが、夏期に若干高くなる傾向がある。流入支川(美嚢川橋)では春期～秋期にかけて0.4mg/L程度を越える場合がある。</td>
<td>流入本川と概ね同傾向を示している。</td>
<td>流入本川と概ね同傾向を示している。</td>
</tr>
<tr>
<td>クロロフィルa</td>
<td>クロロフィルaは美嚢川橋で採取されている。概ね10μg/mL以下で推移している。</td>
<td>流入本川と概ね同傾向を示している。</td>
<td>流入本川と概ね同傾向を示している。</td>
</tr>
</tbody>
</table>

※河川の環境基準値(B類型)を記載している。
(環境基準告示年月日 S45.9.1(加古川; 篠山川合流点より下流、山陽線鉄橋まで))
(環境基準告示年月日 S46.5.25(加古川; 山陽線鉄橋より下流、河口まで))
図5.3-9(1) 流入・加古川大堰貯水池内・下流水温の経月変化（昭和42年～平成3年）

（出典：資料5-12，資料5-13，資料5-20）

図5.3-9(1) 流入・加古川大堰貯水池内・下流水温の経月変化（昭和42年～平成3年）

5-34
図 5.3-9(2) 流入・加古川大堰貯水池内・下流水温の経月変化（平成 4 年～平成 28 年）
図 5.3-10(1) 流入・加古川大堰貯水池内・下流 SS の経月変化（昭和 42 年～平成 3 年）
※ 河川の環境基準値（B 類型）を記載している。
図5.3-10(2) 流入・加古川大堰貯水池内・下流SSの経月変化（平成4年～平成28年）
※ 河川の環境基準値（B類型）を記載している。
図5.3-11(1) 流入・加古川大堰貯水池内・下流 pH の経月変化(昭和42年〜平成3年)

※ 河川の環境基準値(B類型)を記載している。
図5.3-11(2) 流入・加古川大堰貯水池内・下流 pH の経月変化（平成4年〜平成28年）

※ 河川の環境基準値（B 類型）を記載している。
図 5.3-12（1） 流入・加古川大堰貯水池内・下流大腸菌群数の経月変化（昭和42年～平成3年）
※ 河川の環境基準値（B類型）を記載している。
図5.3-12（2） 流入・加古川大堰貯水池内・下流大腸菌群数の経月変化（平成4年〜平成28年）
※ 河川の環境基準値（B類型）を記載している。
図5.3-13(1) 流入・加古川大堰貯水池内・下流DOの経月変化（昭和42年～平成3年）

※ 河川の環境基準値（B類型）を記載している。
図 5.3-13(2) 流入・加古川大堰貯水池内・下流 DO の経月変化（平成 4 年～平成 28 年）

※ 河川の環境基準値(B 類型)を記載している。
図 5.3-14(1) 流入・加古川大堰貯水池内・下流 BOD の経月変化（昭和 42 年～平成 3 年）
※ 河川の環境基準値（B 類型）を記載している。

（出典：資料 5-12, 資料 5-13, 資料 5-20）
図 5.3-14（2） 流入・加古川大堰貯水池内・下流 BOD の経月変化（平成 4 年～平成 28 年）
※ 河川の環境基準値（B 類型）を記載している。
図 5.3-15(1) 流入・加古川大堰貯水池内・下流 COD の経月変化 (昭和 42 年〜平成 3 年)
図5.3-15(2) 流入・加古川大堰貯水池内・下流 COD の経月変化（平成4年～平成28年）
図 5.3-16(1) 流入・加古川大堰貯水池内・下流 T-N の経月変化（昭和 42 年〜平成 3 年）
図 5.3-16(2) 流入・加古川大堰貯水池内・下流 T-N の経月変化(平成 4 年～平成 28 年)
図 5.3-17(1) 流入・加古川大堰貯水池内・下流 T-P の経月変化（昭和 42 年～平成 3 年）

（出典：資料 5-12，資料 5-13，資料 5-20）

図 5.3-17(1) 流入・加古川大堰貯水池内・下流 T-P の経月変化（昭和 42 年～平成 3 年）
図 5.3-17(2) 流入・加古川大堰貯水池内・下流 T-P の経月変化（平成 4 年～平成 28 年）
図5.3-18(1) 流入・加古川大堰貯水池内・下流クロロフィルaの経月変化(昭和42年～平成3年)

（出典：資料5-12, 資料5-13, 資料5-20）

図5.3-18(1) 流入・加古川大堰貯水池内・下流クロロフィルaの経月変化(昭和42年～平成3年)
図5.3-18(2) 流入・加古川大堰貯水池内・下流クロロフィルaの経月変化（平成4年～平成28年）
5.3.3 加古川大堰貯水池内水質の鉛直分布の変化

加古川大堰貯水池内の水質の鉛直分布測定データが存在する平成 6 年（1994 年）～平成 28 年（2016年）における堰直上の水温および DO の経月変化を図 5.3-19 に示す。その結果を受け、水温、濁度、DO 鉛直分布の概要を表 5.3-4 に整理した。

表 5.3-4 水温、DO 鉛直分布の概要

<table>
<thead>
<tr>
<th>項目</th>
<th>堰直上</th>
</tr>
</thead>
<tbody>
<tr>
<td>水深</td>
<td>概ね 4.3m</td>
</tr>
<tr>
<td>水温</td>
<td>加古川大堰は回転率から「成層が形成される可能性がほとんどない」貯水池として位置づけられており、堰直上地点における経月変化から見ても水温躍層が形成されていないことがわかる。</td>
</tr>
<tr>
<td>DO</td>
<td>年によって変動はあるが、夏季に表層および中層に比べて底層の DO が低くなる期間も見受けられるが、全体的に 3 層ともに同程度で推移しており、貧酸素水塊は形成されない。なお、平成 20 年 8 月に底層の DO が 3mg/L に低下したが、この年の 7 月から 8 月にかけて回転率が例年に比べてやや小さかったことが一要因として考えられる。</td>
</tr>
</tbody>
</table>

（出典：資料 5-14，資料 5-20）
5.3.4 栄養塩の構成形態別変化

（1）栄養塩の構成形態

流入河川（板波、大住橋、万才橋）、流入支川（美嚢川橋）、加古川大堰貯水池内（国包、堰直上）、下流河川（池尻橋、相生橋）の窒素及びリンの構成形態をとりまとめた結果を表 5.3-5、窒素の構成形態別グラフを図 5.3-20、リンの構成形態別グラフを図 5.3-21 に示す。また、窒素、リンの季節変化を確認するため、全窒素の月別変化グラフを図 5.3-22、全リンの月別変化グラフを図 5.3-23 に示す。なお、表 5.3-5 については、近 5 ヶ年を対象とした。

T-N 濃度は昭和 58 年（1983 年）をピークとして、各地点とも近年は減少する傾向にある。他の形態についても昭和 58 年（1983 年）前後に増加しているが、その後は徐々に低下し、近年も低下傾向で推移している。月別変化によると季節変化が見られない傾向が確認される。リンについては T-P 濃度は全体的には減少傾向にある。月別変化によると夏期に若干高くなる傾向が確認される。

窒素、リンともに殆どの地点で無機態の占める割合が多い。

表 5.3-5(1) 窒素の構成形態別平均値のとりまとめ（H24 年〜H28 年）

<table>
<thead>
<tr>
<th>地点</th>
<th>無機態窒素 (mg/L)</th>
<th>有機態窒素 (mg/L)</th>
<th>アンモニア態窒素</th>
<th>亜硝酸態窒素</th>
<th>硝酸態窒素</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>流入河川（板波）</td>
<td>0.013</td>
<td>0.005</td>
<td>0.569</td>
<td>0.166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>流入河川（大住橋）</td>
<td>0.017</td>
<td>0.007</td>
<td>0.499</td>
<td>0.225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>流入河川（万才橋）</td>
<td>0.017</td>
<td>0.006</td>
<td>0.497</td>
<td>0.206</td>
<td></td>
<td></td>
</tr>
<tr>
<td>流入支川（美嚢川橋）</td>
<td>0.011</td>
<td>0.009</td>
<td>0.213</td>
<td>0.371</td>
<td></td>
<td></td>
</tr>
<tr>
<td>加古川大堰貯水池内（国包）</td>
<td>0.025</td>
<td>0.006</td>
<td>0.591</td>
<td>0.285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>加古川大堰貯水池内（堰直上）</td>
<td>0.028</td>
<td>0.006</td>
<td>0.542</td>
<td>0.300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>下流河川（池尻橋）</td>
<td>0.014</td>
<td>0.006</td>
<td>0.541</td>
<td>0.258</td>
<td></td>
<td></td>
</tr>
<tr>
<td>下流河川（相生橋）</td>
<td>0.025</td>
<td>0.005</td>
<td>0.337</td>
<td>0.328</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※1: 表中数値は各年の平均値を算定し、それを平成 24 年〜平成 28 年で平均した。

表 5.3-5(2) リンの構成形態別平均値のとりまとめ（H24 年〜H28 年）

<table>
<thead>
<tr>
<th>地点</th>
<th>重合リン (mg/L)</th>
<th>有機態リン (mg/L)</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>流入河川（板波）</td>
<td>0.039</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>流入河川（大住橋）</td>
<td>0.035</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>流入河川（万才橋）</td>
<td>0.034</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>流入支川（美嚢川橋）</td>
<td>0.051</td>
<td>0.030</td>
<td></td>
</tr>
<tr>
<td>加古川大堰貯水池内（国包）</td>
<td>0.055</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>加古川大堰貯水池内（堰直上）</td>
<td>0.052</td>
<td>0.030</td>
<td></td>
</tr>
<tr>
<td>下流河川（池尻橋）</td>
<td>0.046</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>下流河川（相生橋）</td>
<td>0.039</td>
<td>0.021</td>
<td></td>
</tr>
</tbody>
</table>

※1: 表中数値は各年の平均値を算定し、それを加古川大堰供用後の平成 24 年〜平成 28 年で平均した。

※2: 重合リンとオルトリン酸態リンに分けられるが、代表値としてオルトリン酸態リンを標記

※3: 全リン-無機態リンにより算定
図 5.3-20 窒素の構成別変化

（出典：資料 5-12、資料 5-13）
図 5.3-21 リンの構成別変化
図5.3-22 全窒素の月別変化
図 5.3-23 全リンの月別変化

（出典：資料 5-12，資料 5-13）
5.3.5 植物プランクトン生息状況変化
(1) 河川水辺の国勢調査（平成10年度、平成15年度、平成20年度、平成25年度）
加古川大堰については平成10年度（1998年度）、平成15年度（2003年度）、平成20年度（2008年度）、平成25年度（2013年度）の計4回、加古川大堰河川水辺の国勢調査（ダム湖版）として植物プランクトンの定量調査が行われている。調査実施地点を図5.3-24に示し、表5.3-6に植物プランクトン細胞数を示す。St.1、St.2は水質調査地点の国包、堰直上（加古川大堰貯水池内）とそれぞれ同じ地点であるが、St.3は加古川大堰放流直下に設けられた河川水辺の国勢調査の独自調査地点である（以降、「放流直下」と記す）。植物プランクトン定量分析結果を図5.3-25、及び表5.3-7にそれぞれ示す。また、各地点における各年での植物プランクトン優占種（上位3種）を表5.3-8に整理する。
加古川大堰の植物プランクトンの優占種は珪藻綱、次いで緑藻綱である。平成10年度（1998年度）では全調査時期で珪藻綱が概ね優占種であったが、平成15年度（2003年度）では夏期、秋期において緑藻綱が優占種であった。また、優占種とはならないが、夏期においては藍藻類の発生もみられる。一方、平成20年度、平成25年度は珪藻綱、緑藻綱が優占する傾向に変わりはないが、夏期においても藍藻類は殆ど確認されなかった。

図5.3-24 植物プランクトン調査地点

（出典：資料5-15）
図5.3-25 各地点における植物プランクトン細胞数の推移

（出典：資料5-15）
<table>
<thead>
<tr>
<th>屋号</th>
<th>科名</th>
<th>学名</th>
<th>秋期平均</th>
<th>春期平均</th>
<th>夏期平均</th>
<th>冬期平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>プラシラ科</td>
<td>Chroococcus sp.</td>
<td>1,600</td>
<td>3,200</td>
<td>30,400</td>
<td>300</td>
</tr>
<tr>
<td>A2</td>
<td>プラシラ科</td>
<td>Merismopedia minima</td>
<td>800</td>
<td>800</td>
<td>4,800</td>
<td>50</td>
</tr>
<tr>
<td>A3</td>
<td>プラシラ科</td>
<td>Microcystis wesenbergii</td>
<td>1,200</td>
<td>600</td>
<td>7,200</td>
<td>100</td>
</tr>
<tr>
<td>A4</td>
<td>プラシラ科</td>
<td>Aphanocapsa sp.</td>
<td>1,200</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>A5</td>
<td>プラシラ科</td>
<td>Microcystis aeruginosa</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>ネンジュモ科</td>
<td>Anabaena flos-aquae</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>ネンジュモ科</td>
<td>Anabaena sp.</td>
<td>300</td>
<td>1,200</td>
<td>2,400</td>
<td>1,200</td>
</tr>
<tr>
<td>A8</td>
<td>ユレモ科</td>
<td>Oscillatoria sp.</td>
<td>3,200</td>
<td>2,400</td>
<td>1,200</td>
<td>2,400</td>
</tr>
<tr>
<td>A9</td>
<td>ユレモ科</td>
<td>Phormidium sp.</td>
<td>300</td>
<td>600</td>
<td>2,400</td>
<td>7,200</td>
</tr>
<tr>
<td>A10</td>
<td>ユレモ科</td>
<td>Myxosarcina burmensis</td>
<td>1,600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>クリプモナス科</td>
<td>Chroomonas sp.</td>
<td>115,200</td>
<td>55,200</td>
<td>52,800</td>
<td>60,000</td>
</tr>
<tr>
<td>A12</td>
<td>クリプモナス科</td>
<td>Cryptomonas sp.</td>
<td>38,400</td>
<td>31,200</td>
<td>45,600</td>
<td>17,600</td>
</tr>
<tr>
<td>A13</td>
<td>シヌラ科</td>
<td>Mallomonas akrokomos</td>
<td>1,600</td>
<td>2,400</td>
<td>7,200</td>
<td>6,000</td>
</tr>
<tr>
<td>A14</td>
<td>シヌラ科</td>
<td>Mallomonas sp.</td>
<td>4,800</td>
<td>1,200</td>
<td>3,600</td>
<td>800</td>
</tr>
<tr>
<td>A15</td>
<td>シヌラ科</td>
<td>Synura sp.</td>
<td>2,400</td>
<td>4,800</td>
<td>48,000</td>
<td>2,400</td>
</tr>
<tr>
<td>A16</td>
<td>シヌラ科</td>
<td>Dinobryon divergens</td>
<td>4,800</td>
<td>4,800</td>
<td>8,400</td>
<td></td>
</tr>
<tr>
<td>A17</td>
<td>シヌラ科</td>
<td>Dinobryon sertularia</td>
<td>2,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A18</td>
<td>アクナンテス科</td>
<td>Achnanthidium minutissimum</td>
<td>800</td>
<td>4,800</td>
<td>24,000</td>
<td>24,000</td>
</tr>
<tr>
<td>A19</td>
<td>アクナンテス科</td>
<td>Achnanthidium sp.</td>
<td>800</td>
<td>24,000</td>
<td>24,000</td>
<td>31,200</td>
</tr>
<tr>
<td>A20</td>
<td>アクナンテス科</td>
<td>Cocconeis placentula</td>
<td>4,800</td>
<td>2,400</td>
<td>4,800</td>
<td>2,400</td>
</tr>
<tr>
<td>A21</td>
<td>アクナンテス科</td>
<td>Planothidium sp.</td>
<td>800</td>
<td>800</td>
<td>4,800</td>
<td>8,400</td>
</tr>
<tr>
<td>A22</td>
<td>アクナンテス科</td>
<td>Cyclotella meneghiniana</td>
<td>19,200</td>
<td>4,800</td>
<td>12,800</td>
<td>17,600</td>
</tr>
<tr>
<td>A23</td>
<td>アクナンテス科</td>
<td>Cyclotella stelligera</td>
<td>19,200</td>
<td>9,600</td>
<td>38,400</td>
<td>1,200</td>
</tr>
<tr>
<td>A24</td>
<td>アクナンテス科</td>
<td>Cyclotella sp.</td>
<td>9,600</td>
<td>14,400</td>
<td>7,200</td>
<td>52,800</td>
</tr>
<tr>
<td>A25</td>
<td>アクナンテス科</td>
<td>Skeletonema potamos</td>
<td>67,200</td>
<td>64,800</td>
<td>72,000</td>
<td>7,200</td>
</tr>
<tr>
<td>A26</td>
<td>アクナンテス科</td>
<td>Stephanodiscus sp.</td>
<td>14,400</td>
<td>4,800</td>
<td>14,400</td>
<td>30,000</td>
</tr>
<tr>
<td>A27</td>
<td>アクナンテス科</td>
<td>Thalassiosira bramaputrae</td>
<td>4,800</td>
<td>800</td>
<td>800</td>
<td>300</td>
</tr>
<tr>
<td>A28</td>
<td>アクナンテス科</td>
<td>Acanthoceras zachariasii</td>
<td>800</td>
<td>800</td>
<td>2,400</td>
<td>800</td>
</tr>
</tbody>
</table>

註記
- 綱名：
- 科名：
- 学名：
- 秋期平均
- 春期平均
- 夏期平均
- 冬期平均

この表は、平成25年度の調査結果を示しています。各種の細胞数は、堰下、国包、放流直下、堰上、国包、放流直下の順に記載されています。
表 5.3-6(2) 植物プランクトン細胞数（平成 25 年度調査）

<table>
<thead>
<tr>
<th>種名</th>
<th>科名</th>
<th>学名</th>
<th>H25.3.11(春期)</th>
<th>H25.9.11(夏期)</th>
<th>H25.11.8(秋期)</th>
<th>H26.1.20(冬期)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Aulacoseira ambigua</td>
<td>7,200</td>
<td>6,400</td>
<td>6,200</td>
<td>6,400</td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Aulacoseira distans</td>
<td>19,200</td>
<td>16,800</td>
<td>9,600</td>
<td>10,200</td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Aulacoseira granulata</td>
<td>7,200</td>
<td>6,000</td>
<td>3,600</td>
<td>8,800</td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Melosira varians</td>
<td>2,400</td>
<td>600</td>
<td>4,800</td>
<td>8,800</td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Urosolenia longiseta</td>
<td>1,200</td>
<td>2,400</td>
<td>800</td>
<td>1,200</td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Euglena sp.</td>
<td>3,600</td>
<td>1,200</td>
<td>3,600</td>
<td>800</td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Phacus sp.</td>
<td>800</td>
<td>1,200</td>
<td>800</td>
<td>1,200</td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Trachelomonas volvocina</td>
<td>600</td>
<td>1,600</td>
<td>1,600</td>
<td>1,200</td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Trachelomonas sp.</td>
<td>1,200</td>
<td>600</td>
<td>1,200</td>
<td>1,200</td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Eudorina elegans</td>
<td>19,200</td>
<td>19,200</td>
<td>1,200</td>
<td></td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Carteria sp.</td>
<td>2,400</td>
<td>2,400</td>
<td>4,800</td>
<td>4,800</td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Chlamydomonas sp.</td>
<td>46,800</td>
<td>40,800</td>
<td>55,200</td>
<td>34,400</td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Pteromonas sp.</td>
<td>1,200</td>
<td>1,200</td>
<td>1,200</td>
<td>1,200</td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Pediastrum boryanum</td>
<td>9,600</td>
<td>19,200</td>
<td>3,200</td>
<td>12,000</td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Pediastrum tetras</td>
<td>7,200</td>
<td>3,200</td>
<td>12,000</td>
<td>3,200</td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Pediastrum duplex var.reticulatum</td>
<td>16,800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Ankistrodesmus falcatus</td>
<td>4,800</td>
<td>4,800</td>
<td>1,600</td>
<td>2,400</td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Closteriopsis longissima</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Kirchneriella contorta</td>
<td>4,800</td>
<td>12,000</td>
<td>35,200</td>
<td>23,200</td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Monoraphidium caribeum</td>
<td>1,600</td>
<td>7,200</td>
<td>1,200</td>
<td>1,200</td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Monoraphidium contortum</td>
<td>6,000</td>
<td>2,400</td>
<td>10,800</td>
<td>9,600</td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Monoraphidium griffithii</td>
<td>2,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Monoraphidium minutum</td>
<td>4,800</td>
<td>10,800</td>
<td>8,400</td>
<td>2,400</td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Monoraphidium sp.</td>
<td>2,400</td>
<td>1,200</td>
<td>3,200</td>
<td>9,600</td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Oocystis sp.</td>
<td>12,800</td>
<td>7,200</td>
<td>14,400</td>
<td>8,400</td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Ankistrodesmus gracilis</td>
<td>6,400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Ankyra judayi</td>
<td>2,400</td>
<td>1,200</td>
<td>2,400</td>
<td></td>
</tr>
<tr>
<td>ハクサン</td>
<td>ハクサン科</td>
<td>Schroederia setigera</td>
<td>1,200</td>
<td>1,200</td>
<td>1,200</td>
<td></td>
</tr>
</tbody>
</table>
表 5.3-7(1) 植物プランクトンの綱別細胞数 (St.1)

<table>
<thead>
<tr>
<th>日付</th>
<th>藍藻綱</th>
<th>鞭毛藻綱</th>
<th>緑藻綱</th>
<th>珪藻綱</th>
<th>その他</th>
</tr>
</thead>
<tbody>
<tr>
<td>H10.8.27 (夏期)</td>
<td>336</td>
<td>366</td>
<td>1,200</td>
<td>2,377</td>
<td>2</td>
</tr>
<tr>
<td>H10.11.17 (秋期)</td>
<td>0</td>
<td>4</td>
<td>54</td>
<td>792</td>
<td>3</td>
</tr>
<tr>
<td>H11.1.26 (冬期)</td>
<td>0</td>
<td>6</td>
<td>191</td>
<td>2,067</td>
<td>7</td>
</tr>
<tr>
<td>H11.3.29 (春季)</td>
<td>1</td>
<td>43</td>
<td>407</td>
<td>1,227</td>
<td>1</td>
</tr>
<tr>
<td>H15.9.4 (夏期)</td>
<td>153</td>
<td>40</td>
<td>1,256</td>
<td>990</td>
<td>36</td>
</tr>
<tr>
<td>H15.11.19(秋期)</td>
<td>2</td>
<td>1</td>
<td>619</td>
<td>431</td>
<td>14</td>
</tr>
<tr>
<td>H16.1.27 (冬期)</td>
<td>1</td>
<td>3</td>
<td>84</td>
<td>542</td>
<td>2</td>
</tr>
<tr>
<td>H16.3.29 (春季)</td>
<td>4</td>
<td>7</td>
<td>276</td>
<td>2,311</td>
<td>10</td>
</tr>
<tr>
<td>H20.9.5 (夏期)</td>
<td>12</td>
<td>0</td>
<td>1,993</td>
<td>1,163</td>
<td>0</td>
</tr>
<tr>
<td>H20.11.4 (秋期)</td>
<td>1</td>
<td>0</td>
<td>644</td>
<td>611</td>
<td>2</td>
</tr>
<tr>
<td>H21.1.20 (冬期)</td>
<td>0</td>
<td>1</td>
<td>88</td>
<td>570</td>
<td>1</td>
</tr>
<tr>
<td>H21.3.2 (春季)</td>
<td>0</td>
<td>1</td>
<td>88</td>
<td>570</td>
<td>1</td>
</tr>
<tr>
<td>H25.9.11 (夏期)</td>
<td>2</td>
<td>88</td>
<td>196</td>
<td>112</td>
<td>1</td>
</tr>
<tr>
<td>H25.11.8 (秋期)</td>
<td>18</td>
<td>122</td>
<td>506</td>
<td>196</td>
<td>13</td>
</tr>
<tr>
<td>H26.1.20 (冬期)</td>
<td>0</td>
<td>19</td>
<td>146</td>
<td>256</td>
<td>17</td>
</tr>
<tr>
<td>H26.3.4(春季)</td>
<td>6</td>
<td>18</td>
<td>329</td>
<td>1,075</td>
<td>10</td>
</tr>
</tbody>
</table>

表 5.3-7(2) 植物プランクトンの綱別細胞数 (St.2)

<table>
<thead>
<tr>
<th>日付</th>
<th>藍藻綱</th>
<th>鞭毛藻綱</th>
<th>緑藻綱</th>
<th>珪藻綱</th>
<th>その他</th>
</tr>
</thead>
<tbody>
<tr>
<td>H10.8.27 (夏期)</td>
<td>383</td>
<td>146</td>
<td>1,467</td>
<td>3,148</td>
<td>3</td>
</tr>
<tr>
<td>H10.11.17 (秋期)</td>
<td>1</td>
<td>12</td>
<td>82</td>
<td>788</td>
<td>1</td>
</tr>
<tr>
<td>H11.1.26 (冬期)</td>
<td>0</td>
<td>2</td>
<td>111</td>
<td>1,154</td>
<td>3</td>
</tr>
<tr>
<td>H11.3.29 (春季)</td>
<td>2</td>
<td>29</td>
<td>285</td>
<td>1,179</td>
<td>2</td>
</tr>
<tr>
<td>H15.9.4 (夏期)</td>
<td>271</td>
<td>65</td>
<td>1,842</td>
<td>648</td>
<td>26</td>
</tr>
<tr>
<td>H15.11.19(秋期)</td>
<td>0</td>
<td>5</td>
<td>1,038</td>
<td>470</td>
<td>6</td>
</tr>
<tr>
<td>H16.1.27 (冬期)</td>
<td>0</td>
<td>11</td>
<td>53</td>
<td>636</td>
<td>4</td>
</tr>
<tr>
<td>H16.3.29 (春季)</td>
<td>17</td>
<td>7</td>
<td>626</td>
<td>2,557</td>
<td>50</td>
</tr>
<tr>
<td>H20.9.5 (夏期)</td>
<td>19</td>
<td>79</td>
<td>3,851</td>
<td>1,814</td>
<td>1</td>
</tr>
<tr>
<td>H20.11.4 (秋期)</td>
<td>2</td>
<td>1</td>
<td>350</td>
<td>536</td>
<td>2</td>
</tr>
<tr>
<td>H21.1.20 (冬期)</td>
<td>0</td>
<td>1</td>
<td>196</td>
<td>548</td>
<td>5</td>
</tr>
<tr>
<td>H21.3.2 (春季)</td>
<td>0</td>
<td>0</td>
<td>77</td>
<td>355</td>
<td>8</td>
</tr>
<tr>
<td>H25.9.11 (夏期)</td>
<td>2</td>
<td>155</td>
<td>286</td>
<td>147</td>
<td>17</td>
</tr>
<tr>
<td>H25.11.8 (秋期)</td>
<td>5</td>
<td>78</td>
<td>479</td>
<td>154</td>
<td>14</td>
</tr>
<tr>
<td>H26.1.20 (冬期)</td>
<td>2</td>
<td>59</td>
<td>170</td>
<td>377</td>
<td>12</td>
</tr>
<tr>
<td>H26.3.4(春季)</td>
<td>7</td>
<td>19</td>
<td>164</td>
<td>854</td>
<td>31</td>
</tr>
</tbody>
</table>
表 5.3-7(3) 植物プランクトンの網別細胞数 (St. 3)

<table>
<thead>
<tr>
<th>日付</th>
<th>藍藻網</th>
<th>鞭毛藻網</th>
<th>緑藻網</th>
<th>珪藻網</th>
<th>その他</th>
</tr>
</thead>
<tbody>
<tr>
<td>H10.8.27（夏期）</td>
<td>522</td>
<td>0</td>
<td>1,184</td>
<td>4,738</td>
<td>0</td>
</tr>
<tr>
<td>H10.11.17（秋期）</td>
<td>1</td>
<td>3</td>
<td>24</td>
<td>309</td>
<td>3</td>
</tr>
<tr>
<td>H11.11.26（冬期）</td>
<td>0</td>
<td>2</td>
<td>109</td>
<td>1,571</td>
<td>5</td>
</tr>
<tr>
<td>H11.3.29（春期）</td>
<td>0</td>
<td>5</td>
<td>427</td>
<td>936</td>
<td>2</td>
</tr>
<tr>
<td>H15.9.4（夏期）</td>
<td>134</td>
<td>7</td>
<td>936</td>
<td>569</td>
<td>2</td>
</tr>
<tr>
<td>H15.11.19（秋期）</td>
<td>1</td>
<td>2</td>
<td>192</td>
<td>214</td>
<td>1</td>
</tr>
<tr>
<td>H16.1.27（冬期）</td>
<td>0</td>
<td>1</td>
<td>62</td>
<td>411</td>
<td>2</td>
</tr>
<tr>
<td>H16.3.29（春期）</td>
<td>3</td>
<td>22</td>
<td>192</td>
<td>1,156</td>
<td>2</td>
</tr>
<tr>
<td>H20.9.5（夏期）</td>
<td>21</td>
<td>10</td>
<td>2,299</td>
<td>1,303</td>
<td>0</td>
</tr>
<tr>
<td>H20.11.4（秋期）</td>
<td>0</td>
<td>0</td>
<td>399</td>
<td>897</td>
<td>0</td>
</tr>
<tr>
<td>H21.1.20（冬期）</td>
<td>0</td>
<td>1</td>
<td>92</td>
<td>1,122</td>
<td>15</td>
</tr>
<tr>
<td>H21.3.2（春期）</td>
<td>0</td>
<td>0</td>
<td>104</td>
<td>544</td>
<td>12</td>
</tr>
<tr>
<td>H25.9.11（夏期）</td>
<td>3</td>
<td>100</td>
<td>182</td>
<td>160</td>
<td>8</td>
</tr>
<tr>
<td>H25.11.8（秋期）</td>
<td>46</td>
<td>231</td>
<td>789</td>
<td>433</td>
<td>83</td>
</tr>
<tr>
<td>H26.1.20（冬期）</td>
<td>2</td>
<td>14</td>
<td>197</td>
<td>485</td>
<td>13</td>
</tr>
<tr>
<td>H26.3.4（春期）</td>
<td>6</td>
<td>36</td>
<td>271</td>
<td>943</td>
<td>40</td>
</tr>
</tbody>
</table>

（出典：資料5-15）
<table>
<thead>
<tr>
<th>日付</th>
<th>順位</th>
<th>綱名</th>
<th>種名</th>
<th>細胞/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>H10.8.27（夏期）</td>
<td>1位</td>
<td>珪藻綱</td>
<td>Cyclotella spp.</td>
<td>2,142,720</td>
</tr>
<tr>
<td></td>
<td>2位</td>
<td>鞭毛藻綱</td>
<td>Cryptomonas spp.</td>
<td>366,336</td>
</tr>
<tr>
<td></td>
<td>3位</td>
<td>藍藻綱</td>
<td>Merismopedia tenuissima</td>
<td>184,320</td>
</tr>
<tr>
<td>H10.11.17（秋期）</td>
<td>1位</td>
<td>珪藻綱</td>
<td>Navicula spp.</td>
<td>449,280</td>
</tr>
<tr>
<td></td>
<td>2位</td>
<td>珪藻綱</td>
<td>Melosira distans</td>
<td>61,440</td>
</tr>
<tr>
<td></td>
<td>3位</td>
<td>珪藻綱</td>
<td>Nitzschia spp.</td>
<td>48,480</td>
</tr>
<tr>
<td>H11.1.26（冬期）</td>
<td>1位</td>
<td>珪藻綱</td>
<td>Navicula spp.</td>
<td>1,145,856</td>
</tr>
<tr>
<td></td>
<td>2位</td>
<td>珪藻綱</td>
<td>Melosira varians</td>
<td>231,936</td>
</tr>
<tr>
<td></td>
<td>3位</td>
<td>珪藻綱</td>
<td>Cyclotella meneghiniana</td>
<td>188,928</td>
</tr>
<tr>
<td>H11.3.29（春期）</td>
<td>1位</td>
<td>珪藻綱</td>
<td>Nitzschia spp.</td>
<td>240,000</td>
</tr>
<tr>
<td></td>
<td>2位</td>
<td>珪藻綱</td>
<td>Navicula spp.</td>
<td>235,200</td>
</tr>
<tr>
<td></td>
<td>3位</td>
<td>珪藻綱</td>
<td>Medesmis spp.</td>
<td>163,200</td>
</tr>
<tr>
<td>H15.9.4（夏季）</td>
<td>1位</td>
<td>綠藻綱</td>
<td>Chlamydomonadaceae sp.</td>
<td>375,600</td>
</tr>
<tr>
<td></td>
<td>2位</td>
<td>綠藻綱</td>
<td>Scenedesmus spp.</td>
<td>336,000</td>
</tr>
<tr>
<td>H15.11.19（秋期）</td>
<td>1位</td>
<td>綠藻綱</td>
<td>Scenedesmus spp.</td>
<td>235,200</td>
</tr>
<tr>
<td></td>
<td>2位</td>
<td>綠藻綱</td>
<td>Dictyosphaerium sp.</td>
<td>110,400</td>
</tr>
<tr>
<td></td>
<td>3位</td>
<td>珪藻綱</td>
<td>Scenedesmus spp.</td>
<td>105,600</td>
</tr>
<tr>
<td>H16.1.27（冬期）</td>
<td>1位</td>
<td>珪藻綱</td>
<td>Stephanodiscus spp.</td>
<td>170,400</td>
</tr>
<tr>
<td></td>
<td>2位</td>
<td>珪藻綱</td>
<td>Navicula spp.</td>
<td>83,520</td>
</tr>
<tr>
<td></td>
<td>3位</td>
<td>珪藻綱</td>
<td>Gymnolemena quadripunctatum</td>
<td>67,200</td>
</tr>
<tr>
<td>H16.3.29（春期）</td>
<td>1位</td>
<td>珪藻綱</td>
<td>Navicula spp.</td>
<td>451,200</td>
</tr>
<tr>
<td></td>
<td>2位</td>
<td>珪藻綱</td>
<td>Melosira varians</td>
<td>427,200</td>
</tr>
<tr>
<td></td>
<td>3位</td>
<td>珪藻綱</td>
<td>Nitzschia spp.</td>
<td>366,400</td>
</tr>
<tr>
<td>H20.9.5（夏季）</td>
<td>1位</td>
<td>綠藻綱</td>
<td>Micractinium pusillum</td>
<td>307,200</td>
</tr>
<tr>
<td></td>
<td>2位</td>
<td>珪藻綱</td>
<td>Cyclotella meneghiniana</td>
<td>216,000</td>
</tr>
<tr>
<td>H20.11.4（秋期）</td>
<td>1位</td>
<td>綠藻綱</td>
<td>Ankistrodesmus falcatus</td>
<td>240,000</td>
</tr>
<tr>
<td></td>
<td>2位</td>
<td>珪藻綱</td>
<td>Fragilaria spp.</td>
<td>156,000</td>
</tr>
<tr>
<td></td>
<td>3位</td>
<td>珪藻綱</td>
<td>Melosira varians</td>
<td>151,200</td>
</tr>
<tr>
<td>H21.1.20（冬期）</td>
<td>1位</td>
<td>珪藻綱</td>
<td>Stephanodiscus spp.</td>
<td>398,400</td>
</tr>
<tr>
<td></td>
<td>2位</td>
<td>珪藻綱</td>
<td>Navicula spp.</td>
<td>43,200</td>
</tr>
<tr>
<td></td>
<td>3位</td>
<td>綠藻綱</td>
<td>Scenedesmus spp.</td>
<td>38,400</td>
</tr>
<tr>
<td>H21.3.2（春期）</td>
<td>1位</td>
<td>珪藻綱</td>
<td>Stephanodiscus spp.</td>
<td>398,400</td>
</tr>
<tr>
<td></td>
<td>2位</td>
<td>珪藻綱</td>
<td>Navicula spp.</td>
<td>43,200</td>
</tr>
<tr>
<td></td>
<td>3位</td>
<td>綠藻綱</td>
<td>Scenedesmus spp.</td>
<td>38,400</td>
</tr>
<tr>
<td>H25.9.11（夏季）</td>
<td>1位</td>
<td>綠藻綱</td>
<td>Scenedesmus sp.</td>
<td>69,600</td>
</tr>
<tr>
<td></td>
<td>2位</td>
<td>珪藻綱</td>
<td>Skeletonema potamos</td>
<td>64,800</td>
</tr>
<tr>
<td></td>
<td>3位</td>
<td>鞭毛藻綱</td>
<td>Chroomonas sp.</td>
<td>55,200</td>
</tr>
<tr>
<td>H25.11.8（秋期）</td>
<td>1位</td>
<td>綠藻綱</td>
<td>Dictyosphaerium sp.</td>
<td>110,400</td>
</tr>
<tr>
<td></td>
<td>2位</td>
<td>鞭毛藻綱</td>
<td>Chroomonas sp.</td>
<td>97,600</td>
</tr>
<tr>
<td></td>
<td>3位</td>
<td>綠藻綱</td>
<td>Chlamydomonas sp.</td>
<td>64,000</td>
</tr>
<tr>
<td>H26.1.20（冬期）</td>
<td>1位</td>
<td>綠藻綱</td>
<td>Chlamydomonas sp.</td>
<td>39,600</td>
</tr>
<tr>
<td></td>
<td>2位</td>
<td>珪藻綱</td>
<td>Melosira varians</td>
<td>28,800</td>
</tr>
<tr>
<td></td>
<td>3位</td>
<td>珪藻綱</td>
<td>Navicula sp.</td>
<td>96,000</td>
</tr>
<tr>
<td>H26.3.4（春期）</td>
<td>1位</td>
<td>珪藻綱</td>
<td>Stephanodiscus sp.</td>
<td>576,000</td>
</tr>
<tr>
<td></td>
<td>2位</td>
<td>綠藻綱</td>
<td>Dictyosphaerium sp.</td>
<td>146,400</td>
</tr>
<tr>
<td></td>
<td>3位</td>
<td>珪藻綱</td>
<td>Navicula sp.</td>
<td>117,600</td>
</tr>
</tbody>
</table>
表 5.3-8(2) 植物プランクトン優占種(St.2)

<table>
<thead>
<tr>
<th>日付</th>
<th>種順</th>
<th>種名</th>
<th>綱名</th>
<th>細胞/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>H10.8.27(夏期)</td>
<td>優占1位</td>
<td>Cyclotella spp.</td>
<td>珪藻綱</td>
<td>2,836,224</td>
</tr>
<tr>
<td></td>
<td>優占2位</td>
<td>Merismopedia tenuissima</td>
<td>藍藻綱</td>
<td>356,352</td>
</tr>
<tr>
<td></td>
<td>優占3位</td>
<td>Scenedesmus spp.</td>
<td>綠藻綱</td>
<td>310,272</td>
</tr>
<tr>
<td>H10.11.17(秋期)</td>
<td>優占1位</td>
<td>Navicula spp.</td>
<td>珪藻綱</td>
<td>426,240</td>
</tr>
<tr>
<td></td>
<td>優占2位</td>
<td>Melosira distans</td>
<td>珪藻綱</td>
<td>84,960</td>
</tr>
<tr>
<td></td>
<td>優占3位</td>
<td>Synedra ulna</td>
<td>珪藻綱</td>
<td>56,640</td>
</tr>
<tr>
<td>H11.1.26(冬期)</td>
<td>優占1位</td>
<td>Navicula spp.</td>
<td>珪藻綱</td>
<td>534,528</td>
</tr>
<tr>
<td></td>
<td>優占2位</td>
<td>Cyclotella meneghiniana</td>
<td>珪藻綱</td>
<td>215,040</td>
</tr>
<tr>
<td></td>
<td>優占3位</td>
<td>Nitzschia aciculares</td>
<td>珪藻綱</td>
<td>84,480</td>
</tr>
<tr>
<td>H11.3.29(春期)</td>
<td>優占1位</td>
<td>Nitzschia spp.</td>
<td>珪藻綱</td>
<td>259,200</td>
</tr>
<tr>
<td></td>
<td>優占2位</td>
<td>Stephanodiscus spp.</td>
<td>珪藻綱</td>
<td>220,800</td>
</tr>
<tr>
<td></td>
<td>優占3位</td>
<td>Cyclotella meneghiniana</td>
<td>珪藻綱</td>
<td>192,000</td>
</tr>
<tr>
<td>H15.9.4(夏期)</td>
<td>優占1位</td>
<td>Scenedesmus spp.</td>
<td>珪藻綱</td>
<td>441,600</td>
</tr>
<tr>
<td></td>
<td>優占2位</td>
<td>Dictyosphaerium sp.</td>
<td>珪藻綱</td>
<td>364,800</td>
</tr>
<tr>
<td></td>
<td>優占3位</td>
<td>Chlamydomonadaceae sp.</td>
<td>留藻綱</td>
<td>344,400</td>
</tr>
<tr>
<td>H15.11.19(秋期)</td>
<td>優占1位</td>
<td>Scenedesmus spp.</td>
<td>珪藻綱</td>
<td>302,400</td>
</tr>
<tr>
<td></td>
<td>優占2位</td>
<td>Dictyosphaerium sp.</td>
<td>珪藻綱</td>
<td>266,400</td>
</tr>
<tr>
<td></td>
<td>優占3位</td>
<td>Chlamydomonadaceae sp.</td>
<td>留藻綱</td>
<td>242,400</td>
</tr>
<tr>
<td>H16.1.27(冬期)</td>
<td>優占1位</td>
<td>Stephanodiscus spp.</td>
<td>珪藻綱</td>
<td>254,880</td>
</tr>
<tr>
<td></td>
<td>優占2位</td>
<td>Navicula spp.</td>
<td>珪藻綱</td>
<td>61,440</td>
</tr>
<tr>
<td></td>
<td>優占3位</td>
<td>Gymphonema quadripunctatum</td>
<td>珪藻綱</td>
<td>53,760</td>
</tr>
<tr>
<td>H16.3.29(春期)</td>
<td>優占1位</td>
<td>Thalassiosiraceae sp.</td>
<td>珪藻綱</td>
<td>669,600</td>
</tr>
<tr>
<td></td>
<td>優占2位</td>
<td>Stephanodiscus spp.</td>
<td>珪藻綱</td>
<td>405,600</td>
</tr>
<tr>
<td></td>
<td>優占3位</td>
<td>Navicula spp.</td>
<td>珪藻綱</td>
<td>304,800</td>
</tr>
<tr>
<td>H20.9.5(夏期)</td>
<td>優占1位</td>
<td>Scenedesmus spp.</td>
<td>珪藻綱</td>
<td>1,171,200</td>
</tr>
<tr>
<td></td>
<td>優占2位</td>
<td>Cyclotella meneghiniana</td>
<td>珪藻綱</td>
<td>566,400</td>
</tr>
<tr>
<td></td>
<td>優占3位</td>
<td>CHLAMYDOMONADACEAE spp.</td>
<td>留藻綱</td>
<td>499,200</td>
</tr>
<tr>
<td>H20.11.4(秋期)</td>
<td>優占1位</td>
<td>Cyclotella spp.</td>
<td>珪藻綱</td>
<td>168,000</td>
</tr>
<tr>
<td></td>
<td>優占2位</td>
<td>Thalassiosiraceae spp.</td>
<td>珪藻綱</td>
<td>110,400</td>
</tr>
<tr>
<td></td>
<td>優占3位</td>
<td>Ankistrodesmus falcatus</td>
<td>留藻綱</td>
<td>91,200</td>
</tr>
<tr>
<td>H21.1.20(冬期)</td>
<td>優占1位</td>
<td>Stephanodiscus spp.</td>
<td>珪藻綱</td>
<td>355,200</td>
</tr>
<tr>
<td></td>
<td>優占2位</td>
<td>Scenedesmus spp.</td>
<td>珪藻綱</td>
<td>86,400</td>
</tr>
<tr>
<td></td>
<td>優占3位</td>
<td>Navicula spp.</td>
<td>珪藻綱</td>
<td>43,200</td>
</tr>
<tr>
<td>H21.3.2(春期)</td>
<td>優占1位</td>
<td>Thalassiosiraceae spp.</td>
<td>珪藻綱</td>
<td>64,800</td>
</tr>
<tr>
<td></td>
<td>優占2位</td>
<td>Staurosira construens</td>
<td>珪藻綱</td>
<td>60,000</td>
</tr>
<tr>
<td></td>
<td>優占3位</td>
<td>Fragilaria spp.</td>
<td>珪藻綱</td>
<td>52,800</td>
</tr>
<tr>
<td>H25.9.11(夏期)</td>
<td>優占1位</td>
<td>Chroomonas sp.</td>
<td>腸藻綱</td>
<td>115,200</td>
</tr>
<tr>
<td></td>
<td>優占2位</td>
<td>Skeletonema potamos</td>
<td>留藻綱</td>
<td>67,200</td>
</tr>
<tr>
<td></td>
<td>優占3位</td>
<td>Chlamydomonas sp.</td>
<td>留藻綱</td>
<td>46,800</td>
</tr>
<tr>
<td>H25.11.8(秋期)</td>
<td>優占1位</td>
<td>Dictyosphaerium sp.</td>
<td>珪藻綱</td>
<td>66,400</td>
</tr>
<tr>
<td></td>
<td>優占2位</td>
<td>Chroomonas sp.</td>
<td>腸藻綱</td>
<td>60,000</td>
</tr>
<tr>
<td></td>
<td>優占3位</td>
<td>Scenedesmus ecornis</td>
<td>珪藻綱</td>
<td>54,400</td>
</tr>
<tr>
<td>H26.1.20(冬期)</td>
<td>優占1位</td>
<td>Navicula sp.</td>
<td>珪藻綱</td>
<td>149,400</td>
</tr>
<tr>
<td></td>
<td>優占2位</td>
<td>Chlamydomonas sp.</td>
<td>留藻綱</td>
<td>58,800</td>
</tr>
<tr>
<td></td>
<td>優占3位</td>
<td>Cyclotella sp.</td>
<td>珪藻綱</td>
<td>44,400</td>
</tr>
<tr>
<td>H26.3.4(春期)</td>
<td>優占1位</td>
<td>Stephanodiscus sp.</td>
<td>珪藻綱</td>
<td>327,600</td>
</tr>
<tr>
<td></td>
<td>優占2位</td>
<td>Navicula sp.</td>
<td>珪藻綱</td>
<td>230,400</td>
</tr>
<tr>
<td></td>
<td>優占3位</td>
<td>Achnanthidium sp.</td>
<td>珪藻綱</td>
<td>60,000</td>
</tr>
<tr>
<td>日付</td>
<td>順位</td>
<td>綱名</td>
<td>種名</td>
<td>細胞/mL</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>--------</td>
<td>--------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>H10.8.27（夏期）</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Cyclotella spp.</td>
<td>4,165,632</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Scenedesmus spp.</td>
<td>344,064</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>藍藻綱</td>
<td>Merismopedia tenuissima</td>
<td>282,624</td>
</tr>
<tr>
<td>H10.11.17（秋期）</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Melosira varians</td>
<td>71,040</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Cymbella turgidula v.turgidula</td>
<td>62,400</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Nitzschia spp.</td>
<td>31,680</td>
</tr>
<tr>
<td>H11.1.26（冬期）</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Navicula spp.</td>
<td>595,968</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Cyclotella meneghiniana</td>
<td>376,320</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Melosira varians</td>
<td>144,384</td>
</tr>
<tr>
<td>H11.3.29（春期）</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Navicula spp.</td>
<td>192,000</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Chlamydomonadaceae sp.</td>
<td>172,800</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Chlamydomonas sp.</td>
<td>53,600</td>
</tr>
<tr>
<td>H15.9.4（夏期）</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Dictyosphaerium sp.</td>
<td>326,400</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Scenedesmus spp.</td>
<td>268,800</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Nitzschia spp.</td>
<td>187,200</td>
</tr>
<tr>
<td>H15.11.19（秋期）</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Dictyosphaerium sp.</td>
<td>69,600</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Scenedesmus spp.</td>
<td>48,000</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Chlamydomonadaceae sp.</td>
<td>45,600</td>
</tr>
<tr>
<td>H16.1.27（冬期）</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Stephanodiscus spp.</td>
<td>160,800</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Gymphonema quadriradiatum</td>
<td>43,680</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Thalassiosiraceae sp.</td>
<td>34,560</td>
</tr>
<tr>
<td>H16.3.29（春期）</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Thalassiosiraceae sp.</td>
<td>264,000</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Navicula spp.</td>
<td>194,400</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Nitzschia spp.</td>
<td>187,200</td>
</tr>
<tr>
<td>H20.9.5（夏期）</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Scenedesmus spp.</td>
<td>1,132,800</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Fragilaria spp.</td>
<td>240,000</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>THALASSIOSIRACEAE spp.</td>
<td>220,800</td>
</tr>
<tr>
<td>H20.11.4（秋期）</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Fragilaria spp.</td>
<td>261,600</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Melosira varians</td>
<td>172,800</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Cyclotella spp.</td>
<td>129,600</td>
</tr>
<tr>
<td>H21.1.20（冬期）</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Stephanodiscus spp.</td>
<td>422,400</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Staurosira construens</td>
<td>366,000</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Fragilaria spp.</td>
<td>120,000</td>
</tr>
<tr>
<td>H21.3.2（春期）</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Staurosira construens</td>
<td>200,400</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>THALASSIOSIRACEAE spp.</td>
<td>93,600</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Fragilaria spp.</td>
<td>68,400</td>
</tr>
<tr>
<td>H25.9.11（夏期）</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Skeletonema potamos</td>
<td>72,000</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Chlamydomonas sp.</td>
<td>55,200</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>鞭毛藻綱</td>
<td>Chroomonas sp.</td>
<td>52,800</td>
</tr>
<tr>
<td>H25.11.8（秋期）</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Scenedesmus ecoronis</td>
<td>160,800</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Cyclotella sp.</td>
<td>144,000</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>鞭毛藻綱</td>
<td>Chroomonas sp.</td>
<td>120,000</td>
</tr>
<tr>
<td>H26.1.20（冬期）</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Navicula sp.</td>
<td>235,200</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Chlamydomonas sp.</td>
<td>64,800</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Nitzschia sp.</td>
<td>34,560</td>
</tr>
<tr>
<td>H26.3.4（春期）</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Stephanodiscus sp.</td>
<td>342,000</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Navicula sp.</td>
<td>168,000</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Cyclotella sp.</td>
<td>110,400</td>
</tr>
</tbody>
</table>

（出典：資料5-15）
定期プランクトン調査

平成19年度に実施された「第2回近畿地方ダム等管理フォローアップ委員会」において、加古川大堰流入水質の栄養塩濃度が高く富栄養化のポテンシャルが高い、また、夏期にはクロロフィル・aが上昇する場合もあることからクロロフィル・a上昇時のプランクトン増殖との関係を把握することが重要との指摘をいただいた。本指摘事項を踏まえ加古川大堰貯水池内の国包地点ではクロロフィル・aとの関係把握、植物プランクトンの優占種についての経年・経月傾向の把握のため、平成20年6月より毎月植物プランクトンの調査を実施している。

定期調査では珪藻綱のフラギラリアやメロシラ、タラシオシーラ科が優占することが多く、また、緑藻綱のセネデスムス、クラミドモナスなどが優占することもある。

アオコの原因種となる藍藻類が優占することはない。

なお、平成21年6月の調査では、プランクトン数が他の調査に比べて非常に多い結果となったが、この時は珪藻綱のステファノディスカスが優占していた。

本調査においても水質障害は報告されていない。

表5.3-9に定期調査における植物プランクトンの綱別細胞数、表5.3-10に定期調査における植物プランクトン優占種、図5.3-26に定期調査における植物プランクトンの綱別細胞を示す。
表 5.3-9(1) 定期調査における植物プランクトンの綱別細胞数

<table>
<thead>
<tr>
<th>日付</th>
<th>藍藻綱</th>
<th>クリプト藻綱</th>
<th>渕鞭毛藻綱</th>
<th>黄金色藻綱</th>
<th>珪藻綱</th>
<th>シリムシ藻綱</th>
<th>ラフィド藻綱</th>
<th>ブラシノ藻綱</th>
<th>緑藻綱</th>
</tr>
</thead>
<tbody>
<tr>
<td>H20.6.11</td>
<td>0.8</td>
<td>3.0</td>
<td>406.4</td>
<td>3.0</td>
<td>60.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H20.7.2</td>
<td>5.1</td>
<td>81.0</td>
<td>612.8</td>
<td>31.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H20.8.6</td>
<td>15.0</td>
<td>27.5</td>
<td>12.0</td>
<td>1525.8</td>
<td>3930.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H20.9.10</td>
<td>7550.0</td>
<td>5335.0</td>
<td>7.5</td>
<td>5108.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H20.10.8</td>
<td>5.8</td>
<td>0.9</td>
<td>1.0</td>
<td>248.8</td>
<td>4.4</td>
<td>213.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H20.11.5</td>
<td>221.0</td>
<td>144.0</td>
<td>166.0</td>
<td>320.9</td>
<td>2.0</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H20.12.3</td>
<td>2.0</td>
<td>1.0</td>
<td>4.0</td>
<td>570.4</td>
<td>2.0</td>
<td>50.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H21.4.22</td>
<td>144.0</td>
<td>8.0</td>
<td>8.0</td>
<td>1754.0</td>
<td>722.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H21.5.13</td>
<td>964.0</td>
<td>2.0</td>
<td>20.0</td>
<td>2176.0</td>
<td>1.0</td>
<td>1040.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H21.6.3</td>
<td>4.0</td>
<td>2628.0</td>
<td>60.0</td>
<td>100.0</td>
<td>103172.0</td>
<td>40.0</td>
<td>7732.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H21.7.7</td>
<td>25.0</td>
<td>190.0</td>
<td>20.0</td>
<td>10.0</td>
<td>1455.0</td>
<td>982.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H21.8.19</td>
<td>20.0</td>
<td>130.0</td>
<td>3.0</td>
<td>720.0</td>
<td>210.0</td>
<td>1576.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H21.9.2</td>
<td>88.0</td>
<td>980.0</td>
<td>8.0</td>
<td>6854.0</td>
<td>140.0</td>
<td>9452.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H21.10.14</td>
<td>35.6</td>
<td>16.0</td>
<td>365.2</td>
<td>8.0</td>
<td>411.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H21.11.4</td>
<td>4.0</td>
<td>64.0</td>
<td>500.4</td>
<td>602.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H21.12.2</td>
<td>3.2</td>
<td>72.0</td>
<td>662.0</td>
<td>8.0</td>
<td>187.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H22.1.6</td>
<td>0.8</td>
<td>28.0</td>
<td>0.8</td>
<td>519.6</td>
<td>0.4</td>
<td>160.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H22.2.3</td>
<td>11.0</td>
<td>410.0</td>
<td>1.0</td>
<td>70.0</td>
<td>1855.0</td>
<td>20.0</td>
<td>386.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H22.3.12</td>
<td>168.0</td>
<td>172.0</td>
<td>92.0</td>
<td>287.2</td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H22.4.16</td>
<td>5.2</td>
<td>440.0</td>
<td>0.4</td>
<td>17.2</td>
<td>237.6</td>
<td>84.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H22.5.12</td>
<td>60.0</td>
<td>1.0</td>
<td>700.0</td>
<td>491.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H22.6.2</td>
<td>1.0</td>
<td>180.0</td>
<td>2.0</td>
<td>2382.0</td>
<td>4.0</td>
<td>725.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H22.7.21</td>
<td>44.0</td>
<td>120.0</td>
<td>1.0</td>
<td>3627.0</td>
<td>1.0</td>
<td>684.0</td>
<td>2662.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H22.8.1</td>
<td>19.0</td>
<td>320.0</td>
<td>20.0</td>
<td>90.0</td>
<td>2616.0</td>
<td>20.0</td>
<td>90.0</td>
<td>3406.0</td>
<td></td>
</tr>
<tr>
<td>H22.9.2</td>
<td>98.0</td>
<td>928.0</td>
<td>2.0</td>
<td>40.0</td>
<td>5288.0</td>
<td>40.0</td>
<td>80.0</td>
<td>12558.0</td>
<td></td>
</tr>
<tr>
<td>H22.10.6</td>
<td>36.0</td>
<td>70.0</td>
<td>1.0</td>
<td>23.0</td>
<td>622.0</td>
<td>20.0</td>
<td>1450.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H22.11.10</td>
<td>2.0</td>
<td>10.0</td>
<td>1.0</td>
<td>1529.0</td>
<td>4.0</td>
<td>541.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H22.12.1</td>
<td>8.0</td>
<td>76.0</td>
<td>1.6</td>
<td>20.0</td>
<td>585.2</td>
<td>755.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H23.1.5</td>
<td>2.4</td>
<td>100.0</td>
<td>0.2</td>
<td>4.0</td>
<td>281.8</td>
<td>127.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H23.2.2</td>
<td>0.4</td>
<td>4.0</td>
<td>273.2</td>
<td>103.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H23.3.4</td>
<td>2.0</td>
<td>30.0</td>
<td>20.0</td>
<td>1568.0</td>
<td>1.0</td>
<td>182.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H23.4.13</td>
<td>60.0</td>
<td>2943.0</td>
<td>1.0</td>
<td>904.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H23.5.18</td>
<td>44.0</td>
<td>120.0</td>
<td>8.0</td>
<td>207.2</td>
<td>328.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H23.6.2</td>
<td>3.0</td>
<td>544.0</td>
<td>1.0</td>
<td>30.0</td>
<td>452.0</td>
<td>10.0</td>
<td>882.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H23.7.6</td>
<td>64.0</td>
<td>546.0</td>
<td>111.0</td>
<td>60.0</td>
<td>11190.0</td>
<td>10.0</td>
<td>6129.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H23.8.3</td>
<td>66.0</td>
<td>1234.0</td>
<td>1.0</td>
<td>50.0</td>
<td>1737.0</td>
<td>10.0</td>
<td>30.0</td>
<td>2833.0</td>
<td></td>
</tr>
<tr>
<td>H23.9.14</td>
<td>31.0</td>
<td>1146.0</td>
<td>40.0</td>
<td>20.0</td>
<td>2175.0</td>
<td>30.0</td>
<td>756.0</td>
<td>5340.0</td>
<td></td>
</tr>
<tr>
<td>H23.10.3</td>
<td>1021.0</td>
<td>220.0</td>
<td>140.0</td>
<td>40.0</td>
<td>401.0</td>
<td>10.0</td>
<td>6.0</td>
<td>28.0</td>
<td></td>
</tr>
<tr>
<td>H23.11.2</td>
<td>103.0</td>
<td>80.0</td>
<td>1.0</td>
<td>640.0</td>
<td>10.0</td>
<td>693.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H23.12.7</td>
<td>8.0</td>
<td>184.0</td>
<td>0.8</td>
<td>44.0</td>
<td>304.0</td>
<td>0.4</td>
<td>129.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 5.3-19(2) 定期調査における植物プランクトンの綱別細胞数

<table>
<thead>
<tr>
<th>日付</th>
<th>藍藻綱</th>
<th>クリプト藻綱</th>
<th>演習藻綱</th>
<th>黄金色藻綱</th>
<th>燃藻綱</th>
<th>ミドリムシ藻綱</th>
<th>ラフィド藻綱</th>
<th>ブラシノ藻綱</th>
<th>緑藻綱</th>
</tr>
</thead>
<tbody>
<tr>
<td>H24.1.11</td>
<td>2.8</td>
<td>112.0</td>
<td>4.0</td>
<td>596.4</td>
<td>8.0</td>
<td>896.4</td>
<td>4.0</td>
<td>600.0</td>
<td>0.4</td>
</tr>
<tr>
<td>H24.2.1</td>
<td>2.8</td>
<td>68.0</td>
<td>4.0</td>
<td>602.0</td>
<td>9.0</td>
<td>584.0</td>
<td>4.0</td>
<td>600.0</td>
<td>0.4</td>
</tr>
<tr>
<td>H24.3.14</td>
<td>4.0</td>
<td>140.0</td>
<td>10.0</td>
<td>504.0</td>
<td>10.0</td>
<td>604.0</td>
<td>10.0</td>
<td>504.0</td>
<td>10.0</td>
</tr>
<tr>
<td>H24.5.9</td>
<td>16.2</td>
<td>86.4</td>
<td>16.2</td>
<td>502.2</td>
<td>16.2</td>
<td>64.4</td>
<td>16.2</td>
<td>64.4</td>
<td>16.2</td>
</tr>
<tr>
<td>H24.6.6</td>
<td>8.0</td>
<td>155.5</td>
<td>16.2</td>
<td>162.8</td>
<td>16.2</td>
<td>164.2</td>
<td>16.2</td>
<td>164.2</td>
<td>16.2</td>
</tr>
<tr>
<td>H24.7.11</td>
<td>25.2</td>
<td>52.2</td>
<td>16.2</td>
<td>122.4</td>
<td>16.2</td>
<td>112.4</td>
<td>16.2</td>
<td>112.4</td>
<td>16.2</td>
</tr>
</tbody>
</table>

（以下は略）
<table>
<thead>
<tr>
<th>日付</th>
<th>順位</th>
<th>綱名</th>
<th>種名</th>
<th>細胞/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>H20.6.11</td>
<td>優占種1位</td>
<td>珊藻綱</td>
<td>Fragilaria construens</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珊藻綱</td>
<td>Nitzschia spp.</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珊藻綱</td>
<td>Navicula spp.</td>
<td>50</td>
</tr>
<tr>
<td>H20.7.2</td>
<td>優占種1位</td>
<td>珊藻綱</td>
<td>Melosiraceae</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珊藻綱</td>
<td>Fragilaria construens</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珊藻綱</td>
<td>Cyclotella meneghiniana</td>
<td>83</td>
</tr>
<tr>
<td>H20.8.6</td>
<td>優占種1位</td>
<td>珊藻綱</td>
<td>Coelastrum cambricum</td>
<td>1,580</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珊藻綱</td>
<td>Cyclotella meneghiniana</td>
<td>930</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珊藻綱</td>
<td>Actinariae hantzschi</td>
<td>800</td>
</tr>
<tr>
<td>H20.9.10</td>
<td>優占種1位</td>
<td>珊藻綱</td>
<td>Aphanocapsa elachista</td>
<td>5,868</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珊藻綱</td>
<td>Scenedesmus spp.</td>
<td>3,023</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珊藻綱</td>
<td>Cyclotella sp.</td>
<td>3,020</td>
</tr>
<tr>
<td>H20.10.8</td>
<td>優占種1位</td>
<td>珊藻綱</td>
<td>Fragilaria construens</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珊藻綱</td>
<td>Microactinum pusillum</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珊藻綱</td>
<td>Pediastrum tetrads</td>
<td>52</td>
</tr>
<tr>
<td>H20.11.5</td>
<td>優占種1位</td>
<td>珊藻綱</td>
<td>Melosira varians</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珊藻綱</td>
<td>Cyclotella</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珊藻綱</td>
<td>Fragilaria construens</td>
<td>270</td>
</tr>
<tr>
<td>H20.12.3</td>
<td>優占種1位</td>
<td>珊藻綱</td>
<td>Melosira varians</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珊藻綱</td>
<td>Aphanocapsa sp.</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珊藻綱</td>
<td>Scenedesmus opolensii</td>
<td>384</td>
</tr>
<tr>
<td>H21.4.22</td>
<td>優占種1位</td>
<td>珊藻綱</td>
<td>Thalassiosiraceae</td>
<td>1,080</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珊藻綱</td>
<td>Scenedesmus spp.</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珊藻綱</td>
<td>Fragilaria spp.</td>
<td>389</td>
</tr>
<tr>
<td>H21.5.13</td>
<td>優占種1位</td>
<td>珊藻綱</td>
<td>Thalassiosiraceae</td>
<td>884</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珊藻綱</td>
<td>Scenedesmus opolensii</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珊藻綱</td>
<td>Fragilaria spp.</td>
<td>389</td>
</tr>
<tr>
<td>H21.6.3</td>
<td>優占種1位</td>
<td>珊藻綱</td>
<td>Stephanodiscus subsalts</td>
<td>96,012</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珊藻綱</td>
<td>Microactinum pusillum</td>
<td>4,224</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珊藻綱</td>
<td>Fragilaria spp.</td>
<td>3,096</td>
</tr>
<tr>
<td>H21.7.7</td>
<td>優占種1位</td>
<td>珊藻綱</td>
<td>Thalassiosiraceae</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珊藻綱</td>
<td>Thalassiosiraceae</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珊藻綱</td>
<td>Fragilaria spp.</td>
<td>300</td>
</tr>
<tr>
<td>H21.8.19</td>
<td>優占種1位</td>
<td>珊藻綱</td>
<td>Navicula sp.</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珊藻綱</td>
<td>Pandorina morum</td>
<td>288</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珊藻綱</td>
<td>Chlamydomonadamaceae</td>
<td>270</td>
</tr>
<tr>
<td>H21.9.2</td>
<td>優占種1位</td>
<td>珊藻綱</td>
<td>Thalassiosiraceae</td>
<td>4,968</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珊藻綱</td>
<td>Kirchneriella sp.</td>
<td>1,680</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珊藻綱</td>
<td>Dicotomococcus curvatus</td>
<td>1,656</td>
</tr>
<tr>
<td>H21.10.14</td>
<td>優占種1位</td>
<td>珊藻綱</td>
<td>Scenedesmus spp.</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珊藻綱</td>
<td>Fragilaria sp.</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珊藻綱</td>
<td>Thalassiosiraceae</td>
<td>88</td>
</tr>
<tr>
<td>H21.11.4</td>
<td>優占種1位</td>
<td>珊藻綱</td>
<td>Scenedesmus spp.</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珊藻綱</td>
<td>Fragilaria sp.</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珊藻綱</td>
<td>Thalassiosiraceae</td>
<td>116</td>
</tr>
<tr>
<td>H21.12.2</td>
<td>優占種1位</td>
<td>珊藻綱</td>
<td>Fragilaria sp.</td>
<td>376</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珊藻綱</td>
<td>Melosira varians</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珊藻綱</td>
<td>Scenedesmus spp.</td>
<td>88</td>
</tr>
<tr>
<td>H22.1.6</td>
<td>優占種1位</td>
<td>珊藻綱</td>
<td>Fragilaria sp.</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珊藻綱</td>
<td>Melosira varians</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珊藻綱</td>
<td>Thalassiosiraceae</td>
<td>64</td>
</tr>
<tr>
<td>H22.2.3</td>
<td>優占種1位</td>
<td>珊藻綱</td>
<td>Fragilaria sp.</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珊藻綱</td>
<td>Navicula sp.</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珊藻綱</td>
<td>Fragilaria sp.</td>
<td>340</td>
</tr>
<tr>
<td>H22.3.12</td>
<td>優占種1位</td>
<td>珊藻綱</td>
<td>Melosira varians</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珊藻綱</td>
<td>Fragilaria sp.</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珊藻綱</td>
<td>Thalassiosiraceae</td>
<td>72</td>
</tr>
<tr>
<td>H22.4.16</td>
<td>優占種1位</td>
<td>珊藻綱</td>
<td>Fragilaria sp.</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珊藻綱</td>
<td>CRYPTOPHYCEAE</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珊藻綱</td>
<td>Thalassiosiraceae</td>
<td>24</td>
</tr>
<tr>
<td>日付</td>
<td>番位</td>
<td>綱名</td>
<td>種名</td>
<td>細胞/mL</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>H22.5.12</td>
<td>優占種1位</td>
<td>珠藻綱</td>
<td>Navicula spp.</td>
<td>210</td>
</tr>
<tr>
<td>H22.5.12</td>
<td>優占種2位</td>
<td>珠藻綱</td>
<td>Nitzschia acicularis</td>
<td>90</td>
</tr>
<tr>
<td>H22.5.12</td>
<td>優占種3位</td>
<td>珠藻綱</td>
<td>Scenedesmus abundans</td>
<td>80</td>
</tr>
<tr>
<td>H22.6.2</td>
<td>優占種1位</td>
<td>珠藻綱</td>
<td>Thalassiosiraceae</td>
<td>1,980</td>
</tr>
<tr>
<td>H22.6.2</td>
<td>優占種2位</td>
<td>珠藻綱</td>
<td>Chlamydomonadaceae</td>
<td>230</td>
</tr>
<tr>
<td>H22.6.2</td>
<td>優占種3位</td>
<td>珠藻綱</td>
<td>Chlamydomonas spp.</td>
<td>180</td>
</tr>
<tr>
<td>H22.7.21</td>
<td>優占種1位</td>
<td>珠藻綱</td>
<td>Stephanodiscus subsalsus</td>
<td>1,620</td>
</tr>
<tr>
<td>H22.7.21</td>
<td>優占種2位</td>
<td>珠藻綱</td>
<td>Chlamydomonas spp.</td>
<td>1,512</td>
</tr>
<tr>
<td>H22.8.4</td>
<td>優占種1位</td>
<td>珠藻綱</td>
<td>Navicula spp.</td>
<td>900</td>
</tr>
<tr>
<td>H22.8.4</td>
<td>優占種2位</td>
<td>珠藻綱</td>
<td>Cyclotella meneghiniana</td>
<td>612</td>
</tr>
<tr>
<td>H22.8.4</td>
<td>優占種3位</td>
<td>珠藻綱</td>
<td>Scenedesmus quadricauda</td>
<td>560</td>
</tr>
<tr>
<td>H22.9.1</td>
<td>優占種1位</td>
<td>珠藻綱</td>
<td>Scenedesmus spp.</td>
<td>3,808</td>
</tr>
<tr>
<td>H22.9.1</td>
<td>優占種2位</td>
<td>珠藻綱</td>
<td>Thalassiosiraceae</td>
<td>1,756</td>
</tr>
<tr>
<td>H22.10.6</td>
<td>優占種1位</td>
<td>珠藻綱</td>
<td>Scenedesmus spp.</td>
<td>800</td>
</tr>
<tr>
<td>H22.10.6</td>
<td>優占種2位</td>
<td>珠藻綱</td>
<td>Fragilaria spp.</td>
<td>173</td>
</tr>
<tr>
<td>H22.10.6</td>
<td>優占種3位</td>
<td>珠藻綱</td>
<td>Nitzschia spp.</td>
<td>110</td>
</tr>
<tr>
<td>H22.11.10</td>
<td>優占種1位</td>
<td>珠藻綱</td>
<td>Thalassiosiraceae</td>
<td>495</td>
</tr>
<tr>
<td>H22.11.10</td>
<td>優占種2位</td>
<td>珠藻綱</td>
<td>Fragilaria spp.</td>
<td>460</td>
</tr>
<tr>
<td>H22.11.10</td>
<td>優占種3位</td>
<td>珠藻綱</td>
<td>Melosira varians</td>
<td>350</td>
</tr>
<tr>
<td>H22.12.1</td>
<td>優占種1位</td>
<td>珠藻綱</td>
<td>Scenedesmus spp.</td>
<td>518</td>
</tr>
<tr>
<td>H22.12.1</td>
<td>優占種2位</td>
<td>珠藻綱</td>
<td>Fragilaria spp.</td>
<td>228</td>
</tr>
<tr>
<td>H22.12.1</td>
<td>優占種3位</td>
<td>珠藻綱</td>
<td>Melosira varians</td>
<td>85</td>
</tr>
<tr>
<td>H23.1.5</td>
<td>優占種1位</td>
<td>珠藻綱</td>
<td>Fragilaria spp.</td>
<td>108</td>
</tr>
<tr>
<td>H23.1.5</td>
<td>優占種2位</td>
<td>珠藻綱</td>
<td>Scenedesmus spp.</td>
<td>96</td>
</tr>
<tr>
<td>H23.1.5</td>
<td>優占種3位</td>
<td>珠藻綱</td>
<td>Thalassiosiraceae</td>
<td>43</td>
</tr>
<tr>
<td>H23.2.2</td>
<td>優占種1位</td>
<td>珠藻綱</td>
<td>Thalassiosiraceae</td>
<td>75</td>
</tr>
<tr>
<td>H23.2.2</td>
<td>優占種2位</td>
<td>珠藻綱</td>
<td>Thalassiosiraceae</td>
<td>68</td>
</tr>
<tr>
<td>H23.2.2</td>
<td>優占種3位</td>
<td>珠藻綱</td>
<td>Chlamydomonadaceae</td>
<td>40</td>
</tr>
<tr>
<td>H23.3.4</td>
<td>優占種1位</td>
<td>珠藻綱</td>
<td>Fragilaria spp.</td>
<td>850</td>
</tr>
<tr>
<td>H23.3.4</td>
<td>優占種2位</td>
<td>珠藻綱</td>
<td>Thalassiosiraceae</td>
<td>183</td>
</tr>
<tr>
<td>H23.3.4</td>
<td>優占種3位</td>
<td>珠藻綱</td>
<td>Melosira varians</td>
<td>180</td>
</tr>
<tr>
<td>H23.4.13</td>
<td>優占種1位</td>
<td>珠藻綱</td>
<td>Fragilaria spp.</td>
<td>1,512</td>
</tr>
<tr>
<td>H23.4.13</td>
<td>優占種2位</td>
<td>珠藻綱</td>
<td>Scenedesmus spp.</td>
<td>396</td>
</tr>
<tr>
<td>H23.4.13</td>
<td>優占種3位</td>
<td>珠藻綱</td>
<td>Melosira varians</td>
<td>96</td>
</tr>
<tr>
<td>H23.5.18</td>
<td>優占種1位</td>
<td>珠藻綱</td>
<td>Chlamydomonadaceae</td>
<td>104</td>
</tr>
<tr>
<td>H23.5.18</td>
<td>優占種2位</td>
<td>珠藻綱</td>
<td>Scenedesmus spp.</td>
<td>64</td>
</tr>
<tr>
<td>H23.5.18</td>
<td>優占種3位</td>
<td>珠藻綱</td>
<td>Thalassiosiraceae</td>
<td>56</td>
</tr>
<tr>
<td>H23.6.8</td>
<td>優占種1位</td>
<td>珠藻綱</td>
<td>Chlamydomonas spp.</td>
<td>540</td>
</tr>
<tr>
<td>H23.6.8</td>
<td>優占種2位</td>
<td>珠藻綱</td>
<td>CRYPTOPHYCEAE</td>
<td>414</td>
</tr>
<tr>
<td>H23.6.8</td>
<td>優占種3位</td>
<td>珠藻綱</td>
<td>Chlamydomonadaceae</td>
<td>270</td>
</tr>
<tr>
<td>H23.7.6</td>
<td>優占種1位</td>
<td>珠藻綱</td>
<td>Thalassiosiraceae</td>
<td>9,218</td>
</tr>
<tr>
<td>H23.7.6</td>
<td>優占種2位</td>
<td>珠藻綱</td>
<td>Dictyospheria spp.</td>
<td>3,168</td>
</tr>
<tr>
<td>H23.7.6</td>
<td>優占種3位</td>
<td>珠藻綱</td>
<td>Stephanodiscus subsalsus</td>
<td>936</td>
</tr>
<tr>
<td>H23.8.3</td>
<td>優占種1位</td>
<td>珠藻綱</td>
<td>CRYPTOPHYCEAE</td>
<td>1,224</td>
</tr>
<tr>
<td>H23.8.3</td>
<td>優占種2位</td>
<td>珠藻綱</td>
<td>Thalassiosiraceae</td>
<td>770</td>
</tr>
<tr>
<td>H23.8.3</td>
<td>優占種3位</td>
<td>珠藻綱</td>
<td>Scenedesmus spp.</td>
<td>648</td>
</tr>
<tr>
<td>H23.9.14</td>
<td>優占種1位</td>
<td>珠藻綱</td>
<td>Pandorina morum</td>
<td>2,400</td>
</tr>
<tr>
<td>H23.9.14</td>
<td>優占種2位</td>
<td>珠藻綱</td>
<td>CRYPTOPHYCEAE</td>
<td>1,116</td>
</tr>
<tr>
<td>H23.9.14</td>
<td>優占種3位</td>
<td>珠藻綱</td>
<td>Chlamydomonas spp.</td>
<td>1,080</td>
</tr>
<tr>
<td>H23.10.5</td>
<td>優占種1位</td>
<td>珠藻綱</td>
<td>Scenedesmus spp.</td>
<td>350</td>
</tr>
<tr>
<td>H23.10.5</td>
<td>優占種2位</td>
<td>珠藻綱</td>
<td>Thalassiosiraceae</td>
<td>291</td>
</tr>
<tr>
<td>H23.10.5</td>
<td>優占種3位</td>
<td>珠藻綱</td>
<td>CRYPTOPHYCEAE</td>
<td>250</td>
</tr>
<tr>
<td>H23.11.2</td>
<td>優占種1位</td>
<td>珠藻綱</td>
<td>Thalassiosiraceae</td>
<td>190</td>
</tr>
<tr>
<td>H23.11.2</td>
<td>優占種2位</td>
<td>珠藻綱</td>
<td>Pediastrum duplex v. gracilimum</td>
<td>160</td>
</tr>
<tr>
<td>H23.11.2</td>
<td>優占種3位</td>
<td>珠藻綱</td>
<td>Navicula spp.</td>
<td>120</td>
</tr>
<tr>
<td>H23.12.7</td>
<td>優占種1位</td>
<td>珠藻綱</td>
<td>CRYPTOPHYCEAE</td>
<td>172</td>
</tr>
<tr>
<td>H23.12.7</td>
<td>優占種2位</td>
<td>珠藻綱</td>
<td>Navicula spp.</td>
<td>104</td>
</tr>
<tr>
<td>H23.12.7</td>
<td>優占種3位</td>
<td>珠藻綱</td>
<td>Melosira varians</td>
<td>92</td>
</tr>
</tbody>
</table>
表 5.3-10(3) 定期調査における植物プランクトン優占種

<table>
<thead>
<tr>
<th>日付</th>
<th>順位</th>
<th>綱名</th>
<th>種名</th>
<th>細胞/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>H24.1.11</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Fragilaria spp.</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Navicula spp.</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>クリプト藻綱</td>
<td>CRYPTO PHYCEAE</td>
<td>100</td>
</tr>
<tr>
<td>H24.2.1</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Melosira varians</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Navicula spp.</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>クリプト藻綱</td>
<td>Thalassiosiraceae</td>
<td>96</td>
</tr>
<tr>
<td>H24.3.14</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Fragilaria spp.</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Melosira varians</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>クリプト藻綱</td>
<td>CRYPTO PHYCEAE</td>
<td>130</td>
</tr>
<tr>
<td>H24.4.18</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Nitzschia spp.</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Oocystis spp.</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Pandorina sp.</td>
<td>58</td>
</tr>
<tr>
<td>H24.5.9</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Melosira varians</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Crucigenia sp.</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Scenedesmus spp.</td>
<td>113</td>
</tr>
<tr>
<td>H24.6.6</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Thalassiosiraceae</td>
<td>7,906</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Stephanodiscus subsalsus</td>
<td>5,735</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Nitzschia holstica</td>
<td>1,312</td>
</tr>
<tr>
<td>H24.7.11</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Eudorina elegans</td>
<td>457</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Pandorina morum</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>クリプト藻綱</td>
<td>CRYPTO PHYCEAE</td>
<td>43</td>
</tr>
<tr>
<td>H24.8.1</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Pandorina morum</td>
<td>346</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Pediastrum duplex v. gracillimum</td>
<td>346</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Scenedesmus spp.</td>
<td>324</td>
</tr>
<tr>
<td>H24.9.5</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Pediastrum duplex v. reticulatum</td>
<td>2,479</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Pandorina morum</td>
<td>2,333</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Scenedesmus spp.</td>
<td>2,268</td>
</tr>
<tr>
<td>H24.10.3</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Scenedesmus spp.</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Pediastrum duplex v. reticulatum</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Melosira varians</td>
<td>113</td>
</tr>
<tr>
<td>H24.11.7</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Melosira varians</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Scenedesmus spp.</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Nitzschia holstica</td>
<td>133</td>
</tr>
<tr>
<td>H24.12.5</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Melosira varians</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Pandorina morum</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>クリプト藻綱</td>
<td>CRYPTO PHYCEAE</td>
<td>86</td>
</tr>
<tr>
<td>H25.1.9</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Melosira varians</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Scenedesmus spp.</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Thalassiosiraceae</td>
<td>92</td>
</tr>
<tr>
<td>H25.2.6</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Melosira varians</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Eudorina sp.</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>クリプト藻綱</td>
<td>CRYPTO PHYCEAE</td>
<td>86</td>
</tr>
<tr>
<td>H25.3.1</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Melosira varians</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Coelastrum microporum</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Thalassiosiraceae</td>
<td>65</td>
</tr>
<tr>
<td>H25.4.10</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Melosira varians</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Scenedesmus spp.</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Fragilaria crotonensis</td>
<td>180</td>
</tr>
<tr>
<td>H25.5.1</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Scenedesmus spp.</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Melosira varians</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Pediastrum boryanum</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Stephanodiscus subsalsus</td>
<td>3,969</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>クリプト藻綱</td>
<td>CRYPTO PHYCEAE</td>
<td>923</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Thalassiosiraceae</td>
<td>583</td>
</tr>
<tr>
<td>H25.6.5</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Chlamydomonadaceae</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Pediastrum duplex v. reticulatum</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Stephanodiscus subsalsus</td>
<td>97</td>
</tr>
<tr>
<td>H25.7.3</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Pandorina morum</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>漁卵毛藻科</td>
<td>Peridinium spp.</td>
<td>382</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Micractinium pusillum</td>
<td>286</td>
</tr>
<tr>
<td>H25.8.7</td>
<td>優占種1位</td>
<td>珪藻綱</td>
<td>Chlamydomonadaceae</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>優占種2位</td>
<td>珪藻綱</td>
<td>Eudorina elegans</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>優占種3位</td>
<td>珪藻綱</td>
<td>Scenedesmus spp.</td>
<td>86</td>
</tr>
</tbody>
</table>
表 5.3-10(4) 定期調査における植物プランクトン優占種

<table>
<thead>
<tr>
<th>日付</th>
<th>順位</th>
<th>綱名</th>
<th>種名</th>
<th>細胞/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>H25.10.2</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Micractinium pusillum</td>
<td>76</td>
</tr>
<tr>
<td>H25.10.2</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Thalassiosiraceae</td>
<td>73</td>
</tr>
<tr>
<td>H25.10.2</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Scenedesmus spp.</td>
<td>65</td>
</tr>
<tr>
<td>H25.11.6</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Aulacoseira distans</td>
<td>73</td>
</tr>
<tr>
<td>H25.11.6</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Scenedesmus spp.</td>
<td>73</td>
</tr>
<tr>
<td>H25.11.6</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Coelastrum sp.</td>
<td>65</td>
</tr>
<tr>
<td>H25.12.4</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Melosira varians</td>
<td>232</td>
</tr>
<tr>
<td>H25.12.4</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Navicula spp.</td>
<td>103</td>
</tr>
<tr>
<td>H25.12.4</td>
<td>優占種3位</td>
<td>クリプト藻綱</td>
<td>CRYPTOPHYCEAE</td>
<td>70</td>
</tr>
<tr>
<td>H26.1.15</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Melosira varians</td>
<td>238</td>
</tr>
<tr>
<td>H26.1.15</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Navicula spp.</td>
<td>97</td>
</tr>
<tr>
<td>H26.1.15</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>49</td>
</tr>
<tr>
<td>H26.2.5</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Melosira varians</td>
<td>162</td>
</tr>
<tr>
<td>H26.2.5</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Navicula spp.</td>
<td>162</td>
</tr>
<tr>
<td>H26.2.5</td>
<td>優占種3位</td>
<td>黄金色藻綱</td>
<td>Synura sp.</td>
<td>86</td>
</tr>
<tr>
<td>H26.3.12</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Thalassiosiraceae</td>
<td>205</td>
</tr>
<tr>
<td>H26.3.12</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Melosira varians</td>
<td>173</td>
</tr>
<tr>
<td>H26.3.12</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Navicula spp.</td>
<td>124</td>
</tr>
<tr>
<td>H26.4.9</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Thalassiosiraceae</td>
<td>205</td>
</tr>
<tr>
<td>H26.4.9</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Melosira varians</td>
<td>97</td>
</tr>
<tr>
<td>H26.4.9</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Scenedesmus spp.</td>
<td>86</td>
</tr>
<tr>
<td>H26.5.7</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>413</td>
</tr>
<tr>
<td>H26.5.7</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Pediastrum boryanum</td>
<td>259</td>
</tr>
<tr>
<td>H26.5.7</td>
<td>優占種3位</td>
<td>クリプト藻綱</td>
<td>CRYPTOPHYCEAE</td>
<td>219</td>
</tr>
<tr>
<td>H26.6.4</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Stephanodiscus subsalsus</td>
<td>9,769</td>
</tr>
<tr>
<td>H26.6.4</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Thalassiosiraceae</td>
<td>7,970</td>
</tr>
<tr>
<td>H26.6.4</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Pandorina morum</td>
<td>1,037</td>
</tr>
<tr>
<td>H26.7.2</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Stephanodiscus subsalsus</td>
<td>18,533</td>
</tr>
<tr>
<td>H26.7.2</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>1,739</td>
</tr>
<tr>
<td>H26.7.2</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Scenedesmus spp.</td>
<td>864</td>
</tr>
<tr>
<td>H26.8.6</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Thalassiosiraceae</td>
<td>475</td>
</tr>
<tr>
<td>H26.8.6</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Scenedesmus spp.</td>
<td>389</td>
</tr>
<tr>
<td>H26.8.6</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Ankistrodesmus falcatus</td>
<td>259</td>
</tr>
<tr>
<td>H26.9.3</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Micractinium pusillum</td>
<td>173</td>
</tr>
<tr>
<td>H26.9.3</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Melosira varians</td>
<td>124</td>
</tr>
<tr>
<td>H26.9.3</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>119</td>
</tr>
<tr>
<td>H26.10.1</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Thalassiosiraceae</td>
<td>956</td>
</tr>
<tr>
<td>H26.10.1</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Scenedesmus spp.</td>
<td>454</td>
</tr>
<tr>
<td>H26.10.1</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>324</td>
</tr>
<tr>
<td>H26.11.5</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Navicula spp.</td>
<td>162</td>
</tr>
<tr>
<td>H26.11.5</td>
<td>優占種2位</td>
<td>クリプト藻綱</td>
<td>CRYPTOPHYCEAE</td>
<td>76</td>
</tr>
<tr>
<td>H26.11.5</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Melosira varians</td>
<td>65</td>
</tr>
<tr>
<td>H26.12.3</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>151</td>
</tr>
<tr>
<td>H26.12.3</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Navicula spp.</td>
<td>97</td>
</tr>
<tr>
<td>H26.12.3</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Crucigenia tetrpadia</td>
<td>86</td>
</tr>
<tr>
<td>H27.1.7</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Pediastrum boryanum</td>
<td>259</td>
</tr>
<tr>
<td>H27.1.7</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Navicula spp.</td>
<td>101</td>
</tr>
<tr>
<td>H27.1.7</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>101</td>
</tr>
<tr>
<td>H27.2.4</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Melosira varians</td>
<td>89</td>
</tr>
<tr>
<td>H27.2.4</td>
<td>優占種2位</td>
<td>クリプト藻綱</td>
<td>CRYPTOPHYCEAE</td>
<td>49</td>
</tr>
<tr>
<td>H27.2.4</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Crucigenia tetrpadia</td>
<td>43</td>
</tr>
<tr>
<td>H27.3.11</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Fragilaria crotonensis</td>
<td>198</td>
</tr>
<tr>
<td>H27.3.11</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Thalassiosiraceae</td>
<td>102</td>
</tr>
<tr>
<td>H27.3.11</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Synedra spp.</td>
<td>48</td>
</tr>
<tr>
<td>H27.4.9</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Thalassiosiraceae</td>
<td>97</td>
</tr>
<tr>
<td>H27.4.9</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Fragilaria spp.</td>
<td>65</td>
</tr>
<tr>
<td>H27.4.9</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Scenedesmus spp.</td>
<td>65</td>
</tr>
<tr>
<td>H27.5.1</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Stephanodiscus subsalsus</td>
<td>335</td>
</tr>
<tr>
<td>H27.5.1</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>146</td>
</tr>
<tr>
<td>H27.5.1</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Thalassiosiraceae</td>
<td>108</td>
</tr>
</tbody>
</table>
表 5.3-10(5) 定期調査における植物プランクトン優占種

<table>
<thead>
<tr>
<th>日付</th>
<th>順位</th>
<th>綱名</th>
<th>種名</th>
<th>細胞/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>H27.6.17</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>221</td>
</tr>
<tr>
<td>H27.6.17</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Pandorina elegans</td>
<td>173</td>
</tr>
<tr>
<td>H27.6.17</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Stephanodiscus subsalsus</td>
<td>151</td>
</tr>
<tr>
<td>H27.7.15</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Chlamydomonas spp.</td>
<td>1,296</td>
</tr>
<tr>
<td>H27.7.15</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Sphaerocystis Schroeteri</td>
<td>324</td>
</tr>
<tr>
<td>H27.8.5</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>367</td>
</tr>
<tr>
<td>H27.8.5</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Chlamydomonas spp.</td>
<td>97</td>
</tr>
<tr>
<td>H27.8.5</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Scenedesmus spp.</td>
<td>86</td>
</tr>
<tr>
<td>H27.9.16</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Pandorina morum</td>
<td>173</td>
</tr>
<tr>
<td>H27.9.16</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>151</td>
</tr>
<tr>
<td>H27.9.16</td>
<td>優占種3位</td>
<td>クリプト藻綱</td>
<td>CRYPTOPHYCEAE</td>
<td>130</td>
</tr>
<tr>
<td>H27.10.7</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Pediastrum duplex v. gracillimum</td>
<td>194</td>
</tr>
<tr>
<td>H27.10.7</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Navicula spp.</td>
<td>31</td>
</tr>
<tr>
<td>H27.10.7</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Ankistrodesmus falcatus</td>
<td>29</td>
</tr>
<tr>
<td>H27.11.4</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>176</td>
</tr>
<tr>
<td>H27.11.4</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Scenedesmus spp.</td>
<td>115</td>
</tr>
<tr>
<td>H27.11.4</td>
<td>優占種3位</td>
<td>クリプト藻綱</td>
<td>CRYPTOPHYCEAE</td>
<td>68</td>
</tr>
<tr>
<td>H27.12.2</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Melosira varians</td>
<td>65</td>
</tr>
<tr>
<td>H27.12.2</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>41</td>
</tr>
<tr>
<td>H27.12.2</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Scenedesmus spp.</td>
<td>38</td>
</tr>
<tr>
<td>H28.1.6</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>97</td>
</tr>
<tr>
<td>H28.1.6</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Navicula spp.</td>
<td>84</td>
</tr>
<tr>
<td>H28.1.6</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Thalassiosiraceae</td>
<td>51</td>
</tr>
<tr>
<td>H28.2.3</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Melosira varians</td>
<td>99</td>
</tr>
<tr>
<td>H28.2.3</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>88</td>
</tr>
<tr>
<td>H28.2.3</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Navicula spp.</td>
<td>83</td>
</tr>
<tr>
<td>H28.3.2</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Melosira varians</td>
<td>149</td>
</tr>
<tr>
<td>H28.3.2</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Navicula spp.</td>
<td>68</td>
</tr>
<tr>
<td>H28.3.2</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Nitzschia spp.</td>
<td>67</td>
</tr>
<tr>
<td>H28.4.11</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Melosira varians</td>
<td>208</td>
</tr>
<tr>
<td>H28.4.11</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>165</td>
</tr>
<tr>
<td>H28.4.11</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Nitzschia spp.</td>
<td>140</td>
</tr>
<tr>
<td>H28.5.6</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>230</td>
</tr>
<tr>
<td>H28.5.6</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Scenedesmus spp.</td>
<td>130</td>
</tr>
<tr>
<td>H28.5.6</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Melosira varians</td>
<td>108</td>
</tr>
<tr>
<td>H28.6.1</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>472</td>
</tr>
<tr>
<td>H28.6.1</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Thalassiosiraceae</td>
<td>212</td>
</tr>
<tr>
<td>H28.6.1</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Chlamydomonas spp.</td>
<td>169</td>
</tr>
<tr>
<td>H28.7.6</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>720</td>
</tr>
<tr>
<td>H28.7.6</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Pandorina morum</td>
<td>230</td>
</tr>
<tr>
<td>H28.7.6</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Nitzschia spp.</td>
<td>205</td>
</tr>
<tr>
<td>H28.8.3</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>594</td>
</tr>
<tr>
<td>H28.8.3</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Thalassiosiraceae</td>
<td>511</td>
</tr>
<tr>
<td>H28.8.3</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Scenedesmus spp.</td>
<td>374</td>
</tr>
<tr>
<td>H28.9.7</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>454</td>
</tr>
<tr>
<td>H28.9.7</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Eudorina elegans</td>
<td>173</td>
</tr>
<tr>
<td>H28.9.7</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Chlamydomonas spp.</td>
<td>148</td>
</tr>
<tr>
<td>H28.10.5</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>112</td>
</tr>
<tr>
<td>H28.10.5</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Scenedesmus spp.</td>
<td>72</td>
</tr>
<tr>
<td>H28.10.5</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Pediastrum duplex v. gracillimum</td>
<td>58</td>
</tr>
<tr>
<td>H28.11.2</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Navicula spp.</td>
<td>245</td>
</tr>
<tr>
<td>H28.11.2</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Melosira varians</td>
<td>122</td>
</tr>
<tr>
<td>H28.11.2</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>94</td>
</tr>
<tr>
<td>H28.12.7</td>
<td>優占種1位</td>
<td>緑藻綱</td>
<td>Chlamydomonadaceae</td>
<td>219</td>
</tr>
<tr>
<td>H28.12.7</td>
<td>優占種2位</td>
<td>緑藻綱</td>
<td>Navicula spp.</td>
<td>208</td>
</tr>
<tr>
<td>H28.12.7</td>
<td>優占種3位</td>
<td>緑藻綱</td>
<td>Melosira varians</td>
<td>205</td>
</tr>
</tbody>
</table>
図 5.3-26(1) 定期調査における植物プランクトンの綱別細胞

図 5.3-26(2) 定期調査における植物プランクトンの綱別細胞
5.3.6 底質の変化

(1) 底質濃度の変化

加古川大堰では加古川大堰貯水池内の国包地点において底質分析調査を実施している。分析対象項目は、マンガン、全硫化物、全リン、全窒素、強熱減量、鉄、COD である。調査開始以降（平成元年(1989 年)以降）の底質濃度の経年変化を以下の図に示す。調査はほぼ毎年 5 月に 1 回での調査である。

いずれの項目も、各底質項目の間には経年変化で同様の変動傾向がうかがえる。出水や堰操作との関係性を見ると、大きな出水を受けず、堰の全開操作が実施されなかったもしくは流入量が少なかった翌年は底質濃度が上昇する場合が見られる（平成 5 年、15 年、20 年）。一方、平成 22 年のように前年に大きな出水を受けていないが底質が改善されている年もある。

いずれの項目も近年、横ばい又は低下傾向がうかがえる。なお、マンガンの溶出による黒水などは確認されていない。

図 5.3-27 に底質濃度の経年変化を示す。
図 5.3-27(2) 底質濃度の経年変化（強熱減量、鉄、マンガン、COD）

大堰流入量は洪水時制御を行った洪水の最大流入量を示す。

図中緑色線は、大堰の洪水時制御実施日に相当する。

（出典 : 資料 5-12, 資料 5-20）

図 5.3-27(2) 底質濃度の経年変化（強熱減量、鉄、マンガン、COD）
図 底質の調査地点
（湛水域 11 地点の表層で調査）
(2) 河床の粒度組成の変化

加古川大堰では 12.0km 地点（堰直上）から 16.0km 地点までの区間、0.2km 間隔で河床の粒度組成を測定している。調査開始以降（平成 4 年（1992 年）以降）の粒度組成の経年変化を図 5.3-28 に示す。なお調査は底質濃度同様に、ほぼ毎年 5 月に 1 回での調査である。

底質の粒度組成は上流（15.8km）では粒度が粗く、堰直上（12km）、国包（13km）では、変動はあるものの、近年、粘土やシルト、砂分の割合が多くなっている。

河床粒度組成の綫断分布（図 5.3-29 参照）によると、加古川大堰に近くなるにつれて底質の粒度組成は細粒分の比率が大きくなる傾向にある。流速の低下により、流入負荷、もしくは堰湛水域での内部生産による有機物・栄養塩などの蓄積が生じている可能性も考えられる。

図 5.3-28 粒度組成の経年変化
注：粘土 0.005mm 未満、シルト 0.005〜0.075mm、砂分 0.075〜2mm、礫分 2mm 以上
図 5.3-29 加古川大堰粒度組成縦断分布 (H24～28 年)
※ 横軸は河口からの距離 (km)
※H19 は 200m 間隔、H20 以降は 400m 間隔で調査を行っている。
5.3.7 水質障害発生の状況
加古川大堰では現在のところ水質障害は報告されていない。

参考として、加古川大堰貯水池及び、堰下流河川からの利水取水について水道用水の水質状況は以下の通りである。

水道基準の見直し（平成16年4月1日施行）により、水道事業者は地域性等を踏まえた水質項目を検査することとなっている。加古川市（加古川大堰貯水池より取水）と高砂市（加古川大堰下流より取水）では加古川原水を対象に、停滞水を水源とする場合において対象とされる異臭味の原因物質である、ジェオスミンと2-メチルイソボルネオール（2-MIB）についても水質検査を実施している。

加古川市の年平均分析結果を図5.3-30に示す。
（※定量下限値（0.000001mg/L）よりも低い場合は、図中で0.000001mg/Lとして表示）
加古川市の上記2項目は水道水質基準値（0.00001mg/L）より低い結果となっており、利水の水質状況について現時点で問題はない。なお、高砂市の公表値は処理水のみであるため、割愛した。

＜加古川原水 カビ臭物質濃度（加古川市）＞

図5.3-30 加古川原水のカビ臭物質年平均濃度（加古川市；平成24〜28年度）
5.4 社会環境からみた汚濁源の整理

ダム及び下流河川における水質汚濁は、上流域内に存在する様々な汚濁発生源から発生する負荷量が河川へ流出する過程で生ずる。流域の負荷を原因別に分類すると、自然負荷と人為的負荷に大別することができる。自然負荷は、山林、原野など人為的な汚濁源のない地域からの物質の流出によるものであり、対象流域の地質、地形（勾配）、植生及び降雨強度などに影響される。人為的負荷は、上流域の人間活動によって発生する汚濁物質の流出によるものであり、対象流域の人口、土地利用及び産業などの状況に影響される。

これらの情報の概略把握として、加古川大堰上流域の流域内人口、観光客数、土地利用状況、家畜頭数の状況、排水処理の状況、下水処理場整備の状況について整理を行った。

(1) 加古川上流域の状況

流域社会環境を整理するにあたって、加古川大堰にかかる市町村及び整理対象とした上流域の市町村を表5.4-1に、加古川大堰流域を図5.4-1に示す。

<table>
<thead>
<tr>
<th>市町村名</th>
<th>市町村合併の状況</th>
<th>流域社会環境の整理対象</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>神戸市</td>
<td>○</td>
<td>北区のみ整理対象</td>
<td></td>
</tr>
<tr>
<td>加古川市</td>
<td>×</td>
<td>加古川大堰上流域は微小面積のため除外</td>
<td></td>
</tr>
<tr>
<td>西脇市</td>
<td>H17.10.1に黒田庄町と合併</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>三木市</td>
<td>H17.10.24に吉川町と合併</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>高砂市</td>
<td>×</td>
<td>加古川大堰下流域</td>
<td></td>
</tr>
<tr>
<td>小野市</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>三田市</td>
<td>×</td>
<td>加古川大堰上流域は微小面積のため除外</td>
<td></td>
</tr>
<tr>
<td>加西市</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>箕山市</td>
<td>H11.11.1に箕山町、西紀町、今田町、丹南町が合併</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>稲美町</td>
<td>×</td>
<td>加古川大堰下流域</td>
<td></td>
</tr>
<tr>
<td>播磨町</td>
<td>×</td>
<td>加古川大堰下流域</td>
<td></td>
</tr>
<tr>
<td>加東市</td>
<td>H18.3.20に社町、沼野町、東条町が合併</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>多可町</td>
<td>H17.11.1に中町、加美町、八千代町が合併</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>丹波市</td>
<td>H16.11.1に筒原町、氷上町、青垣町、山南町、春日町、市島町が合併</td>
<td>○</td>
<td>春日町、市島町は流域外</td>
</tr>
</tbody>
</table>
図 5.4-1 加古川大堰流域
(2) 人口の推移（生活系）

加古川大堰上流域の人口の推移を図 5.4-2 に示す。人口は、兵庫県統計値を基に、加古川大堰上流域にかかる市町村（神戸市は北区のみ）を対象に行政人口を集計した。

加古川大堰上流域の人口は昭和 35 年（1960 年；302 千人）から昭和 60 年（1985 年；512 千人）、平成 7 年（1995 年；574 千人）と増加し、近年においては僅かではあるが減少傾向にある。平成27年の人口は598千人である。

（出典：資料 5-7）

図 5.4-2 加古川大堰上流域の人口の推移
(3) 観光客数の推移（観光系）

加古川大堰上流域の観光客数（日帰り・宿泊）の推移を図5.4-3、図5.4-4に示す。観光客数は、兵庫県統計値を基に、加古川大堰上流域にかかる市町村を対象に集計した。日帰り観光客数は昭和50年（1975年）から平成27年（2015年）にかけて増加傾向にある。宿泊観光客数は、昭和50年（1980年）から平成2年（1990年）にかけて増加傾向にあったが、平成7年（1995年）には阪神淡路大震災の影響で一旦減少したが、その後は増減を繰り返している。

図5.4-3 加古川大堰上流域の日帰り観光客数の推移
注:数値は延べ観光客数（対象9市町：西脇市、三木市、小野市、加西市、加東市、多可町、篠山市、丹波市、神戸市北区）
神戸市については北区のみの統計値が存在しないため、神戸市に対する北区の人口割合（約15%）を用いて、神戸市全体の観光客数を北区に配分

図5.4-4 加古川大堰上流域の宿泊観光客数の推移
注:数値は延べ観光客数（対象9市町：西脇市、三木市、小野市、加西市、加東市、多可町、篠山市、丹波市、神戸市北区）
神戸市については北区のみの統計値が存在しないため、神戸市に対する北区の人口割合（約15%）を用いて、神戸市全体の観光客数を北区に配分
(4) 家畜の推移（畜産系）
加古川流域の家畜飼養頭数の推移を図 5.4-5 に示す。
加古川流域における家畜（牛、豚、にわとり）の飼養頭数は、近年は横ばいの状況である。
なお、平成 18 年以降のデータは現在未公表である。

図 5.4-5 加古川流域の家畜飼養頭数の推移

(5) 土地利用変化の状況
加古川大堰上流域の地目別土地面積の推移を図 5.4-6 に示す。地目別土地面積は、兵庫県統計値を基に、加古川大堰上流域にかかる市町村を集計した。
昭和 55 年（1975 年）以降、田、畑は概ね横ばい減少傾向にあり、宅地が増加する傾向にある。

図 5.4-6 加古川大堰上流域の土地利用の変遷
注：神戸市については北区のみの統計値が存在しないため、神戸市の加古川大堰上流域
面積を地図上で測定して求めた神戸市に対する割合（約 20%）に、神戸市全体の地目別土地面積を乗じて算定した。
丹波市については、加古川流域外である旧春日町、旧市島町の面積を減じている。ただし、H17 年の両町のデータが存在しないため、H12 年のデータを用いて算定した。
＜参考：ゴルフ場による影響＞

加古川大堰上流域ではゴルフ場が多く、加古川大堰流域面積(1,657km²)に対し、103.0km²を有している（平成28年現在）。ゴルフ場は一般に排出負荷が多いと言われており、「ゴルフ場で使用される農薬による水質汚濁の防止に係る暫定指導指針」では、関係部局間の連絡を密にする等により、農薬使用の適正化について指導の徹底が図られるように記載されている。

加古川大堰流域内では昭和60年（1985年）～平成7年（1995年）でのゴルフ場の開場が著しく、近年は変化が見られない状況である。内訳として、三木市が面積、箇所数いずれも最も多く、次いで加東市、神戸市北区となっている。特に、三木市および神戸市北区は美嚢川流域であり、このことは美嚢川の水質負荷の一要因である可能性も考えられる。

図5.4-7に加古川大堰上流域におけるゴルフ場面積の推移、図5.4-8に加古川大堰上流域における市町村毎のゴルフ場面積・箇所数の内訳（平成28年）を示す。

図5.4-7 加古川大堰上流域におけるゴルフ場面積の推移
注：its-moGuido ゼンリン地図（2011年1月現在）から加古川大堰流域にかかるゴルフ場の地点・名称を特定し、各ゴルフ場のHPから面積、開場日等の情報を収集した。ゴルフ場面積の推移は開場年日により。

図5.4-8 加古川大堰上流域における市町村毎のゴルフ場面積・箇所数の内訳（平成28年）
(6) 排水処理の状況

兵庫県の排水処理状況を図 5.4-9 と図 5.4-10 に、加古川大堰上流域の排水処理状況を図 5.4-11 と図 5.4-12 に示す。加古川大堰上流域の排水処理状況については、兵庫県統計値を基に、加古川大堰上流域にかかる市町村を対象に集計した。

兵庫県では昭和 60 年（1980 年）以降、下水道整備が進捗しており、それに伴い自家処理、し尿収集、浄化槽処理が減少している。

平成 28 年における兵庫県の下水道普及率は 92.7%と全国平均の 78.3%に比べ非常に高い普及率となっている。

（出典：資料 5-9, 資料 5-10）

図 5.4-9 全国と兵庫県の下水道普及状況の変化

（出典：資料 5-7）

図 5.4-10 排水処理状況の変化（兵庫県域）
加古川大堰上流域では平成8年（1996年）においては下水道普及率が25.6%（兵庫県全域：55.0%）であったが、その後、徐々に普及率は増加し、平成26年（2014年）には56.4%と2倍強になっている。

図5.4-11 加古川大堰上流域の下水道普及・接続状況の変化
注：下水道統計（社団法人 日本下水道協会）を基に、加古川大堰上流域にかかる市町村を対象に、加古川上流域下水道及び公共下水道の普及接続データを集計

図5.4-12 排水処理状況の変化（加古川大堰上流域）
注：神戸市については、神戸市に対する北区の人口割合（約15%）を用いて、神戸市全体のし尿処理形態別人口を北区に配分
下水処理場の処理放流状況

加古川大堰上流域の下水処理場諸元を表5.4-2に示す。加古川大堰上流域には流域下水道が1箇所、単独公共下水道が8箇所、特定環境保全公共下水道が15箇所の計24箇所ある。うち、加古川上流浄化センター、住吉浄化センター、上水東浄化センター、吉川浄化センター、大山浄化センターでは高度処理が実施されている。

表5.4-2 加古川大堰上流域の下水処理場

<table>
<thead>
<tr>
<th>区分</th>
<th>市町村等</th>
<th>団体名</th>
<th>処理場名</th>
<th>最大時1日最大処理水量 (m³/日)</th>
<th>処理区域面積 (ha)</th>
<th>処理人口 (人)</th>
<th>供用開始</th>
</tr>
</thead>
<tbody>
<tr>
<td>流域下水道</td>
<td>加古川流域</td>
<td>加古川上流浄化センター</td>
<td>103,250</td>
<td>119,000</td>
<td>8,491</td>
<td>9,569</td>
<td>H2.6 循環式硝化脱窒法</td>
</tr>
<tr>
<td></td>
<td></td>
<td>篠山市</td>
<td>篠山環境衛生センター</td>
<td>7,200</td>
<td>5,900</td>
<td>490</td>
<td>501</td>
</tr>
<tr>
<td></td>
<td></td>
<td>篠山市</td>
<td>住吉浄化センター</td>
<td>5,550</td>
<td>5,600</td>
<td>478</td>
<td>488</td>
</tr>
<tr>
<td></td>
<td></td>
<td>丹波市</td>
<td>柏原浄化センター</td>
<td>6,800</td>
<td>7,000</td>
<td>426</td>
<td>429</td>
</tr>
<tr>
<td></td>
<td></td>
<td>丹波市</td>
<td>氷上東浄化センター</td>
<td>2,940</td>
<td>2,940</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>三木市</td>
<td>吉川浄化センター</td>
<td>3,640</td>
<td>3,640</td>
<td>276</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td></td>
<td>加東町</td>
<td>せせらぎ東条</td>
<td>3,120</td>
<td>6,240</td>
<td>372</td>
<td>395</td>
</tr>
<tr>
<td></td>
<td></td>
<td>多可町</td>
<td>中浄化センター</td>
<td>3,100</td>
<td>4,500</td>
<td>325</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td></td>
<td>篠山市</td>
<td>西紀中央浄化センター</td>
<td>1,280</td>
<td>1,280</td>
<td>103</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td></td>
<td>篠山市</td>
<td>篠山南浄化センター</td>
<td>730700</td>
<td>43</td>
<td>49</td>
<td>3,120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>篠山市</td>
<td>篠山北浄化センター</td>
<td>1,080</td>
<td>700</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>山本区浄化センター</td>
<td>870</td>
<td>700</td>
<td>66</td>
<td>66</td>
<td>1,290</td>
</tr>
<tr>
<td></td>
<td></td>
<td>篠山市</td>
<td>大山浄化センター</td>
<td>1,300</td>
<td>1,000</td>
<td>72</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>篠山市</td>
<td>西部浄化センター</td>
<td>970</td>
<td>900</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>篠山市</td>
<td>日置浄化センター</td>
<td>1,300</td>
<td>900</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>丹波市</td>
<td>和田浄化センター</td>
<td>1,200</td>
<td>1,000</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>丹波市</td>
<td>谷川浄化センター</td>
<td>1,200</td>
<td>1,200</td>
<td>165</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td></td>
<td>丹波市</td>
<td>小川浄化センター</td>
<td>1,440</td>
<td>1,530</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>丹波市</td>
<td>松本浄化センター</td>
<td>1,000</td>
<td>1,000</td>
<td>165</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td></td>
<td>丹波市</td>
<td>須賀浄化センター</td>
<td>1,300</td>
<td>970</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>西脇市</td>
<td>黒田浄化センター</td>
<td>2,900</td>
<td>2,900</td>
<td>190</td>
<td>190</td>
</tr>
</tbody>
</table>

（出典：資料5-11）

注：流域下水道の処理区域面積、人口、処理水量はH26年度末の値

公共下水道および特定環境保全公共下水道の処理区域面積、人口、処理水量はH26年度末の値

5-92
流域の下水処理場処理水量の変遷を図 5.4-13 に示す。これに伴う国包地点の BOD75%値及び T-N 濃度の推移を図 5.4-14 に示す。氷上西中処理場（後の氷上中央浄化センター）が昭和46年（1971年）に簡易処理で供用を開始しており、その後、昭和53年（1978年）に二次処理を開始している。また、加古川上流浄化センターが平成10年（1998年）に高度処理を開始している。下水道整備の進捗と共に、現在まで処理水量は大きく増加しており、処理水量の内訳は、流域下水道（加古川上流浄化センター）でそのほとんどを占めている。

図 5.4-13 加古川大堰流域の下水処理水量の変遷

図 5.4-14 加古川における水質の経年変化（国包地点）

加古川大堰流域の下水処理水量の 74.6%（H26）を占めている加古川上流浄化センターは、平成2年6月より神戸市、西脇市、三木市、小野市、加西市の6市で供用を開始しており、平成10年より窒素除去を目的とした高度処理を実施している。処理方式は、下流の水道原水に配慮し、当初から標準活性汚泥法に加えて急流濾過処理としていたが、流入水量の増加に対応するため、窒素の除去が可能である循環式硝化脱窒法に計画変更し、平成15年2月に全系列の高度処理化が完成している。処理能力は平成26年度末現在で103,250m³/日を有している。
近10ヶ年の美嚢川水質は神戸市北区、三木市における高度処理の影響を受け、窒素は加古川本川筋と同程度の水質に近づいている。

図5.4-15に加古川上流浄化センターの排水処理対象区域、図5.4-16に美嚢川橋のT-N濃度経月変化（平成元年～28年）を示す。
(8) 社会環境からみた汚濁源のまとめ
加古川大堰流域の汚濁源のまとめを表 5.4-3 に示す。
加古川大堰流域内は高度経済成長期に人口や宅地、ゴルフ場が増加しているが、近年は横ばいか減少傾向にある。一方で、下水道への接続率向上、流域下水道の進捗が進んだこともあり、近年になって水質が改善傾向にあるものと考えられる。

<table>
<thead>
<tr>
<th>項目</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>流域人口の推移</td>
<td>加古川大堰上流域の人口は昭和 35 年(1960 年；302 千人)以降増加傾向にあり、近年においては横ばい減少傾向にある。平成 27 年時点では 598 千人となっている。</td>
</tr>
<tr>
<td>観光客数の推移</td>
<td>日帰り観光客数は昭和 50 年(1975 年；482 万人/年)から平成 27 年(2015 年；2,238 万人/年)にかけて増加傾向にある。宿泊観光客数は、昭和 50 年(1975 年；47 万人/年)から平成 2 年(1990 年；200 万人/年)にかけて増加傾向にあったが、平成 7 年(1995 年；151 万人)には阪神淡路大震災の影響で一旦減少したが、その後は、増減を繰り返している。</td>
</tr>
<tr>
<td>家畜頭数の推移</td>
<td>加古川流域における家畜（牛、豚）の飼養頭数は、平成 5 年(1993 年；4.0 万頭)から減少し、平成 11 年(1999 年；3.1 万頭)から平成 17 年(2005 年；3.1 万頭)までは概ね横ばいの状況である。</td>
</tr>
<tr>
<td>土地利用状況の推移</td>
<td>昭和 55 年(1980 年)以降、田、畑は概ね横ばい若干の減少傾向にある。加古川大堰流域ではゴルフ場が多く、加古川大堰流域面積(1,657km²)に対し、103.0km²を有している（平成 28 年(2016 年)）。特に、昭和 60 年(1985 年)～平成 7 年(1995 年)でのゴルフ場の開場が著しく、近年は変化が見られない状況である。内訳として、三木市が面積、箇所数いずれも最も多く、次いで可東市、神戸市北区となっている。</td>
</tr>
<tr>
<td>生活排水処理状況の推移</td>
<td>加古川大堰上流域では平成 8 年(1996 年)においては下水道普及率が 25.6%(兵庫県全域；55.0%)であるが、平成 26 年(2014 年)には 56.4%と 2 倍以上の伸びとなっている。また、平成 26 年(2014 年)における下水道接続人口は 93.6%と高い水準となっている。</td>
</tr>
<tr>
<td>下水処理水量の推移</td>
<td>氷上西中処理場が昭和 46 年(1971 年)に簡易処理で供用を開始したのに発し、主に平成に入ってから公共下水道が進捗している。平成 2 年供用開始の加古川上流浄化センターは平成 10 年(1998 年)に高度処理を開始しており、平成 26 年(2014 年)において、加古川大堰流域内の下水処理水量に対して加古川上流浄化センターが占める割合は約74.6%に及ぶ。</td>
</tr>
</tbody>
</table>
5.5 水質の評価

5.5.1 生活環境項目の評価

ここでは、加古川大堰供用開始後（平成24年以降）を対象として、流入河川と下流河川の水質について環境基準値との比較、流入・下流の比較、経年、月別の変動の視点から生活環境項目について評価する。生活環境項目とは、生活環境を保全するうえで維持することが望ましい項目について基準値が定められているもので、pH、BOD、SS、DO、大腸菌群数が該当する。

近5ヶ年（平成24年～28年）を対象として、流入河川（板波、大住橋、万才橋）、流入支川（美嚢川橋）の各水質項目の平均値を表5.5-1に示す。平成24年以降の平均値でみると全ての地点において大腸菌群数を除き環境基準を満足している。

表5.5-1 流入河川の環境基準達成状況（H24～H28）

<table>
<thead>
<tr>
<th>地点</th>
<th>項目</th>
<th>pH</th>
<th>BOD75% (mg/L)</th>
<th>SS (mg/L)</th>
<th>DO (mg/L)</th>
<th>大腸菌群数（MPN/100mL）</th>
</tr>
</thead>
<tbody>
<tr>
<td>板波（流入本川）
（河川B類型）</td>
<td>平均値</td>
<td>7.9</td>
<td>1.0</td>
<td>4.8</td>
<td>10.5</td>
<td>12,098</td>
</tr>
<tr>
<td>環境基準満足状況</td>
<td>満足（AA相当）</td>
<td>満足（A相当）</td>
<td>満足（AA相当）</td>
<td>満足（A相当）</td>
<td>満足していない（―）</td>
<td></td>
</tr>
<tr>
<td>大住橋（流入本川）
（河川B類型）</td>
<td>平均値</td>
<td>7.8</td>
<td>1.1</td>
<td>6.0</td>
<td>10.2</td>
<td>11,827</td>
</tr>
<tr>
<td>環境基準満足状況</td>
<td>満足（AA相当）</td>
<td>満足（A相当）</td>
<td>満足（AA相当）</td>
<td>満足（A相当）</td>
<td>満足していない（―）</td>
<td></td>
</tr>
<tr>
<td>万才橋（流入本川）
（河川B類型）</td>
<td>平均値</td>
<td>7.8</td>
<td>1.1</td>
<td>5.9</td>
<td>10.3</td>
<td>9,238</td>
</tr>
<tr>
<td>環境基準満足状況</td>
<td>満足（AA相当）</td>
<td>満足（A相当）</td>
<td>満足（AA相当）</td>
<td>満足（A相当）</td>
<td>満足していない（―）</td>
<td></td>
</tr>
<tr>
<td>美嚢川橋（流入支川）</td>
<td>平均値</td>
<td>8.3</td>
<td>1.9</td>
<td>10.6</td>
<td>10.9</td>
<td>11,149</td>
</tr>
<tr>
<td>環境基準満足状況</td>
<td>満足（AA相當）</td>
<td>満足（A相当）</td>
<td>満足（AA相当）</td>
<td>満足（A相当）</td>
<td>満足していない（―）</td>
<td></td>
</tr>
</tbody>
</table>

※表中数値は、各年の平均値（75%値）を算定し、それを平成24年～28年で平均した値である。
※本表は各地点の水質調査項目において満足している類型指定を記載している。「（―）」は満足する類型指定がないことを示している。指定されている環境基準を満足していない項目については網掛けをしている。

下流（池尻橋、相生橋）の各水質項目の平均値は表5.5-2に示すとおりであり、大腸菌群数を除けば環境基準の河川B類型を満足している。

表5.5-2 下流河川の環境基準達成状況（H24～H28）

<table>
<thead>
<tr>
<th>地点</th>
<th>項目</th>
<th>pH</th>
<th>BOD75% (mg/L)</th>
<th>SS (mg/L)</th>
<th>DO (mg/L)</th>
<th>大腸菌群数（MPN/100mL）</th>
</tr>
</thead>
<tbody>
<tr>
<td>池尻橋
（河川B類型）</td>
<td>平均値</td>
<td>7.9</td>
<td>1.4</td>
<td>6.4</td>
<td>10.1</td>
<td>5,473</td>
</tr>
<tr>
<td>環境基準満足状況</td>
<td>満足（AA相当）</td>
<td>満足（A相当）</td>
<td>満足（AA相当）</td>
<td>満足（A相当）</td>
<td>満足していない（―）</td>
<td></td>
</tr>
<tr>
<td>相生橋
（河川B類型）</td>
<td>平均値</td>
<td>7.9</td>
<td>1.6</td>
<td>5.2</td>
<td>9.2</td>
<td>3,705</td>
</tr>
<tr>
<td>環境基準満足状況</td>
<td>満足（AA相当）</td>
<td>満足（A相当）</td>
<td>満足（AA相当）</td>
<td>満足（A相当）</td>
<td>満足していない（―）</td>
<td></td>
</tr>
</tbody>
</table>

※表中数値は、各年の平均値（75%値）を算定し、それを平成24年～28年で平均した値である。
※本表は各地点の水質調査項目において満足している類型指定を記載している。「（―）」は満足する類型指定がないことを示している。指定されている環境基準を満足していない項目については網掛けをしている。
(1) pH

流入河川（板波、大住橋、万才橋）及び流入支川（美嚢川橋）の pH は、平均値では美嚢川橋で平成 21 年に基準値を超えた以外は、全ての年に河川環境基準 B 類型相当である。近年は横ばい傾向が見られる。また、経月的には、図 5.3-11 に示したように夏期から秋期に上昇する特性が認められ、特に流入支川（美嚢川橋）において最大値が 9 以上を示すことがある。

一方、下流河川（池尻橋、相生橋）の pH は、平均値では全ての年に河川環境基準 B 類型相当であり、流入河川と同程度で推移している。また、経月的には図 5.3-11 に示したように夏期から秋期に上昇する変化特性が認められ、最大値が 8.5 以上を示すことがある。

流入河川と下流河川を比較すると、ほぼ同程度で推移しており、加古川大堰の存在による影響は小さいものと考えられる。

表 5.5-3 には流入河川 pH の環境基準達成状況（H24～H28）を示す。

（出典：資料 5-12、資料 5-13、資料 5-20）

図 5.5-1 流入河川及び下流河川の pH
表 5.5-3 流入河川 pH の環境基準達成状況 (H24～H28)

<table>
<thead>
<tr>
<th>年</th>
<th>平均値</th>
<th>最小値 ～ 最大値</th>
<th>環境基準達成月数</th>
</tr>
</thead>
<tbody>
<tr>
<td>H24</td>
<td>7.9</td>
<td>7.1 ～ 8.9</td>
<td>11 / 12</td>
</tr>
<tr>
<td>H25</td>
<td>7.9</td>
<td>7.5 ～ 8.5</td>
<td>12 / 12</td>
</tr>
<tr>
<td>H26</td>
<td>7.9</td>
<td>7.5 ～ 8.9</td>
<td>11 / 12</td>
</tr>
<tr>
<td>H27</td>
<td>7.9</td>
<td>7.4 ～ 9.2</td>
<td>11 / 12</td>
</tr>
<tr>
<td>H28</td>
<td>8.0</td>
<td>7.5 ～ 8.9</td>
<td>10 / 12</td>
</tr>
<tr>
<td>最大</td>
<td>8.0</td>
<td>7.5 ～ 9.2</td>
<td></td>
</tr>
<tr>
<td>平均</td>
<td>7.9</td>
<td>7.4 ～ 8.9</td>
<td></td>
</tr>
<tr>
<td>最小</td>
<td>7.9</td>
<td>7.1 ～ 8.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>年</th>
<th>平均値</th>
<th>最小値 ～ 最大値</th>
<th>環境基準達成月数</th>
</tr>
</thead>
<tbody>
<tr>
<td>H24</td>
<td>7.8</td>
<td>7.4 ～ 8.0</td>
<td>12 / 12</td>
</tr>
<tr>
<td>H25</td>
<td>7.8</td>
<td>7.5 ～ 8.0</td>
<td>12 / 12</td>
</tr>
<tr>
<td>H26</td>
<td>7.9</td>
<td>7.6 ～ 8.7</td>
<td>11 / 12</td>
</tr>
<tr>
<td>H27</td>
<td>7.9</td>
<td>7.4 ～ 8.6</td>
<td>11 / 12</td>
</tr>
<tr>
<td>H28</td>
<td>8.0</td>
<td>7.5 ～ 8.6</td>
<td>11 / 12</td>
</tr>
<tr>
<td>最大</td>
<td>8.0</td>
<td>7.6 ～ 8.7</td>
<td></td>
</tr>
<tr>
<td>平均</td>
<td>7.8</td>
<td>7.4 ～ 8.4</td>
<td></td>
</tr>
<tr>
<td>最小</td>
<td>7.8</td>
<td>7.4 ～ 8.0</td>
<td></td>
</tr>
</tbody>
</table>

※表中の網掛けは環境基準を達成していないことを示す
(2) BOD

流入河川（板波、大住橋、万才橋）、流入支川（美嚢川橋）及び下流河川（池尻橋、相生橋）のBODの75%値は平成6年（1994年）前後で高い値を示していたが、その後、減少傾向となり、平成28年では全ての地点で環境基準B類型を満足している。

流入河川と下流河川を比較すると、下流河川（池尻橋）は流入河川（大住橋、万才橋）とほぼ同程度であり、加古川大堰存在による影響は小さいものと考えられる。

図5.5-2に流入河川及び下流河川のBOD、表5.5-4に流入河川及び下流河川のBOD75%値の環境基準達成状況（H24〜H28）を示す。

![图5.5-2 流入河川及下流河川のBOD](出典：資料5-12，資料5-13，資料5-20)
<table>
<thead>
<tr>
<th></th>
<th>年</th>
<th>75%値</th>
<th>最小値 〜</th>
<th>最大値</th>
<th>環境基準達成月数</th>
</tr>
</thead>
<tbody>
<tr>
<td><板波></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H24</td>
<td>1.0</td>
<td>0.5</td>
<td>1.9</td>
<td>12 / 12</td>
<td></td>
</tr>
<tr>
<td>H25</td>
<td>1.1</td>
<td>0.3</td>
<td>1.7</td>
<td>12 / 12</td>
<td></td>
</tr>
<tr>
<td>H26</td>
<td>0.9</td>
<td>0.5</td>
<td>1.4</td>
<td>12 / 12</td>
<td></td>
</tr>
<tr>
<td>H27</td>
<td>0.9</td>
<td>0.6</td>
<td>1.3</td>
<td>12 / 12</td>
<td></td>
</tr>
<tr>
<td>H28</td>
<td>1.1</td>
<td>0.4</td>
<td>1.5</td>
<td>12 / 12</td>
<td></td>
</tr>
<tr>
<td>最大</td>
<td>1.1</td>
<td>0.6</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>平均</td>
<td>1.0</td>
<td>0.5</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>最小</td>
<td>0.9</td>
<td>0.3</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><万才橋></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H24</td>
<td>1.1</td>
<td>0.8</td>
<td>2.3</td>
<td>12 / 12</td>
<td></td>
</tr>
<tr>
<td>H25</td>
<td>1.4</td>
<td>0.5</td>
<td>1.7</td>
<td>12 / 12</td>
<td></td>
</tr>
<tr>
<td>H26</td>
<td>1.1</td>
<td>0.6</td>
<td>1.6</td>
<td>12 / 12</td>
<td></td>
</tr>
<tr>
<td>H27</td>
<td>1.0</td>
<td>0.6</td>
<td>1.5</td>
<td>12 / 12</td>
<td></td>
</tr>
<tr>
<td>H28</td>
<td>1.1</td>
<td>0.4</td>
<td>1.3</td>
<td>12 / 12</td>
<td></td>
</tr>
<tr>
<td>最大</td>
<td>1.4</td>
<td>0.8</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>平均</td>
<td>1.1</td>
<td>0.6</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>最小</td>
<td>1.0</td>
<td>0.4</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><池尻橋></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H24</td>
<td>1.2</td>
<td>0.6</td>
<td>3.0</td>
<td>12 / 12</td>
<td></td>
</tr>
<tr>
<td>H25</td>
<td>1.6</td>
<td>0.6</td>
<td>3.7</td>
<td>11 / 12</td>
<td></td>
</tr>
<tr>
<td>H26</td>
<td>1.5</td>
<td>0.6</td>
<td>3.3</td>
<td>11 / 12</td>
<td></td>
</tr>
<tr>
<td>H27</td>
<td>1.4</td>
<td>0.7</td>
<td>2.2</td>
<td>12 / 12</td>
<td></td>
</tr>
<tr>
<td>H28</td>
<td>1.3</td>
<td>0.6</td>
<td>3.2</td>
<td>11 / 12</td>
<td></td>
</tr>
<tr>
<td>最大</td>
<td>1.6</td>
<td>0.7</td>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>平均</td>
<td>1.4</td>
<td>0.6</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>最小</td>
<td>1.2</td>
<td>0.6</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※表中の網掛けは環境基準を達成していないことを示す
（3）SS

流入河川（板波、大住橋、万才橋）のSSは、平均値では河川環境基準B類型相当であり、経年的には改善傾向である。流入支川（美嚢川橋）のSSは、5年、6年、8年、13年で河川環境基準B類型を超えていているが、経年的には改善傾向であり、近年は全地点で環境基準B類型を満足している。

一方、下流河川（池尻橋、相生橋）のSSは、平均値では全ての年で河川環境基準B類型相当であり、流入河川とはほぼ同程度で推移しており、経年的には改善傾向である。

流入河川と下流河川を比較すると、下流河川（池尻橋、相生橋）は流入河川（大住橋）とほぼ同程度であり、加古川大堰存在による影響は小さいものと考えられる。

図5.5-3に流入河川及び下流河川のSS、表5.5-5に流入河川及び下流河川のSSの環境基準達成状況（H24～H28）を示す。
表 5.5-5 流入河川 SS の環境基準達成状況（H24～H28）

（単位：mg/L）

<table>
<thead>
<tr>
<th></th>
<th>年平均値</th>
<th>最小値 ～ 最大値</th>
<th>環境基準達成月数</th>
</tr>
</thead>
<tbody>
<tr>
<td>板波</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H24</td>
<td>5.5</td>
<td>2.5 ～ 14.0</td>
<td>12 / 12</td>
</tr>
<tr>
<td>H25</td>
<td>4.6</td>
<td>0.7 ～ 8.0</td>
<td>12 / 12</td>
</tr>
<tr>
<td>H26</td>
<td>3.8</td>
<td>1.3 ～ 10.0</td>
<td>12 / 12</td>
</tr>
<tr>
<td>H27</td>
<td>5.9</td>
<td>1.4 ～ 21.0</td>
<td>12 / 12</td>
</tr>
<tr>
<td>H28</td>
<td>4.3</td>
<td>1.7 ～ 16.0</td>
<td>12 / 12</td>
</tr>
<tr>
<td>平均</td>
<td>4.8</td>
<td>1.5 ～ 13.8</td>
<td></td>
</tr>
<tr>
<td>最小</td>
<td>3.8</td>
<td>0.7 ～ 8.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大住橋</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H24</td>
<td>5.5</td>
<td>3.2 ～ 10.6</td>
<td>4 / 4</td>
</tr>
<tr>
<td>H25</td>
<td>8.8</td>
<td>1.7 ～ 13.0</td>
<td>4 / 4</td>
</tr>
<tr>
<td>H26</td>
<td>4.7</td>
<td>2.4 ～ 6.8</td>
<td>4 / 4</td>
</tr>
<tr>
<td>H27</td>
<td>6.1</td>
<td>1.9 ～ 12.0</td>
<td>4 / 4</td>
</tr>
<tr>
<td>H28</td>
<td>5.2</td>
<td>2.5 ～ 8.0</td>
<td>4 / 4</td>
</tr>
<tr>
<td>最大</td>
<td>5.9</td>
<td>2.5 ～ 21.0</td>
<td></td>
</tr>
<tr>
<td>平均</td>
<td>5.6</td>
<td>2.3 ～ 10.1</td>
<td></td>
</tr>
<tr>
<td>最小</td>
<td>4.7</td>
<td>1.7 ～ 6.8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>年平均値</th>
<th>最小値 ～ 最大値</th>
<th>環境基準達成月数</th>
</tr>
</thead>
<tbody>
<tr>
<td>万才橋</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H24</td>
<td>6.2</td>
<td>3.0 ～ 11.2</td>
<td>12 / 12</td>
</tr>
<tr>
<td>H25</td>
<td>7.2</td>
<td>2.3 ～ 14.0</td>
<td>12 / 12</td>
</tr>
<tr>
<td>H26</td>
<td>4.8</td>
<td>2.2 ～ 7.3</td>
<td>12 / 12</td>
</tr>
<tr>
<td>H27</td>
<td>7.0</td>
<td>1.1 ～ 17.0</td>
<td>12 / 12</td>
</tr>
<tr>
<td>H28</td>
<td>4.2</td>
<td>2.0 ～ 7.8</td>
<td>12 / 12</td>
</tr>
<tr>
<td>最大</td>
<td>7.2</td>
<td>3.0 ～ 17.0</td>
<td></td>
</tr>
<tr>
<td>平均</td>
<td>5.9</td>
<td>2.1 ～ 11.5</td>
<td></td>
</tr>
<tr>
<td>最小</td>
<td>4.2</td>
<td>1.1 ～ 7.3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>年平均値</th>
<th>最小値 ～ 最大値</th>
<th>環境基準達成月数</th>
</tr>
</thead>
<tbody>
<tr>
<td>池尻橋</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H24</td>
<td>6.4</td>
<td>2.5 ～ 15.7</td>
<td>12 / 12</td>
</tr>
<tr>
<td>H25</td>
<td>7.1</td>
<td>2.6 ～ 16.0</td>
<td>12 / 12</td>
</tr>
<tr>
<td>H26</td>
<td>5.9</td>
<td>2.7 ～ 11.0</td>
<td>12 / 12</td>
</tr>
<tr>
<td>H27</td>
<td>6.7</td>
<td>1.2 ～ 19.0</td>
<td>12 / 12</td>
</tr>
<tr>
<td>H28</td>
<td>5.8</td>
<td>2.3 ～ 9.8</td>
<td>12 / 12</td>
</tr>
<tr>
<td>最大</td>
<td>7.1</td>
<td>2.7 ～ 19.0</td>
<td></td>
</tr>
<tr>
<td>平均</td>
<td>6.4</td>
<td>2.4 ～ 14.3</td>
<td></td>
</tr>
<tr>
<td>最小</td>
<td>5.8</td>
<td>1.7 ～ 9.8</td>
<td></td>
</tr>
</tbody>
</table>

※表中の網掛けは環境基準を達成していないことを示す
（4）DO

流入河川（板波、大住橋、万才橋）及び流入支川（美嚢川橋）のDOは、平均値では全ての年で河川環境基準B類型相当であり、経年的には変化は見られない。

下流河川（池尻橋）のDOは、平均値では全ての年で河川環境基準B類型相当であり、流入河川と同程度で推移しているが、感潮区間の下流河川（相生橋）では、塩分濃度を含むことによる飽和溶解酸素濃度の減少もあり、池尻橋よりも若干低下する傾向が見られる。

流入河川と下流河川を比較すると、近年においては、下流河川（池尻橋）は流入河川（大住橋）とほぼ同程度となっており、加古川大堰存在による影響は小さいものと考えられる。図5.5-4に流入河川及び下流河川のDO、表5.5-6に流入河川及び下流河川のDOの環境基準達成状況（H24～H28）を示す。

（出典：資料5-12，資料5-13，資料5-20）

図5.5-4 流入河川及び下流河川のDO
表 5.5-6 流入河川 DO の環境基準達成状況(H24〜H28)
（単位：mg/L）

<table>
<thead>
<tr>
<th>場所</th>
<th><板波></th>
<th><大住橋></th>
<th><万才橋></th>
<th><美嚢川橋></th>
<th><池尻橋></th>
<th><相生橋></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>年平均値</td>
<td>最小値〜最大値</td>
<td>環境基準達成月数</td>
<td>年平均値</td>
<td>最小値〜最大値</td>
<td>環境基準達成月数</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H24</td>
<td>10.6</td>
<td>8.6〜12.7</td>
<td>12/12</td>
<td>10.3</td>
<td>8.3〜13.0</td>
<td>4/4</td>
</tr>
<tr>
<td>H25</td>
<td>10.5</td>
<td>8.6〜13.5</td>
<td>12/12</td>
<td>10.0</td>
<td>8.0〜12.1</td>
<td>4/4</td>
</tr>
<tr>
<td>H26</td>
<td>10.1</td>
<td>8.6〜13.0</td>
<td>12/12</td>
<td>10.1</td>
<td>8.4〜13.5</td>
<td>4/4</td>
</tr>
<tr>
<td>H27</td>
<td>10.7</td>
<td>9.1〜12.0</td>
<td>12/12</td>
<td>10.2</td>
<td>9.0〜12.0</td>
<td>4/4</td>
</tr>
<tr>
<td>H28</td>
<td>10.7</td>
<td>9.0〜13.0</td>
<td>12/12</td>
<td>10.2</td>
<td>8.3〜12.0</td>
<td>4/4</td>
</tr>
</tbody>
</table>

※表中の網掛けは環境基準を達成していないことを示す
(5) 大腸菌群数

流入河川(板波、大住橋、万才橋)及び流入支川(美嚢川橋)の大腸菌群数は、平均値では全ての年で河川環境基準B類型を超過している。年間的にはやや低下傾向を示し、近年は概ね横這いで推移している。

下流河川(池尻橋)の大腸菌群数は、平均値では河川環境基準B類型を超過することが多い。流入河川と比べて低い濃度で推移している。年間的には流入河川と同様に近年は概ね横這いで推移している。

流入河川と下流河川を比較すると、下流河川(池尻橋、相生橋)は流入河川(大住橋)よりも低い傾向が確認される。この要因としては、最も大腸菌群数が高い板波から大住橋、加古川大堰、池尻橋と流下するに伴い、比較的大腸菌群数が低い支川からの希釈を受けている可能性が示唆される。

なお、大腸菌群数の中には土壌・植物など自然界に由来するものも含まれるため、社会生活環境に伴う水質悪化の直接的な指標とはならない。このため、人為由来の汚染状況を現す指標として、糞便性大腸菌群数についても後述する。図5.5-5に流入河川及び下流河川の大腸菌群数、表5.5-7に流入河川及び下流河川の大腸菌群数の環境基準達成状況(H24〜H28)に示す。

図5.5-5 流入河川及び下流河川の大腸菌群数

(出典:資料5-12, 資料5-13, 資料5-20)
<table>
<thead>
<tr>
<th>年</th>
<th>平均値</th>
<th>最小値 ～ 最大値</th>
<th>環境基準達成月数</th>
</tr>
</thead>
<tbody>
<tr>
<td>H24</td>
<td>10.799</td>
<td>490 ～ 70,000</td>
<td>8 / 12</td>
</tr>
<tr>
<td>H25</td>
<td>5.550</td>
<td>330 ～ 24,000</td>
<td>9 / 12</td>
</tr>
<tr>
<td>H26</td>
<td>1.534</td>
<td>330 ～ 2,800</td>
<td>12 / 12</td>
</tr>
<tr>
<td>H27</td>
<td>4.579</td>
<td>170 ～ 33,000</td>
<td>11 / 12</td>
</tr>
<tr>
<td>H28</td>
<td>38.030</td>
<td>49 ～ 330,000</td>
<td>6 / 12</td>
</tr>
</tbody>
</table>

環境基準達成月数

表中の網掛けは環境基準を達成していないことを示す
大腸菌群数の中には土壌・植物など自然界に由来するものも含まれるため、ここでは、人為由来での汚染状況を現す指標として、糞便性大腸菌群数について整理する。

国土交通省では、人と川とのふれあいの観点から、河川においても糞便性大腸菌群数の測定を開始している。加古川大堰では、国包地点（加古川大堰貯水池内）、池尻橋地点（下流河川）においては平成10年4月（1998年4月）から、大住橋地点（流入河川）においては平成14年5月（2002年5月）から糞便性大腸菌群数を調査している。大腸菌群数と糞便性大腸菌群数の推移を整理した結果を図5.5-6に示す。

図5.5-6 大腸菌群数および糞便性大腸菌群数の推移
大腸菌群数に対して糞便性大腸菌群数の占める割合は比較的小さく、加古川大堰においては、大部分の大腸菌群数が自然由来のものであると考えられる。
なお、公共用水域における糞便性大腸菌群数に関わる環境基準は設定されていないことから、「水浴場における糞便性大腸菌群数による水質判定方法」（平成9年4月11日付け環水管第115号水質保全局長通知）の判定基準を目安とした場合、糞便性大腸菌群数の水浴可能な基準値が1,000個/100mL以下である。各地点ともに糞便性大腸菌群数は7月、9〜11月は基準値以上となることも多いが、年間を通して概ね1,000個/100mL以下の範囲にあり、水浴場水質判定基準ではほとんどの場合「可」と判断されるため、ただちに人体に害を与えるレベルではないものと考えられる。
表5.5-8に水浴場における糞便性大腸菌群数による水質判定区分を示す。

表5.5-8 水浴場における糞便性大腸菌群数による水質判定区分

<table>
<thead>
<tr>
<th>区分</th>
<th>糞便性大腸菌群数</th>
</tr>
</thead>
<tbody>
<tr>
<td>適</td>
<td>水質AA不検出（検出限界2個/100mL）</td>
</tr>
<tr>
<td></td>
<td>水質A100個/100mL以下</td>
</tr>
<tr>
<td>可</td>
<td>水質B400個/100mL以下</td>
</tr>
<tr>
<td></td>
<td>水質C1,000個/100mL以下</td>
</tr>
<tr>
<td>不適</td>
<td>1,000個/100mLを超えるもの</td>
</tr>
</tbody>
</table>

※出典：環境省 平成9年4月11日付け環水管第115号水質保全局長通知から一部抜粋
(6) 供用開始前後の水質比較
加古川大堰の供用開始前後の水質の変化について、供用以前(平成元年以前)から調査を行っている下流河川(池尻橋: 環境基準点)において確認する。池尻橋における供用開始前の昭和42年(1967年)〜昭和63年(1988年)と、供用開始後の平成元年(1989年)〜平成28年(2016年)の各水質平均値(各年の平均値(または75%値))は表5.5-9に示すとおりである。

供用開始前に対して、pH及び、大腸菌群数がやや上昇しているがその他の項目は供用開始後の各水質の平均値は改善する傾向にあり、大堰による水質への影響はないと考えられる。加古川流域の下水道整備の進捗や流域の変化などにより、加古川の水質そのものが経年的に改善されてきているものと考えられる。

表5.5-9 池尻橋地点における供用開始前後の水質比較

<table>
<thead>
<tr>
<th>地点</th>
<th>期間</th>
<th>pH</th>
<th>BOD75% (mg/L)</th>
<th>SS (mg/L)</th>
<th>DO (mg/L)</th>
<th>大腸菌群数 (MPN/100mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>供用開始前(昭和42年〜昭和63年)</td>
<td>平均値(250)</td>
<td>7.6</td>
<td>2.9</td>
<td>17.0</td>
<td>9.8</td>
</tr>
<tr>
<td>池尻橋 (河川B類型)</td>
<td>供用開始後(平成元年〜平成28年)</td>
<td>平均値(336)</td>
<td>7.9</td>
<td>1.8</td>
<td>9.9</td>
<td>10.3</td>
</tr>
</tbody>
</table>

※表中数値は、各年の平均値(または75%値)の供用前・後それぞれの平均値である。
※表中括弧内数値は、調査回数実績を示す。

また、各水質項目の各年平均値、平均値年最小値及び最大値を図5.5-7に示す。供用開始前後の環境基準達成状況を比較すると、BOD75%値は供用開始前で環境基準を満足していない年が見られている。
図 5.5.7(2) 共用開始前後における水質変化（BOD）

図 5.5.7(3) 共用開始前後における水質変化（SS）
図 5.5.7(4) 共用開始前後における水質変化（DO）

図 5.5.7(5) 共用開始前後における水質変化（大腸菌群数）
(7) 生活環境項目のまとめ
加古川大堰の近 5 年 (平成 24 年(2012 年)～平成 28 年(2016 年)) における生活環境項目の満足状況を以下にまとめる。
- pH、BOD75%、SS、DO については、各地点とも環境基準を満足している。
- 大腸菌群数については、各地点とも環境基準を満足していないことが多い。
- 糞便性大腸菌群数は年間を通して概ね 1,000 個/100mL 以下の範囲にあり、水浴場水質判定基準ではほとんどの場合「可」と判断されるため、ただちに人体に害を与えるレベルではないものと考えられる。
- また、加古川大堰供用前の昭和 63 年以前(1988 年)の下流河川(池尻橋)では、SS、BOD75%値については、近年の方が水質は改善されている。
5.5.2 健康項目の評価

表5.5-10に健康項目の基準値を示す。健康項目とは、人の健康に被害を生じるおそれのある重金属や有機塩素系化合物などを対象に26項目が挙げられ、それぞれ基準値が全国一律で制定されている。健康項目については各地点とも測定を行っているが、過年度来より分析数が豊富な国包地点及び池尻橋を対象として整理した。

表5.5-10 健康項目の基準値

<table>
<thead>
<tr>
<th>項目</th>
<th>基準値(mg/L)</th>
<th>項目</th>
<th>基準値(mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>カドミウム</td>
<td>0.003以下</td>
<td>1.1,2トリクロロエタン</td>
<td>0.005以下</td>
</tr>
<tr>
<td>金不動</td>
<td>検出されないこと</td>
<td>トクリロエチレン</td>
<td>0.01以下</td>
</tr>
<tr>
<td>鉛</td>
<td>0.01以下</td>
<td>チトラクロロエチレン</td>
<td>0.01以下</td>
</tr>
<tr>
<td>六価クロム</td>
<td>0.05以下</td>
<td>1,3-ジクロロプロペン</td>
<td>0.002以下</td>
</tr>
<tr>
<td>砷素</td>
<td>0.01以下</td>
<td>チウラム</td>
<td>0.006以下</td>
</tr>
<tr>
<td>水銀</td>
<td>0.0005以下</td>
<td>シマジン</td>
<td>0.003以下</td>
</tr>
<tr>
<td>アルキル水銀</td>
<td>検出されないこと</td>
<td>チオベンカルブ</td>
<td>0.02以下</td>
</tr>
<tr>
<td>PCB</td>
<td>検出されないこと</td>
<td>ベンゼン</td>
<td>0.01以下</td>
</tr>
<tr>
<td>ジクロロメタン</td>
<td>0.02以下</td>
<td>セレン</td>
<td>0.01以下</td>
</tr>
<tr>
<td>四塩化炭素</td>
<td>0.002以下</td>
<td>ニトロ炭酸及び亜硝酸炭酸</td>
<td>10以下</td>
</tr>
<tr>
<td>1,2-ジクロロエタン</td>
<td>0.004以下</td>
<td>ふっ素</td>
<td>0.8以下</td>
</tr>
<tr>
<td>1,1-ジクロロエチレン</td>
<td>0.1以下</td>
<td>ほう素</td>
<td>1以下</td>
</tr>
<tr>
<td>シス-1,2ジクロロエチレン</td>
<td>0.04以下</td>
<td>1,4-ジオキサン</td>
<td>0.05以下</td>
</tr>
<tr>
<td>1,1,1トリクロロエタン</td>
<td>1以下</td>
<td>ふる水</td>
<td>未実施</td>
</tr>
</tbody>
</table>

※ 基準値は年間平均値とする。ただし、全シアンに係る基準値については最高値とする。
※「検出されないこと」は定量下限値未満であり、以下の項目は「報告下限値」を下限とする
全シアン 0.1mg/L (JIS K 0102 38.1.2及び38.2または38.3)
アルキル水銀 0.0005mg/L (昭和46年12月環境庁告示第59号付表2)
PCB 0.0005mg/L (昭和46年12月環境庁告示第59号又はJIS K0093)

going, 1346年12月環境庁告示59号又はJIS K0093)

出典：「昭和 46 年 12 月環境庁告示 59 号、改正平成 26 年 11 月 172 日環告 126 号」

(1) 加古川大堰貯水池内(国包)の評価

国包地点における近5ヶ年における健康項目分析結果を表5.5-11に示す。

表5.5-11 健康項目の評価(国包:H24〜H28)

<table>
<thead>
<tr>
<th>項目</th>
<th>単位</th>
<th>H24</th>
<th>H25</th>
<th>H26</th>
<th>H27</th>
<th>H28</th>
<th>平均</th>
<th>最大</th>
</tr>
</thead>
<tbody>
<tr>
<td>カドミウム</td>
<td>㎎/L</td>
<td>0.0003</td>
<td>0.0003</td>
<td>未実施</td>
<td>未実施</td>
<td>0.0003</td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td>金不動</td>
<td>検出されないこと</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>鉛</td>
<td>㎎/L</td>
<td>0.0010</td>
<td>0.010</td>
<td>未実施</td>
<td>未実施</td>
<td>0.0010</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>鋳</td>
<td>㎎/L</td>
<td>0.010</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>0.010</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>六価クロム</td>
<td>㎎/L</td>
<td>0.010</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>0.010</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>砷素</td>
<td>㎎/L</td>
<td>0.0010</td>
<td>0.0010</td>
<td>未実施</td>
<td>未実施</td>
<td>0.0010</td>
<td>0.0010</td>
<td></td>
</tr>
<tr>
<td>水銀</td>
<td>㎎/L</td>
<td>0.00050</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>0.00050</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>アルキル水銀</td>
<td>㎎/L</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>PCB</td>
<td>㎎/L</td>
<td>0.00050</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>0.00050</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>ジクロロメタン</td>
<td>㎎/L</td>
<td>0.00010</td>
<td>0.00010</td>
<td>未実施</td>
<td>未実施</td>
<td>0.00010</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>四塩化炭素</td>
<td>㎎/L</td>
<td>0.00010</td>
<td>0.00010</td>
<td>未実施</td>
<td>未実施</td>
<td>0.00010</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>1,2-ジクロロエタン</td>
<td>㎎/L</td>
<td>0.00010</td>
<td>0.00010</td>
<td>未実施</td>
<td>未実施</td>
<td>0.00010</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>1,1-ジクロロエチレン</td>
<td>㎎/L</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>シス-1,2ジクロロエチレン</td>
<td>㎎/L</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>1,1,1トリクロロエタン</td>
<td>㎎/L</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>1,1,2トリクロロエタン</td>
<td>㎎/L</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>トリクロロエチレン</td>
<td>㎎/L</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>テトラクロロエチレン</td>
<td>㎎/L</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>1,1-ジクロロエチレン</td>
<td>㎎/L</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>チウラム</td>
<td>㎎/L</td>
<td>0.00020</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>0.00020</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>シマジン (CAT)</td>
<td>㎎/L</td>
<td>0.00010</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>0.00010</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>クエン酸カルブ(ベンチオカーブ)</td>
<td>㎎/L</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>ベンゼン</td>
<td>㎎/L</td>
<td>0.00010</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>0.00010</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>セレン</td>
<td>㎎/L</td>
<td>0.001</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>0.001</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>硝酸態及び亜硝酸態窒素</td>
<td>㎎/L</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>ふっ素</td>
<td>㎎/L</td>
<td>0.090</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>0.090</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>ほう素</td>
<td>㎎/L</td>
<td>0.090</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>0.090</td>
<td>未実施</td>
<td></td>
</tr>
<tr>
<td>1.4-ジオキサン</td>
<td>㎎/L</td>
<td>0.005</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>0.005</td>
<td>未実施</td>
<td></td>
</tr>
</tbody>
</table>

※ 定量下限値

(outcast : 資料5-12, 資料5-13)
健康項目について平成24年以降を対象に、健康項目の平均値（全シアンは最大値）を整理した。その結果を表5.5-12に示す。

各項目とも環境基準を満足している。なお、アルキル水銀は総水銀が検出された場合に、その含有量を把握するために調査を実施するが、国包地点では常時定量下限値であったため、アルキル水銀は未検出としている。

<table>
<thead>
<tr>
<th>項目</th>
<th>基準値（mg/L）</th>
<th>国包H24～H28</th>
<th>項目</th>
<th>基準値（mg/L）</th>
<th>国包H24～H28</th>
</tr>
</thead>
<tbody>
<tr>
<td>カドミウム</td>
<td>0.003以下</td>
<td>＜0.0003</td>
<td>1,1,2トリクロロエタン</td>
<td>0.006以下</td>
<td>＜0.0001</td>
</tr>
<tr>
<td>全シアン</td>
<td>検出されないこと</td>
<td>＜0.1</td>
<td>トリクロロエチレン</td>
<td>0.01以下</td>
<td>＜0.0001</td>
</tr>
<tr>
<td>鉛</td>
<td>0.01以下</td>
<td>＜0.001</td>
<td>テトラクロロエチレン</td>
<td>0.01以下</td>
<td>＜0.0001</td>
</tr>
<tr>
<td>六価クロム</td>
<td>0.05以下</td>
<td>＜0.01</td>
<td>1,3-ジクロロプロペン</td>
<td>0.002以下</td>
<td>＜0.0001</td>
</tr>
<tr>
<td>砷素</td>
<td>0.01以下</td>
<td>＜0.001</td>
<td>チウラム</td>
<td>0.006以下</td>
<td>＜0.0002</td>
</tr>
<tr>
<td>総水銀</td>
<td>0.0005以下</td>
<td>＜0.0005</td>
<td>シマジン</td>
<td>0.003以下</td>
<td>＜0.0001</td>
</tr>
<tr>
<td>アルキル水銀</td>
<td>検出されないこと</td>
<td>ND</td>
<td>チオペンカルブ</td>
<td>0.02以下</td>
<td>＜0.0001</td>
</tr>
<tr>
<td>PCB</td>
<td>検出されないこと</td>
<td>＜0.0005</td>
<td>ベンゼン</td>
<td>0.01以下</td>
<td>＜0.0001</td>
</tr>
<tr>
<td>ジクロロメタン</td>
<td>0.02以下</td>
<td>＜0.0001</td>
<td>セレン</td>
<td>0.01以下</td>
<td>＜0.001</td>
</tr>
<tr>
<td>四塩化炭素</td>
<td>0.002以下</td>
<td>＜0.0001</td>
<td>硝酸態及び亜硝酸態窒素</td>
<td>10以下</td>
<td>0.62</td>
</tr>
<tr>
<td>1,2-ジクロロエタン</td>
<td>0.004以下</td>
<td>＜0.0001</td>
<td>ふっ素</td>
<td>0.8以下</td>
<td>0.09</td>
</tr>
<tr>
<td>1,1-ジクロロエチレン</td>
<td>0.1以下</td>
<td>＜0.0001</td>
<td>ほう素</td>
<td>1以下</td>
<td>0.03</td>
</tr>
<tr>
<td>シス-1,2ジクロロエチレン</td>
<td>0.04以下</td>
<td>＜0.0001</td>
<td>1,4-ジオキサン</td>
<td>0.05以下</td>
<td>＜0.005</td>
</tr>
<tr>
<td>1,1,1トリクロロエタン</td>
<td>1以下</td>
<td>＜0.0001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※ 基準値は年間平均値とする。ただし、全シアンに係る基準値については最高値とする。
※「検出されないこと」は定量下限値未満であり、以下の項目は「報告下限値」を下限とする
全シアン0.1mg/L（JIS K 0102 38.1.2及び38.2または38.3）
アルキル水銀 0.0005mg/L（昭和46年12月環境庁告示第59号付表2）
ポリ塩化ビフェニル 0.0005mg/L（昭和46年12月環境庁告示第59号付表3又はJIS K0093）
(2) 下流河川（池尻橋）の評価
池尻橋地点における各年の健康項目分析結果を表 5.5-13 に示す。

<table>
<thead>
<tr>
<th>項目</th>
<th>單位</th>
<th>H24</th>
<th>H25</th>
<th>H26</th>
<th>H27</th>
<th>H28</th>
<th>平均</th>
<th>最大</th>
</tr>
</thead>
<tbody>
<tr>
<td>カドミウム</td>
<td>㎎/L</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
</tr>
<tr>
<td>(全)シアン</td>
<td>㎎/L</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>鉛</td>
<td>㎎/L</td>
<td>0.0010</td>
<td>0.0010</td>
<td>0.0010</td>
<td>0.0010</td>
<td>0.0010</td>
<td>0.0010</td>
<td>0.0010</td>
</tr>
<tr>
<td>6価クロム</td>
<td>㎎/L</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>ヒ素</td>
<td>㎎/L</td>
<td>0.0013</td>
<td>0.0011</td>
<td>0.0011</td>
<td>0.0010</td>
<td>0.0013</td>
<td>0.0013</td>
<td>0.0013</td>
</tr>
<tr>
<td>総水銀</td>
<td>㎎/L</td>
<td>0.00050</td>
<td>0.00050</td>
<td>0.00050</td>
<td>0.00050</td>
<td>0.00050</td>
<td>0.00050</td>
<td>0.00050</td>
</tr>
<tr>
<td>アルキル水銀</td>
<td>㎎/L</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
</tr>
<tr>
<td>PCB</td>
<td>㎎/L</td>
<td>0.00050</td>
<td>0.00050</td>
<td>0.00050</td>
<td>0.00050</td>
<td>0.00050</td>
<td>0.00050</td>
<td>0.00050</td>
</tr>
<tr>
<td>ジクロロメタン</td>
<td>㎎/L</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
</tr>
<tr>
<td>四塩化炭素</td>
<td>㎎/L</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
</tr>
<tr>
<td>1,2-ジクロロエタン</td>
<td>㎎/L</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
</tr>
<tr>
<td>1,1-ジクロロエチレン</td>
<td>㎎/L</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
</tr>
<tr>
<td>レシル-1,2-ジクロロエチレン</td>
<td>㎎/L</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
</tr>
<tr>
<td>1,1,2-トリクロロエタン</td>
<td>㎎/L</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
</tr>
<tr>
<td>トリクロロエチレン</td>
<td>㎎/L</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
</tr>
<tr>
<td>テトラクロロエチレン</td>
<td>㎎/L</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
</tr>
<tr>
<td>1,3-ジクロロプロペン(β-D)</td>
<td>㎎/L</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
</tr>
<tr>
<td>チウラム</td>
<td>㎎/L</td>
<td>0.00020</td>
<td>0.00020</td>
<td>0.00020</td>
<td>0.00020</td>
<td>0.00020</td>
<td>0.00020</td>
<td>0.00020</td>
</tr>
<tr>
<td>デニカルジン(CAT)</td>
<td>㎎/L</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
</tr>
<tr>
<td>チオベンカルブ(ベンチオカーブ)</td>
<td>㎎/L</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
</tr>
<tr>
<td>ベンゼン</td>
<td>㎎/L</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
<td>0.00010</td>
</tr>
<tr>
<td>セレン</td>
<td>㎎/L</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>硫酸態窒素及び亜硝酸態窒素</td>
<td>㎎/L</td>
<td>0.619</td>
<td>0.708</td>
<td>0.573</td>
<td>0.460</td>
<td>0.428</td>
<td>0.558</td>
<td>0.708</td>
</tr>
<tr>
<td>ふっ素</td>
<td>㎎/L</td>
<td>0.095</td>
<td>0.090</td>
<td>0.094</td>
<td>0.090</td>
<td>0.098</td>
<td>0.093</td>
<td>0.098</td>
</tr>
<tr>
<td>ほう素</td>
<td>㎎/L</td>
<td>0.095</td>
<td>0.090</td>
<td>0.094</td>
<td>0.090</td>
<td>0.098</td>
<td>0.093</td>
<td>0.098</td>
</tr>
<tr>
<td>1,4-ジオキサン</td>
<td>㎎/L</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
</tbody>
</table>

※：定量下限値
(出典：資料 5-12，資料 5-13)
健康項目について平成24年以降を対象に、健康項目の平均値（全シアンは最大値）を整理した。その結果を表5.5-14に示す。
各項目とも環境基準を満足している。なお、アルキル水銀は総水銀が検出された場合に、その含有量を把握するために調査を実施するが、池尻橋地点では常時定量下限値であったため、アルキル水銀は未検出としている。

表5.5-14 健康項目の評価とりまとめ（池尻橋：H24〜H28）

<table>
<thead>
<tr>
<th>項目</th>
<th>基準値(mg/L)</th>
<th>池尻H24〜H28</th>
<th>項目</th>
<th>基準値(mg/L)</th>
<th>池尻H24〜H28</th>
</tr>
</thead>
<tbody>
<tr>
<td>カドミウム</td>
<td>0.003以下</td>
<td><0.0003</td>
<td>1,1,2トリクロロエタン</td>
<td>0.006以下</td>
<td><0.0001</td>
</tr>
<tr>
<td>全シアン</td>
<td>検出されないこと</td>
<td><0.1</td>
<td>トリクロロエチレン</td>
<td>0.01以下</td>
<td><0.0001</td>
</tr>
<tr>
<td>鉛</td>
<td>0.01以下</td>
<td><0.001</td>
<td>テトラクロロエチレン</td>
<td>0.01以下</td>
<td><0.0001</td>
</tr>
<tr>
<td>六価クロム</td>
<td>0.05以下</td>
<td><0.01</td>
<td>1,3-ジクロロプロペン</td>
<td>0.002以下</td>
<td><0.0001</td>
</tr>
<tr>
<td>砷素</td>
<td>0.01以下</td>
<td><0.001</td>
<td>チウラム</td>
<td>0.006以下</td>
<td><0.0002</td>
</tr>
<tr>
<td>総水銀</td>
<td>0.0005以下</td>
<td><0.005</td>
<td>シマジン</td>
<td>0.003以下</td>
<td><0.0001</td>
</tr>
<tr>
<td>アルキル水銀</td>
<td>検出されないこと</td>
<td>ND</td>
<td>チオベンカルブ</td>
<td>0.02以下</td>
<td><0.0001</td>
</tr>
<tr>
<td>PCB</td>
<td>検出されないこと</td>
<td><0.0005</td>
<td>ベンゼン</td>
<td>0.01以下</td>
<td><0.0001</td>
</tr>
<tr>
<td>ジクロロメタン</td>
<td>0.02以下</td>
<td><0.0001</td>
<td>セレン</td>
<td>0.01以下</td>
<td><0.001</td>
</tr>
<tr>
<td>四塩化炭素</td>
<td>0.002以下</td>
<td><0.0001</td>
<td>硝酸態及び亜硝酸態窒素</td>
<td>10以下</td>
<td>0.56</td>
</tr>
<tr>
<td>1,2-ジクロロエタン</td>
<td>0.004以下</td>
<td><0.0001</td>
<td>ふっ素</td>
<td>0.8以下</td>
<td>0.09</td>
</tr>
<tr>
<td>1,1-ジクロロエチレン</td>
<td>0.1以下</td>
<td><0.0001</td>
<td>ほう素</td>
<td>1以下</td>
<td>0.03</td>
</tr>
<tr>
<td>シス-1,2ジクロロエチレン</td>
<td>0.04以下</td>
<td><0.0001</td>
<td>1,4-ジオキサン</td>
<td>0.05以下</td>
<td><0.005</td>
</tr>
<tr>
<td>1,1,1トリクロロエタン</td>
<td>1以下</td>
<td><0.0001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※ 基準値は年間平均値とする。ただし、全シアンに係る基準値については最高値とする。
※「検出されないこと」は定量下限値未満であり、以下の項目は「報告下限値」を下限とする
全シアン 0.1mg/L（JIS K 0102 38.1.2及び38.2または38.3）
アルキル水銀 0.0005mg/L（昭和46年12月環境庁告示第59号付表2）
ポリ塩化ビフェニル 0.0005mg/L（昭和46年12月環境庁告示第59号付表3又はJIS K0093）
5.5.3 水温の変化に関する評価

(1) 水温変化の発生要因と評価の視点

一般にダム貯水池は河川と比較して水深が深く、滞留時間が長いため、春期〜夏期にかけて水面に近いほど水温が高くなる現象が見られる。この場合、取水方法・位置によっては流入と下流に水温差が生じる可能性があるため、その度合いを把握・評価する必要がある。

「水温の変化」による影響としては、冷水放流と温水放流が挙げられる。これらの現象は、流入水温に対して放流水温がどの程度変化しているのかを指標に判断される。冷水放流とは、ダム貯水池底層部からの放流や出水時の攪拌により、流入水温より低い水温で放流することである。一般に流入水温が温まり始める一方で、ダム貯水池の水温上昇が緩やかに進行する受熱期（春期〜初夏）において発生しやすい。温水放流とは、流入水温が低下する一方で、蓄熱を受けたダム貯水池の水温低下は緩やかに進行する放熱期（秋期〜冬期）において発生しやすい。

加古川大堰においては、水深が浅く、回転率も大きいことから水温躍層の形成は見られず、通年でほぼ完全混合に近い状況である。

図 5.5-8 に加古川大堰における水温の経月変化を示す。

![図 5.5-8 加古川大堰における水温の経月変化](出典：資料 5-14)
(2) 水温経月変化的整理
加古川大堰における水温の変化の状況を把握するために、流入河川（大住橋）と下流河川（池尻橋）における水温の経月変化の比較を行った。その結果を図 5.5-9 に示す。
加古川大堰供用開始の平成元年（1989 年）から平成 28 年（2016 年）までで測定日数に対して下流水温が流入水温を下回る日数は 44/258 日 (近 5 ヵ年では 10/24 日) であり、水温の最大差は -5℃ (近 5 ヵ年では-2.2℃) となっている。また下流水温が流入水温を上回る日数は 172/258 日 (近 5 ヵ年では 12/24 日) であり、水温の最大差は 4℃ (近 5 ヵ年では 3.8℃) となっている。水温差の平均は 0.7℃ (近 5 ヵ年では 0.5℃) であり、流入水温と下流水温は概ね同程度で推移している。なお、近年、放流水温が若干低くなる場合もみられるが要因については現段階では不明である。

図 5.5-9 流入水温と下流水温の経月変化（S63～H28）
温水放流は夏期を中心に生じているが、水温は概ね25～30℃であり、生物への影響や既得用水の取水への影響は小さいものと考えられる。
なお、加古川大堰下流では、水温について下流への影響や障害は今のところ報告されていない。
図5.5-10に流入・下流水温の比較（平成元年～平成28年）を示す。

図5.5-10 流入・下流水温の比較（平成元年～平成28年）

（出典：資料5-12, 資料5-13）
5.5.4 土砂による水の濁りに関する評価

(1) 濁水長期化現象の発生要因と評価の視点
　一般的にダム貯水池の存在により、洪水時に河川から流入してくる微細な土砂が、長期間にわたってダム貯水池内で沈むことなく浮遊する現象が見られることがある。この場合、取水量方法や位置によっては、流入濁度と下流濁度に差が生じる可能性があるため、その度合いを把握・評価する必要がある。
　「土砂による水の濁り」による影響としては、濁水長期化現象が挙げられる。これは、出水時の流入濁度(SS)に対してダム放流濁度(SS)がどの程度変化しているのか(どのくらいの期間、放流濁度(SS)>流入濁度(SS)となるか)を指標に判断される。
　濁水長期化現象とは、出水時の濁水がダム貯水池内に流入・混合し、ダム貯水池が高濁度化することによって生じる。特に粒子の細かい潰質成分の場合、ダム貯水池内での濁水沈降が遅くなるため、長期間に渡って高濁度水を放流し続けることになる。これにより漁業や上工水利用などの障害、並びに魚類生息などの生態系に影響を及ぼすことがある。

(2) SS 経月変化の整理
　加古川大堰における SS の変化の状況を把握するために、流入河川(大住橋)と下流河川(池尻橋)における SS の経月変化の比較を行った。その結果を図 5.5-11 に示す。
　加古川大堰供用開始の平成元年(1989 年)から平成 28 年(2016 年)までで下流 SS が流入 SS を上回る日数は 149/274 日(近 5 ヵ年では 7/20 日)である。
　このうち、下流 SS と流入 SS の差が 5mg/L 以上の日数は 44 日(近 5 ヵ年では 0 日)、10mg/L 以上の日数は 11 日(近 5 ヵ年では 0 日)であるが、流入 SS に対し著しく下流 SS が上回る現象は見受けられない。

図 5.5-11 流入 SS と下流 SS の経月変化(S63〜H28 年)

出典 : 資料 5-12, 資料 5-13, 資料 5-20
また、流入河川 SS（大住橋）と下流河川 SS（池尻橋）の比較を図 5.5-12 に示す。水温と同様に 45°線（流入と下流が同程度）に固まっており、概ね流入河川 SS と下流河川 SS が同程度であることが分かる。これは、加古川大堰貯水池内では河川と比較して流速が遅くなるが、加古川大堰貯水池内での滞留時間が短いために懸濁物質の沈降がほとんど促進されないためと考えられる。

図 5.5-12 流入・下流 SS の比較（平成元年～28年）

(3) 水質自動観測データによる濁水長期化現象の可能性評価
 月1回の定期調査では、濁水長期化現象の発生有無を把握することは難しいため、1時間ピッチで水質を測定している水質自動観測装置による分析・評価を行った。

加古川大堰には平成16年（2004年）に加古川大堰貯水池内の国包地点に水質自動観測装置を設置し、1時間ピッチで濁度の調査も実施している。また、上流の環境基準点である板波地点にも水質自動観測装置を設置して濁度の自動観測が行われているが、下流濁度の自動観測は行っていない。

そこで、この水質自動観測装置の濁度データを用い、加古川大堰流入濁度と加古川大堰貯水池内濁度を整理した。近年の出水のうち、大堰供用後第2位の出水であった平成25年9月15日の前後における濁度の経時変化と大堰供用後第4位の出水であった平成27年7月17日の前後における濁度の経時変化を図5.5-13に示す。

一部の期間で欠測値や異常値が確認されるが、流入濁度と加古川大堰貯水池内濁度はほぼ同程度である。また、加古川大堰貯水池内濁度は出水後3日程度でもとの濁度に戻り、大きな出水後においても濁水長期化現象は発生していないと考えられる。
図5.5-13(1) 水質自動観測装置による流入濁度と加古川大堰貯水池内濁度の比較（大規模出水時）

図5.5-13(2) 水質自動観測装置による流入濁度と加古川大堰貯水池内濁度の比較（大規模出水時）
5.5.5 富栄養化現象に関する評価

(1) 富栄養化現象の発生要因と評価の視点
一般に富栄養化現象とは、加古川大堰貯水池内の栄養塩類の増加により、植物プランクトンの異常増殖が発生することである。これにより、アオコによる悪臭の発生などの障害を起こすこともある。富栄養化的状況を把握するために、流入河川水質と加古川大堰貯水池内表層水質の経月変化、加古川大堰貯水池内の植物プランクトンの発生状況、流域の社会環境等から整理した結果、加古川大堰は回転率が大きいこともあり、加古川大堰貯水池内での顕著な植物プランクトン増殖は生起しにくい状況である。

加古川大堰上流域における下水道整備などの進捗により、加古川大堰に流入する栄養塩負荷量が減少傾向にある。

供用後、アオコ発生などの水質障害は問題となっていない。

これらのことから、加古川大堰貯水池内では、大きな水質障害を引き起こすような富栄養化現象は発生していないと考えられるが、引き続き富栄養化の動向に対する注意が必要である。

(2) 大堰水質からみた富栄養化現象
加古川大堰の富栄養化傾向を確認するため、水質調査を実施している昭和42年以降における流入河川、加古川大堰貯水池内、下流河川のクロロフィル a濃度、COD濃度、T-N濃度、T-P濃度、植物プランクトン細胞数、藍藻細胞数の推移を図5.5-14に示す。COD濃度、T-N濃度、T-P濃度については大住橋、国包、池尻橋の3地点、植物プランクトン細胞数、藍藻細胞数については国包、堰直上、放流直下の3地点（それぞれSt.1、St.2、St.3；5.3.5参照）の水質を示している。なお、クロロフィル a濃度については、万才橋において調査が実施されているため、流入河川として万才橋を示している。

各項目とも全体的な傾向として、流入河川水質と加古川大堰貯水池内の水質が概ね同程度であることが分かる。このことから、加古川大堰の富栄養化現象は、流入河川の水質に大きく依存するものと推測される。

また、COD濃度、T-N濃度は流入河川、加古川大堰貯水池内とも図5.5-15に示すように下水道整備の進捗、近年の高度処理化により、いずれも近年になって低下傾向にある。しかし、T-P濃度については加古川大堰貯水池内や下流河川（池尻橋）でCODやT-Nの改善傾向にはなっておらず、美嚢川からの流入影響を受けていると考えられる。したがって、加古川大堰の富栄養状況については今後も現状の調査を継続し、動向把握に努める必要があると言える。

なお、加古川大堰貯水池内（国包）のクロロフィル a濃度は、ほとんどの年でOECD基準の年最大25μg/L、年平均8μg/L以上で推移しているが、アオコ等の発生は確認されない。
図5.5-14 富栄養化評価関連項目の経月変化

（出典：資料5-12，資料5-13）
(3) 流況による富栄養化の状況
加古川大堰国包地点における近年の T-P 濃度は 0.05～0.1mg/L 程度であり、OECD(1981)の富栄養化指標では「富栄養レベル (0.035mg/L 以上)」に位置づけられ、水質が悪化するポテンシャルを有しているが、回転率が大きいため、顕著な水質悪化は生じていない状況である。

ここで、流況によるクロロフィル a 濃度の変動を把握するため、平成元年 (1989年) 以降を対象に、加古川大堰の年平均流入量と年平均クロロフィル a 濃度の相関関係を整理した結果を図 5.5-16 に示す。加古川大堰の流入量が少ない渇水年において、加古川大堰貯水池内のクロロフィル a 濃度が上昇している傾向が確認される。

さらに細かく期間を確認するため、加古川大堰のクロロフィル a 濃度調査結果と調査日の加古川大堰流入量 (当日流量) との相関関係を、水温の高い 5 月～9 月とそれ以外の期間に分類し整理した結果を図 5.5-17 に示す。特に、5 月～9 月において加古川大堰への流入量が少なくなるほど濃度が高くなる傾向が確認される。
この要因として以下が考えられる。
- 回転率の減少により、加古川大堰貯水池内（湛水域）での植物プランクトン増殖が生じている。
- 加古川は河床勾配が緩やかであり、流量が少ない場合は順流域においても植物プランクトンが増殖し、それが加古川大堰に流入している。
- 水田や河川の付着藻類などが加古川大堰に流入してクロロフィルa濃度が増加している。

図 5.5-18 万才橋と国包クロロフィル a 濃度の相関図
万才橋と国包におけるクロロフィル a 濃度の相関図を図 5.5-18 に示す。万才橋においても 50μg/L を超過する濃度が確認され、流入地点での濃度上昇が生じていることが確認できる。また、湛水域の国包では万才橋より平均で 1〜1.5 倍程度の濃度上昇傾向にあり、加古川大堰貯水池内での内部生産が生じていることも示唆される。今後も現状の調査を継続し、動向把握に努めるものとする。
（4）流入支川（美嚢川）の影響

流入支川である美嚢川は、T-P の経年変化図及び経月変化図（後述 5.5.7 参照）に見られるように、負荷量が加古川大堰の水質に大きな影響を及ぼす可能性が考えられた。そこで、美嚢川観測開始の平成元年以降を対象に、万才橋と美嚢川橋の負荷量の算定を行った結果を図 5.5-19 に示す。

近年における万才橋と美嚢川橋の T-P 負荷量の比はおおよそ 2:1 となり、このことから、加古川大堰に流入する T-P に対する美嚢川の影響は大きいと考えられる（流域面積比は万才橋：美嚢川橋 = 4:1）。なお、下水道整備等により、近年 T-P の濃度がやや低くなる傾向にあるため、T-P 負荷量も減少する傾向がうかがえる。

(出典 : 資料 5-12, 資料 5-13, 資料 5-20)

図 5.5-19 万才橋と美嚢川橋における T-P 濃度及び負荷量の推移

注：T-P 負荷量は、国包地点における比流量に両地点の流域面積（万才橋：1,330km²、美嚢川橋：304km²）を乗じてそれぞれの地点における流量を算出し、水質調査結果における T-P 濃度を乗じて算定した。
(5) N/P 比の推移

昭和 42 年（1967 年）〜平成 28 年（2016 年）について、流入本川（板波、大住橋、万才橋）、流入支川（美嚢川橋）、加古川大堰貯水池内（国包、堰直上）、下流河川（池尻橋、相生橋）を対象に、N/P 比（=T-N/T-P）を整理した。その結果を図 5.5-20 に示す。なお、昭和 42 年（1967 年）〜昭和 53 年に関しては T-N、T-P ともに測定が行われていないため、ここでは昭和 54 年（1979 年）以降を図示する。

各地点とも年によってばらつきが大きいが、平成 7 年以降の N/P 比はわずかに小さくなる傾向にあり、近年は概ね横這いになっている。これは、T-N 濃度、T-P 濃度ともに減少しているが、T-P 濃度の減少に比べて T-N 濃度の減少が大きいことが要因として挙げられ、これらは下水道の普及や兵庫県の下水処理場の整備進捗（流域下水道の高度処理）が主な要因として考えられる。

また、流入本川、加古川大堰貯水池内、下流河川の各地点は概ね同様の傾向を示しているが、流入支川（美嚢川橋）については N/P 比が概ね 5〜10 の範囲にあり、他の地点と比べて小さくなっている。これは、美嚢川橋の T-N 濃度は上流域の加古川上流浄化センターによる窒素除去を中心とした高度処理もあって他の地点と変わらないが、T-P 濃度が他の地点よりも高いことに起因している。

（出典：資料 5-12，資料 5-13）

図 5.5-20 N/P 比の経年変化
5.5.6 DO と底質に関する評価
(1) DO の評価

平成6年（1994年）～平成28年（2016年）の堰直上地点（加古川大堰貯水池内）におけるDOの推移を図5.5-21に示す。

加古川大堰は回転率が709回/year（平成元年～28年平均）と大きいこともあり、堰直上中央部において表層・中層・底層のDOはほぼ同程度であり、貧酸素水塊は確認されていない。なお、平成20年8月に底層のDOが3mg/Lに低下したが、この年の7月から8月にかけて回転率が例年に比べてやや小さかったことが一要因として考えられる。

(出典 : 資料5-14)

図5.5-21 加古川大堰貯水池内（堰直上）におけるDOの推移

(参考：加古川大堰貯水池（国包層）のDO日間変動例（H20年8月の例）)
(2) 底質濃度の評価

加古川大堰では、加古川大堰貯水池内の国包地点において底質の分析を実施している。窒素、リシンは貯水池の下層で貧酸素・無酸素状態になると、底泥から溶出し、それが高濃度になると、大堰の富栄養化にも影響を及ぼす可能性がある。平成元年(1989年)～平成28年(2016年)の国包地点(加古川大堰貯水池内)における底質濃度の推移を以下の図5.5-22に示す。

(出典：資料5-12)

図5.5-22(1) 底質濃度年変化(硫化物、T-N、T-P、強熱減量)

注：図中緑線は、堰洪水操作実施日に相当

5-130
底質が変動する年は、前年までに大きな出水を受けて、堰の全開操作を実施していないケースが多い。また、この時の底質の粒度組成は細粒分の比率が大きくなる傾向にあるため、流入負荷、もしくは堰での内部生産による有機物・栄養塩などの蓄積が生じているものと考えられるが、既往の測定データからは明確には言えない状況である。

前年までに堰の全開操作がなく、底質が変動している状況下において渇水により加古川大堰の回転率が低下した場合、底泥に堆積している有機物・栄養塩などが溶出し、水質悪化をもたらすこともある懸念される。なお、近5ヶ年は、硫化物やT-N、T-P、鉄、マンガン、CODなどについて底質中の濃度に横ばいか、低下傾向が見られる。

今後も定期的に底質調査を実施しながら監視していくことが必要である。
5.5.7 水質縦断変化による大堰の影響評価

近5ヶ年（平成24年〜平成28年（2012年〜2016年））を対象に、加古川大堰の水質縦断変化として板波（流入）から相生橋（下流）まで流下するに伴って水質がどのように変化しているのかを示し、加古川大堰の影響について評価する。

(1) 年平均水温の縦断変化

流入河川（板波）から下流河川（相生橋）までの年平均水温の縦断変化をみると、大住橋及び相生橋で、やや高い傾向にある。これは大住橋及び相生橋では近年、調査回数が少なく、水温が高い時期のデータに平均値が押し上げられているためである。

流入河川から下流にかけて顕著な水質変化が見られないことから、加古川大堰の存在による年平均水温への影響は小さいと判断される。

なお、図中には池尻橋、国包、大住橋における加古川大堰供用開始前のデータも掲載しているが、平均値をみると近5ヶ年は加古川大堰供用前に比べ、全体的に水温が高い傾向となっている。

図5.5-23に加古川大堰年平均水温の縦断変化を示す。
(2) 年平均 BOD の綫断変化
流入河川（板波）から下流河川（相生橋）までの年平均 BOD 濃度の綫断変化をみると、加古川大堰貯水池内（堰直上）で美嚢川の流入や加古川大堰貯水池内の植物プランクトンの内部生産に伴い若干上昇する傾向が見られるが、上昇濃度はさほど大きくなく、下流河川（池尻橋）の濃度は、流入河川（大住橋）よりも僅かに高い程度である。

流入河川から下流にかけて顕著な水質変化が見られないことから、加古川大堰の存在による年平均 BOD への影響は小さいと判断される。なお、図中には池尻橋、国包、大住橋における加古川大堰供用開始前のデータも掲載しているが、平均値をみると近 5 年は加古川大堰供用前に比べて低い傾向となっている。

図 5.5-24 に加古川大堰 BOD 年平均値の綫断変化を示す。

図 5.5-24 加古川大堰 BOD 年平均値の綫断変化
※ 「過去」は大堰供用前（昭和 63 年以前）のデータで整理
※ 美嚢川橋は平成 14 年～28 年の最大・平均・最小で整理
※ 環境基準の達成状況は 75%値で評価を行うが、綫断方向での変化をみる際には、地点毎に異なった月の測定値（75%に該当する月）を使い代表値としてそぐわないため、ここでは年平均値を用いている。
(3) 年平均 pH の縦断変化
流入河川（板波）から下流河川（相生橋）までの年平均 pH の縦断変化をみると、美嚢川の流入や加古川大堰貯水池内の植物プランクトンの内部生産に伴い若干上昇する傾向が見られる。
しかし、いずれの地点も、近5ヶ年全ての年で環境基準を満足しているとともに、流入河川から下流にかけて顕著な水質変化が見られないことから、加古川大堰の存在による pH への影響は小さいと判断される。なお、図中には池尻橋、国包、大住橋における加古川大堰供用開始前のデータも掲載しているが、平均値をみると近5ヶ年は加古川大堰供用前に比べて高い傾向となっていている。
図 5.5-25 に加古川大堰年平均 pH の縦断変化を示す。

図 5.5-25 加古川大堰年平均 pH の縦断変化
※ 「過去」は大堰供用前（昭和63年以前）のデータで整理
※ 美嚢川橋は平成14年～28年の最大・平均・最小で整理
(4) 年平均 DO の縦断変化

流入河川（板波）から下流河川（相生橋）までの年平均 DO の縦断変化をみると、加古川大堰貯水池内（堰直上）で美嚢川の流入や加古川大堰貯水池内の植物プランクトンの内部生産に伴い若干上昇する傾向が見られるが、下流河川の池尻橋では流入水質と同程度になっている。さらに感潮区間の相生橋では、塩分濃度を含むことによる飽和溶存酸素濃度の減少もあり、低下する傾向が見られる。

いずれの地点も、近 5 ケ年全ての年で環境基準を満足しているとともに、流入河川から下流にかけて顕著な水質変化が見られないことから、加古川大堰の存在による DO への影響は小さいと判断される。なお、図中には池尻橋、国包、大住橋における加古川大堰供用開始前のデータも掲載しているが、平均値をみると近 5 ケ年は加古川大堰供用前に比べて高い傾向となっている。

図 5.5-26 に加古川大堰年平均 DO の縦断変化を示す。
(5) 年平均 SS の縦断変化

流入河川（板波）から下流河川（相生橋）までの年平均 SS 濃度の縦断変化をみると、低い値でほぼ横這いで推移しており、下流河川（池尻橋）でやや上昇するが、流入河川と概ね同程度となっている。

いずれの地点も、近 5 ヶ年全ての年で環境基準を満足しているとともに、流入河川から下流への顕著な水質変化が見られないことから、加古川大堰の存在による年平均 SS への影響は小さいと考えられる。なお、図中には池尻橋、国包、大住橋における加古川大堰供用開始前のデータも掲載しているが、平均値をみると近 5 ヶ年は加古川大堰供用前に比べて低い傾向となっている。

図 5.5-27 に加古川大堰年平均 SS の縦断変化を示す。

図 5.5-27 加古川大堰年平均 SS の縦断変化
※ 「過去」は大堰供用前（昭和 63 年以前）のデータで整理
※ 美嚢川橋は平成 14 年～28 年の最大・平均・最小で整理

[図の説明]
(6) 年平均大腸菌群数の縦断変化
流入河川（板波）から下流河川（相生橋）までの年平均大腸菌群数の縦断変化をみると、加古川大堰貯水池内（堰直上）にかけては減少するが、下流河川（池尻橋）では若干増加する傾向が見られる。さらに感潮区間の相生橋では海水の希釈効果などもあり、低下する傾向が見られる。

相生橋を除くいずれの地点も、近5ヶ年のほとんどの年で環境基準を満足していないが、流入河川から下流への顕著な水質悪化が見られないことから、加古川大堰の存在による年平均大腸菌群数への影響は小さいと判断される。なお、図中には池尻橋、国包、大住橋における加古川大堰供用開始前のデータも掲載しているが、平均値をみると近5ヶ年は加古川大堰供用前に比べ、やや大腸菌群数が上昇している。大腸菌群数は一般に気温・水温が上昇する夏期に濃度が高くなる傾向にあり、先に示した水温の傾向（過去よりも現在の方が水温が高い）から、近年の水温上昇も一因として考えられる。

図5.5-28に加古川大堰年平均大腸菌群数の縦断変化を示す。
(7) 年平均 COD の縦断変化
流入河川（板波）から下流河川（相生橋）までの年平均 COD 濃度の縦断変化をみると、加古川大堰貯水池内（堰直上）で美嚢川の流入や加古川大堰貯水池内の植物プランクトンの内部生産に伴い若干上昇する傾向が見られるが、流入河川と下流はほぼ同程度となっている。

流入河川から下流に向かって顕著な水質変化が見られないことから、加古川大堰の存在による年平均 COD への影響は小さいと判断される。なお、図中には池尻橋、国包、大住橋における加古川大堰供用開始前のデータも掲載しているが、平均値をみると近 5 ヶ年は加古川大堰供用前に比べ、低い傾向となっている。

図 5.5-29 に加古川大堰 COD 年平均値の縦断変化を示す。

図 5.5-29 加古川大堰 COD 年平均値の縦断変化
※「過去」は大堰供用前（昭和 63 年以前）のデータで整理
※美嚢川橋は平成 14 年〜28 年の最大・平均・最小で整理
※環境基準の達成状況は 75%値で評価を行うが、縦断方向での変化をみる際には、地点毎に異なった月の測定値（75%に該当する月）を使い代表値としてそぐわないため、ここでは年平均値を用いている。
(8) 年平均 T-N の縦断変化
流入河川（板波）から下流河川（相生橋）までの年平均 T-N 濃度の縦断変化をみると、下流河川（池尻橋）までほぼ横這いで推移しており、流入河川と下流はほぼ同程度となっている。さらに感潮区間の相生橋では海水の希釈効果などもあり、低下する傾向が見られる。
流入河川から下流にかけて顕著な水質変化が見られないことから、加古川大堰の存在による年平均 T-N への影響は小さいと判断される。なお、図中には池尻橋、国包、大住橋における加古川大堰供用開始前のデータも掲載しているが、平均値をみると近 5 ヶ年は加古川大堰供用前に比べて低い傾向となっている。
図 5.5-30 に加古川大堰年平均 T-N 濃度の縦断変化を示す。

図 5.5-30 加古川大堰年平均 T-N 濃度の縦断変化
※「過去」は大堰供用前（昭和 63 年以前）のデータで整理
※美嚢川橋は平成 14 年～28 年の最大・平均・最小で整理
(9) 年平均 T-P の縦断変化
流入河川（板波）から下流河川（相生橋）までの年平均 T-P 濃度の縦断変化をみると、万才橋と国包の間で濃度が上昇しており、加古川大堰に流入する T-P に対する美嚢川の影響は大きいと考えられ、流入支川（美嚢川）による加古川大堰貯水池内の T-P 濃度上昇の可能性が考えられる。
なお、図中には池尻橋、国包、大住橋における加古川大堰供用開始前のデータも掲載しているが、平均値をみると近 5 ヶ年は加古川大堰供用前に比べて低い傾向となっている。
図 5.5-31 に加古川大堰年平均 T-P 濃度の縦断変化を示す。

図 5.5-31 加古川大堰年平均 T-P 濃度の縦断変化
※「過去」は大堰供用前（昭和 63 年以前）のデータで整理
※美嚢川橋は平成 24 年～28 年の最大・平均・最小で整理
5.6 まとめ

(1) 水質評価のまとめ

<table>
<thead>
<tr>
<th>項 目</th>
<th>検討結果等</th>
<th>評 価</th>
<th>改善の必要性</th>
</tr>
</thead>
</table>
| 年間値からの評価 | 流入河川(大住橋)の平成24年から平成28年までの平均は、水温:19.0℃、pH:7.8、BOD75%値:1.1mg/L、SS:6mg/L、DO:10.2mg/L、大腸菌群数:11,827MPN/100mL、T-N:0.74mg/L、T-P:0.058mg/L、としている。加古川大堰貯水池内(国包)の平成24年から平成28年までの平均は、水温:17.9℃、pH:7.8、BOD75%値:1.6mg/L、SS:8mg/L、DO:9.6mg/L、大腸菌群数:7,886MPN/100mL、T-N:0.94mg/L、T-P:0.081mg/L、クロロフィル a:9.6μg/Lとなっている。下流河川(池尻橋)の平成24年から平成28年までの平均は、水温:18.1℃、pH:7.9、BOD75%値:1.4mg/L、SS:6mg/L、DO:10.1mg/L、大腸菌群数:5,473MPN/100mL、T-N:0.83mg/L、T-P:0.072mg/Lとなってい る。流入河川から加古川大堰貯水池内、下流河川にかけて、水質に大きな変化は見られない。生活環境項目は、流入河川を由来とする大腸菌群数が満足していないが、水浴場水質判定基準の糞便性大腸菌群数では、ほとんどの場合「可」と判断されるため、ただちに人体に害を与えるレベルではない。健康項目は全ての項目で環境基準値を満足している。
| | | | 現時点で必要なし（現状調査の継続） |
| 水温の変化 | 加古川大堰供用開始の平成元年(1989年)から平成28年(2016年)までで測定日数に対して下流水温が流入水温を下回る日数は44/258日(近5ヶ年では10/24日)である。また、冷水の最大差は-5℃(近5ヶ年では-2.2℃)となっている。下流水温が流入水温を上回る日数は172/258日(近5ヶ年では12/24日)である。また、温水の最大差は4℃(近5ヶ年では3.8℃)となっている。水温差の平均は0.7℃(近5ヶ年では0.5℃)であり、流入水温と下流水温は概ね同程度で推移している。加古川大堰貯水池内では、水温はほぼ混合状態となっており、流入水温と下流水温は概ね同程度となっていることから、水温の変化による影響は小さいものと考えられる。 | | 現時点で必要なし（現状調査の継続） |
| 土砂による水の濁り | 平成元年から平成28年までで下流河川(池尻橋)SSが流入河川(大住橋)SSを上回る日数は149/274日(近5ヶ年では7/20日)である。このうち、下流SSと流入SSの差が3mg/L以上の日数は44日(近5ヶ年では0日)、10mg/L以上の日数は11日(近5ヶ年では0日)である。また、大堰の供用開始後で第4位の規模の出水(平成27年7月に発生)を対象に、自記録式濁度計により流入濁度と加古川大堰貯水池内濁度を比較した結果、流入濁度と加古川大堰貯水池内濁度は同程度の値で推移している。 | | 現時点で必要なし（現状調査の継続） |
表 5.6-1(2) 水質評価一覧表

<table>
<thead>
<tr>
<th>項 目</th>
<th>検討結果等</th>
<th>評 価</th>
<th>改善の必要性</th>
</tr>
</thead>
<tbody>
<tr>
<td>富栄養化現象</td>
<td>富栄養化に係る水質項目は、全体的な傾向として、流入河川の水質と加古川大堰貯水池内の水質が概ね同程度である。このことから、加古川大堰の富栄養化現象は、流入河川の水質に大きく依存するものと推測される。但し、5月から9月のクロロフィル a 濃度は、加古川大堰への流入量が少なくなるほど濃度が高くなる傾向が確認され、加古川大堰では渇水流況時に水質が悪化するケースも見受けられる。要因としては、河川からの植物プランクトン流入、加古川大堰貯水池内での内部生産が考えられる。また、徐々に減少傾向にあるものの、美嚢川流域からの排出負荷が本川に対して大きい割合を占めている。T-Pについては、長期的にみると改善傾向にある。流入支川（美嚢川）による加古川大堰貯水池内水質への影響が大きいと考えられる。大きな水質障害を引き起こすような富栄養化現象は発生していない。美嚢川の水質については、現状調査を継続し、流域関係機関と協力のうえ、水質改善に努める。</td>
<td></td>
<td>美嚢川の水質について、現状調査を継続し、流域関係機関と協力のうえ、水質改善に努める。</td>
</tr>
<tr>
<td>DO と底質</td>
<td>DO 鉛直分布によると、加古川大堰貯水池内の堰直上地点では貧酸素水塊の形成は確認されていない。底質については年変動があるが、近年は硫化物やT-N、T-P、鉄、マンガン、CODなど多くの項目で底質中の濃度が低くなる傾向がある。また、底質の粒度組成は変動があるものの細粒分の比率が多くなる傾向にあるため、流入負荷、もしくは堰での内部生産による有機物・栄養塩などの蓄積が生じていると考えられるが、既往の測定データからは明確には言えない状況である。近5年度は硫化物やT-N、T-P、鉄、マンガン、CODなど多くの項目で底質中の濃度が低くなる傾向がある。また、嫌気的な条件が短持ちであるため、底泥からの溶出の影響は小さいと考えられる。底質の変動状況を把握するため継続して調査を実施する必要がある。</td>
<td></td>
<td>底質の変動状況を把握するため継続して調査を実施する必要がある。</td>
</tr>
</tbody>
</table>

(2) 課題の抽出

水質評価を受けて、今後の水質監視に向けた課題点としては以下の点が挙げられる。

○富栄養化現象
加古川大堰は滯留時間が短く、植物プランクトンの増殖は生じにくいものの、夏期に流量が少なくなった期間には一時的にクロロフィル a 濃度が上昇する場合がある。この要因としては、加古川大堰貯水池内での内部生産による上昇に加え、河川・流域からの植物プランクトン流入も考えられる。加古川大堰貯水池内及び流入河川でのクロロフィル a 濃度の把握、及び加古川大堰貯水池内での発生植物プランクトンの優占種を継続して監視していく必要がある。また、流入支川（美嚢川）からは徐々に減っているものの、本川に比べて高濃度のT-Pが流入するなど、加古川大堰貯水池内水質への影響が懸念される。よって流入支川からのT-Pなどの栄養塩類について引き続き監視していく必要がある。

○DO と底質
DOについては、加古川大堰は滯留時間が短く、加古川大堰貯水池内で貧酸素水塊は形成されていないことから、課題事項は特にないため、底質については年変動が大きく、底質が変化する年・改善する年について、流量や堰全開操作の実施の有無との関係が明確となっていない。また、底質が加古川大堰貯水池内水質や下流河川水質に及ぼす影響を把握出来ていないことが課題として挙げられる。上記も踏まえ、引き続き調査を継続していく必要がある。
(3) 今後の方針

今後の方針について、表 5.6-2 及び概要を表 5.6-3 に示す。

表 5.6-2 水質のまとめと今後の方針（案）

<table>
<thead>
<tr>
<th>項目</th>
<th>評価</th>
<th>今後の方針</th>
</tr>
</thead>
<tbody>
<tr>
<td>環境基準項目及びその他水質項目</td>
<td>至近 5 ヵ年について、流入河川、下流河川及び貯水池とともに、大腸菌群数を除き環境基準を満足し、若干低下傾向がみられる。大腸菌群数は環境基準値を超過しているが、糞便性大腸菌群数は概ね 1000 個 /100mL 以下と低値で推移している。</td>
<td>現状の調査を継続し、水質の状況を把握する。</td>
</tr>
<tr>
<td>貯水池溶存酸素 (DO)</td>
<td>流入河川、下流河川及び貯水池ともに、環境基準を満足している。</td>
<td>現状の調査を継続し、貯水池溶存酸素 (DO) の状況を把握する。</td>
</tr>
<tr>
<td>放流水の水温</td>
<td>流入・下流河川では、夏季は下流河川（池尻橋）の水温が、流入河川（万才橋）の水温より若干高い傾向にあるが、概ね同程度である。</td>
<td>現状の調査を継続し、放流水の水温の状況を把握する。</td>
</tr>
<tr>
<td>放流水の濁り</td>
<td>平常時の濁度は概ね 15 度以下であり、下流河川（池尻橋）の濁度は流入河川（万才橋）の濁度と概ね同程度である。出水による濁度の高い状態がみられるが、それによる大きな問題は生じていない。</td>
<td>現状の調査を継続し、放流水の濁りの状況を把握する。</td>
</tr>
<tr>
<td>底質</td>
<td>近 5 ヵ年は各項目ともに底質中の濃度は、横ばい又は減少傾向が見られる。</td>
<td>現状の調査を継続し、底質及び貯水池の状況を把握する。</td>
</tr>
<tr>
<td>富栄養化現象</td>
<td>至近 5 ヵ年において、アオコや淡水赤潮の発生は確認されていないが、夏期に一時的にクロロフィル a 濃度が上昇する場合がある。</td>
<td>現状の調査を継続し、水質及び貯水池の状況を把握する。特に、本川よりも栄養塩類濃度が高い流入支川の美嚢川の水質や加古川大堰貯水池内クロロフィル a 濃度の把握、発生植物プランクトンの優占種を継続して監視していく。</td>
</tr>
</tbody>
</table>
表 5.6-3 水質のまとめと今後の方針概要（案）

<table>
<thead>
<tr>
<th>項目</th>
<th>評価</th>
<th>今後の方針</th>
</tr>
</thead>
<tbody>
<tr>
<td>環境基準項目及びその他水質項目</td>
<td>至近 5 ヶ年について、流入河川、下流河川及び貯水池ともに、大腸菌群数を除き環境基準を満足し、若干低下傾向がみられる。</td>
<td>現状の調査を継続し、水質の状況を把握する。</td>
</tr>
<tr>
<td>貯水池溶存酸素（DO）</td>
<td>流入河川、下流河川及び貯水池ともに、環境基準を満足している。</td>
<td>現状の調査を継続し、貯水池溶存酸素（DO）の状況を把握する。</td>
</tr>
<tr>
<td>放流水の水温</td>
<td>流入・下流河川では、夏季は下流河川（池尻橋）の水温が、流入河川（万才橋）の水温より若干高い傾向にあるが、概ね同程度である。</td>
<td>現状の調査を継続し、放流水の水温の状況を把握する。</td>
</tr>
<tr>
<td>放流水の濁り</td>
<td>平常時の濁度は概ね 15 度以下であり、下流河川（池尻橋）の濁度は流入河川（万才橋）の濁度と概ね同程度である。</td>
<td>現状の調査を継続し、放流水の濁りの状況を把握する。</td>
</tr>
<tr>
<td>底質</td>
<td>近 5 ヶ年は各項目ともに底質中の濃度は、横ばい又は減少傾向が見られる。</td>
<td>現状の調査を継続し、底質及び貯水池の状況を把握する。</td>
</tr>
<tr>
<td>富栄養化現象</td>
<td>至近 5 ヶ年において、アオコや淡水赤潮の発生は確認されていない。貯水池内クロロフィル a は、流入河川に追随しており流入河川と同程度であり、極端に高くなってしまっていない。</td>
<td>現状の調査を継続し、水質及び貯水池の状況を把握する。</td>
</tr>
</tbody>
</table>
表 5.7-1 使用資料リスト

<table>
<thead>
<tr>
<th>区分</th>
<th>№</th>
<th>文献・資料名</th>
<th>発行者</th>
<th>発行年月</th>
<th>引用ページ箇所</th>
</tr>
</thead>
<tbody>
<tr>
<td>自然環境</td>
<td>5-1</td>
<td>環境GIS HP</td>
<td>独立行政法人国立環境研究所</td>
<td>—</td>
<td>類型指定状況</td>
</tr>
<tr>
<td></td>
<td>5-2</td>
<td>河川水質試験方法案 (2008年版)</td>
<td>国土地理院</td>
<td>平成21年3月</td>
<td>水質環境基準値 (河川)</td>
</tr>
<tr>
<td>社会環境</td>
<td>5-3</td>
<td>地形図1/50,000</td>
<td>国土地理院</td>
<td>平成12年</td>
<td>水質観測地点</td>
</tr>
<tr>
<td></td>
<td>5-4</td>
<td>平成28年度ダム等管理フォローアップ年次報告書【加古川大堰】</td>
<td>国土交通省 姫路河川国道事務所</td>
<td>平成28年</td>
<td>加古川大堰排水区間</td>
</tr>
<tr>
<td></td>
<td>5-5</td>
<td>気象統計情報</td>
<td>気象庁HP</td>
<td>昭和42年 ～ 平成28年</td>
<td>風速観測所、降水量観測所の気温</td>
</tr>
<tr>
<td></td>
<td>5-6</td>
<td>加古川パンフレット</td>
<td>国土交通省 姫路河川国道事務所</td>
<td>—</td>
<td>加古川流域図</td>
</tr>
<tr>
<td></td>
<td>5-7</td>
<td>兵庫県統計書 全国データ集</td>
<td>兵庫県HP</td>
<td>—</td>
<td>兵庫県の全国水質データ (流域内人口、観光客数、土地利用状況、LULC分類)</td>
</tr>
<tr>
<td></td>
<td>5-8</td>
<td>国土交通省 近畿地方整備局資料</td>
<td>国土交通省 近畿地方整備局</td>
<td>—</td>
<td>兵庫県の全国水質データ (流域内人口、観光客数、土地利用状況、LULC分類)</td>
</tr>
<tr>
<td></td>
<td>5-9</td>
<td>社団法人 日本下水道協会 HP</td>
<td>社団法人 日本下水道協会</td>
<td>昭和60年 ～ 平成28年</td>
<td>下水道普及率 (全国)</td>
</tr>
<tr>
<td></td>
<td>5-10</td>
<td>兵庫県水質データ 平成27年度版</td>
<td>兵庫県HP</td>
<td>昭和60年 ～ 平成27年</td>
<td>下水道普及率 (兵庫県)</td>
</tr>
<tr>
<td></td>
<td>5-11</td>
<td>下水道統計 行政編</td>
<td>社団法人 日本下水道協会</td>
<td>昭和42年 ～ 平成26年</td>
<td>下水道の動態データ (流域内人口、観光客数、土地利用状況、LULC分類)</td>
</tr>
<tr>
<td>水質調査</td>
<td>5-12</td>
<td>水質関連試験作業 加古川大堰関連分析結果報告書</td>
<td>近畿技術事務所, 社団法人 近畿建設協会</td>
<td>平成4年 ～ 平成28年</td>
<td>加古川大堰調査地点の水質及び底質</td>
</tr>
<tr>
<td></td>
<td>5-13</td>
<td>国土交通省水文・水質データベース</td>
<td>国土交通省HP</td>
<td>昭和42年 ～ 平成28年</td>
<td>加古川大堰調査地点の水質</td>
</tr>
<tr>
<td></td>
<td>5-14</td>
<td>加古川大堰水質調査業務 水質結果報告書</td>
<td>社団法人 近畿建設協会</td>
<td>平成6年 ～ 平成28年</td>
<td>温度、DOの3層 (表層、中層、底層データ)</td>
</tr>
<tr>
<td></td>
<td>5-15</td>
<td>加古川出水時水質データ</td>
<td>国土交通省 姫路河川国道事務所</td>
<td>平成10年 ～ 平成15年</td>
<td>植物プランクトンデータ (流域内人口、観光客数、土地利用状況、LULC分類)</td>
</tr>
<tr>
<td></td>
<td>5-16</td>
<td>加古川出水時水質データ</td>
<td>社団法人 日本下水道協会</td>
<td>昭和42年 ～ 平成26年</td>
<td>下水道の動態データ (流域内人口、観光客数、土地利用状況、LULC分類)</td>
</tr>
<tr>
<td></td>
<td>5-17</td>
<td>水質検査結果</td>
<td>近畿技術事務所</td>
<td>平成18年 ～ 平成27年</td>
<td>加古川大堰原水の異臭味項目</td>
</tr>
<tr>
<td></td>
<td>5-18</td>
<td>水質検査結果</td>
<td>兵庫県HP</td>
<td>平成18年 ～ 平成27年</td>
<td>加古川大堰原水の異臭味項目</td>
</tr>
<tr>
<td>ダム管理情報</td>
<td>5-19</td>
<td>加古川大堰概要パンフレット</td>
<td>国土交通省 姫路河川国道事務所</td>
<td>—</td>
<td>加古川大堰放流施設概要</td>
</tr>
<tr>
<td></td>
<td>5-20</td>
<td>加古川大堰管理年報</td>
<td>国土交通省 姫路河川国道事務所</td>
<td>平成元年 ～ 平成28年</td>
<td>加古川大堰発電所、流入量、放流量</td>
</tr>
</tbody>
</table>
6. 生物
6.1 評価の進め方
6.1.1 評価方針

加古川大堰における生物調査の実施状況を表 6.1-1 に示す。

加古川大堰は、既存の堰を統合する工事に昭和 55年に着手し、平成元年より管理を開始している。

加古川大堰が位置する加古川では、加古川大堰管理開始 1年後の平成 2年度より、河川水辺の国勢調査が実施されており、平成 17年度までに 3巡目の調査を終了し、現在、魚類と底生動物は 5巡目、その他の生物の調査は 4巡目に至っている。河川水辺の国勢調査においては、調査頻度・地点等が、マニュアル改訂に伴い、適宜変更されている。

河川水辺の国勢調査の主な変更内容は、下記のとおりである。

- 平成 2年度 河川水辺の国勢調査開始（加古川大堰管理開始 1年後）。
- 平成 4年度～「河川水辺の国勢調査マニュアル（案）（生物調査編）」公表。
- 平成 5年度～「河川水辺の国勢調査マニュアル（案）（生物調査編）」第 1回改訂。
- 平成 9年度～「河川水辺の国勢調査マニュアル[河川版]（生物調査編）」第 2 回改訂。
- 平成 18年度～「河川水辺の国勢調査 基本調査マニュアル[河川版]」第 3 回改訂。
 （調査頻度、調査地点等の設定についての改定。）
 ○水系全体で同じ項目を同じ年に実施。
 ○魚類、底生動物、鳥類、両・爬・哺の調査時期の見直し。
 ○植物（植物相）、鳥類、両・爬・哺、陸上昆虫類等は、調査を 5年で 1度から 10年に 1度に変更。
 ○均一的な調査精度の確保のため、調査方法の基準や調査努力量の設定等。
- 平成 25年度～「河川水辺の国勢調査マニュアル 基本調査マニュアル[河川版]」一部修正。
 ○文献調査の簡素化
- 平成 28年度～「河川水辺の国勢調査マニュアル 基本調査マニュアル[河川版]」第 4回改訂。
 ○底生動物調査の調査対象環境区分の統合、定性採集サンプル数の縮減。
 ○植物調査の調査箇所の設定変更、ホットスポットの入選。

加古川大堰では、河川水辺の国勢調査以外にも、堰の独自の調査として、平成 6年度から魚道に係る調査も実施している。

本稿では、「ダム等管理フォローアップ定期報告書作成の手引き[平成 26年度版]（平成 26年 4月、国土交通省水管理・国土保全局河川管理課）」に則り、河川水辺の国勢調査の調査結果及び堰独自に実施した調査結果に基づき評価対象年度となる平成 24年度から平成 28年度の生物の分析・評価を行い、加古川大堰に係るフォローアップ委員会の第 3回目の定期報告を下記の項目とおりに、とりまとめるものである。
表 6.1-1 加古川大堰における生物調査の実施状況

<table>
<thead>
<tr>
<th>検査項目</th>
<th>平成2年度</th>
<th>平成3年度</th>
<th>平成4年度</th>
<th>平成5年度</th>
<th>平成6年度</th>
<th>平成7年度</th>
<th>平成8年度</th>
<th>平成9年度</th>
<th>平成10年度</th>
<th>平成11年度</th>
<th>平成12年度</th>
<th>平成13年度</th>
<th>平成14年度</th>
<th>平成15年度</th>
<th>平成16年度</th>
<th>平成17年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>増殖</td>
<td>●</td>
</tr>
<tr>
<td>生物プランクトン</td>
<td>●</td>
</tr>
<tr>
<td>生物</td>
<td>●</td>
</tr>
<tr>
<td>増殖・底生物類</td>
<td>●</td>
</tr>
<tr>
<td>増殖・底生物類</td>
<td>●</td>
</tr>
<tr>
<td>増殖</td>
<td>●</td>
</tr>
<tr>
<td>増殖</td>
<td>●</td>
</tr>
<tr>
<td>その他の調査（魚類）</td>
<td>●</td>
</tr>
<tr>
<td>その他の調査（底生動物）</td>
<td>●</td>
</tr>
</tbody>
</table>

(1) 生物の生息・生育状況の変化の評価

生物の生息・生育状況の変化の検証にあたっては、生物の生息・生育環境条件の変化の状況や加古川大堰の特性（立地条件、経過年数、既往調査結果等）を踏まえ、堰の存在や堰の管理・運用に伴う影響を把握するために必要と考えられる分析対象種を、生物分類群毎に選定する。

次に、選定した分析対象種が影響を受けると考えられる環境エリア毎（堰の湛水域内、流入河川、下流河川、堰の湛水域周辺）に、生物の生息・生育環境条件の状況と生物の生息・生育状況を経年的に比較・検討する。検討の結果、生物の生息・生育状況に変化がみられた場合は、その変化が堰の存在や堰の管理・運用に伴う影響か、それ以外による影響かの観点から変化の要因を検討し、堰との関連を検証する。

重要な種（以下「重要種」という。）については、経年的な確認状況だけでなく、個体数分布状況、事業との関連等の定量的な基本情報を整理する。さらに、生態的特性等から、堰の存在や堰の管理・運用に伴う影響の有無や程度を分析する。また、重要種の現況の課題について整理するとともに、今後の保全対策等の必要性や方向性についても評価する。

重要種は、以下のとおり定めるものとする。

- 「文化財保護法」（昭和 25 年法律第 214 号）により指定された「天然記念物」、「特別天然記念物」
- 「絶滅のおそれのある野生生物の種の保存に関する法律」（平成 4 年法律第 75 号）により指定された「国内希少野生動植物種」、「緊急指定種」
- 「環境省報道発表資料 環境省レッドリスト 2017 の公表について」（環境省 平成 29 年 3 月 31 日）の掲載種
- 「兵庫県版レッドリスト」の掲載種
 - 「改訂・兵庫の貴重な自然－兵庫県版レッドデータブック 2003－」（兵庫県 2003 年）
また、国内外外来種（以下、外来種）についても注目し、確認状況を経年に比較・検証し、その生息・生育状況に変化がみられた場合には、それが壊の存在・供用に伴う環境変化によるものか、あるいはその他の環境変化によるものかの観点から変化要因の検証を行い、壊との関連を検証する。外来種は、以下のとおり定めるものとする。

・「特定外来生物による生態系に係わる被害の防止に関する法律（平成16年法律第78号）」により指定された「特定外来生物」

・「環境省報道発表資料 我が国の生態系等に被害を及ぼすおそれのある外来種リスト（生態系被害防止外来種リスト）」（環境省 平成27年3月公開）の掲載種

・「兵庫県ブラックリスト2010」（兵庫県2016年11月26日変更）の掲載種

・「外来種ハンドブック」（日本生態学会 平成14年9月）に掲載された「国外外来種」

(2) 生物の生息・生育状況の変化の評価

生物の生息・生育状況の変化の検証において、加古川大壩の運用・管理に関係する内容を中心に環境変化の程度を評価するとともに、壩管理の改善の必要性や環境保全の課題に関する観点から、壩の運用・管理が生物に与える影響を評価する。

(3) 環境保全対策の効果の評価

環境保全対策について、目標と現状を比較することにより効果の評価を行い、改善の必要性のある課題を整理する。また、保全対策の効果が発現していないと認められる場合は、保全対策に係る改善の必要性を評価する。

なお、加古川大壩では、環境保全対策の実施の必要性はないものの、その他の生物調査として、魚道に係る調査を実施しており、魚道の効果の評価を行い、改善の必要性のある課題を整理し、効果が発現していないと認められる場合は、保全対策に係る改善の必要性を評価する。

(4) まとめ

加古川大壩の湛水域およびその周辺の環境全体についての改善の必要性のある課題をとりまとめる。
6.1.2 評価手順

定期報告における評価手順のフローを図 6.1-1 に示す。

図 6.1-1 加古川大堰の生物に関する定期報告書の検討手順

(1) 資料の収集

(2) 堰の湛水域およびその周辺の環境の把握

(3) 生物の生息・生育状況の変化の検証

<table>
<thead>
<tr>
<th>生物相</th>
<th>重要種</th>
<th>外来種</th>
</tr>
</thead>
<tbody>
<tr>
<td>堰の特性の把握</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環境条件の変化の把握</td>
<td></td>
<td></td>
</tr>
<tr>
<td>分析項目の選定</td>
<td></td>
<td></td>
</tr>
<tr>
<td>基本情報の整理</td>
<td></td>
<td></td>
</tr>
<tr>
<td>生息・生育状況の変化の把握</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(4) 生物の生息・生育状況の変化の評価

| 生物群（分析対象種）每の評価 |
| 改善の必要性のある課題の整理 |

(5) 環境保全対策の効果の評価

| 環境保全対策の効果の評価 |
| 環境保全対策の結果の整理 |
| 環境保全対策の課題の整理 |
| 今後の対応方針の整理 |

(6) まとめ

堰の湛水域およびその周辺の環境について、改善の必要性のある課題を総括的にとりまとめ

(7) 文献リストの作成

図 6.1-1 加古川大堰の生物に関する定期報告書の検討手順
6.1.3 変化の検証を行う場所

加古川大堰において生物の生息・生育状況の変化の検証を行う場所の設定状況および根拠を表 6.1-2 に、範囲を図 6.1-2 に示す。

生物の生息・生育状況の検証にあたっては、加古川大堰の特性（立地条件、経過年数、既往調査結果等）、生物の生息・生育環境条件の変化の状況を踏まえ、生物の分類群毎に堰の管理による影響を把握するために必要と考えられる分析対象種を抽出し、それら分析対象種が影響を受けると考えられる調査地区ごとに環境の状況と生物の生息・生育状況を経年的に比較、検討し、変化の状況を把握した。

<table>
<thead>
<tr>
<th>場所</th>
<th>設定状況</th>
<th>設定根拠</th>
</tr>
</thead>
<tbody>
<tr>
<td>堰の湛水域内</td>
<td>・加古川大堰の湛水域（堰より上流にある美嚢川合流点の上流付近まで）を対象とした範囲に含まれる地区で実施された調査</td>
<td>・加古川大堰の湛水域として、直接冠水する範囲に該当する。</td>
</tr>
<tr>
<td>流入河川</td>
<td>・加古川大堰の湛水域上流端（美嚢川合流点の上流付近より上流の粟田橋上流付近を対象とした範囲に含まれる地区で実施された調査</td>
<td>・加古川大堰による湛水域の影響を受けない範囲であり、水生生物調査の地区が設定されており、検証が可能である。 ・範囲の最上流部には、河川水辺の国勢調査における総合調査地区（粟田橋付近）が設定されており、次回以降の陸域の検証も可能である。</td>
</tr>
<tr>
<td>下流河川</td>
<td>・加古川大堰の直下より下流の加古川橋付近までを対象とした範囲に含まれる地区で実施された調査</td>
<td>・河川水辺の国勢調査の全項目の調査地区が設定されており、検証が可能性である。 ・加古川大堰は、潮止めの機能はなく、感潮域が含まれない範囲に該当する。</td>
</tr>
<tr>
<td>堰の湛水域周辺</td>
<td>・加古川大堰の湛水域周辺の高水数（堰から美嚢川合流点の上流付近まで）を対象とした範囲に含まれる地区で実施された調査</td>
<td>・加古川大堰周辺の高水数であり、河川水辺の国勢調査（河川環境基図）において植生図が作成されている。</td>
</tr>
</tbody>
</table>
図 6.1-2 生物の生息・生育状況の変化の検証を行う場所の範囲

注 1）：1kmピッチごとのスポットセンサス法による鳥類調査。
注 2）：河川環境基図調査の対象範囲は、4.0km～24.0km（加古川橋下流～粟田橋上流）を対象。

図 6.1-2 生物の生息・生育状況の変化の検証を行う場所の範囲
6.1.4 資料の収集

加古川大堰で実施されている自然環境調査等の既存の生物調査報告書について資料を収集し、その実施状況等を整理した。また、検討に必要な流況、水質等の資料についても収集・整理した。

(1) 収集資料の整理

加古川大堰において生物に関する資料収集の対象を表 6.1-3 に示す。

資料は、加古川大堰の管理開始後の平成元年以降に実施された生物調査を基本としたが、管理開始前に実施された調査についても、必要に応じて参考とするため、収集対象とした。

<table>
<thead>
<tr>
<th>区分</th>
<th>資料</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>国勢調査</td>
<td>・加古川大堰を含む加古川を対象に実施された生物等に係る河川水辺の国勢調査結果</td>
<td>・全国統一の調査手法による堰完成後の生物の生息・生育状況の把握に使用する。</td>
</tr>
<tr>
<td>その他の調査</td>
<td>・上記以外の加古川大堰周辺で実施された生物等に係る環境調査結果</td>
<td>・堰の管理開始後の生物の生息・生育状況の把握に使用する。</td>
</tr>
<tr>
<td>環境保全対策に係る調査</td>
<td>・加古川大堰周辺で実施された環境保全対策に係る環境調査結果</td>
<td>・環境保全対策の効果の評価に使用する。</td>
</tr>
</tbody>
</table>
<pre><code> | | ・加古川大堰には、対応する資料は存在しない。 |
</code></pre>

(2) 調査実施状況
加古川大堰の湛水域およびその周辺での生物調査の実施状況を表 6.1-4 に示す。分析・評価の対象年度である平成 24 年度は魚類、鳥類、平成 25 年度は魚類、底生動物、動植物プランクトン、平成 26 年度は魚類、河川環境基図、平成 27 年度は魚類、両生類・爬虫類・哺乳類、平成 28 年度は魚類、陸上昆虫類等の調査が実施されている。なお、生物の分析・評価は、管理開始後の平成元年度以降の資料を基本とし、管理開始以前に実施されてきた調査結果についても、参考資料として整理した。

表 6.1-4 (1) 加古川大堰での生物に係る調査実施状況

<table>
<thead>
<tr>
<th>年度</th>
<th>調査件名</th>
<th>調査区分</th>
<th>魚類</th>
<th>底生動物</th>
<th>動植物プランクトン</th>
<th>植物</th>
<th>鳥類</th>
<th>両生類・爬虫類・哺乳類</th>
<th>陸上昆虫類等</th>
<th>付着物</th>
<th>河川環境基図</th>
</tr>
</thead>
<tbody>
<tr>
<td>昭和48年度（1973年）</td>
<td>加古川生物調査報告書</td>
<td>その他の調査</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>昭和50年度（1975年）</td>
<td>加古川環境調査報告書</td>
<td>その他の調査</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>昭和51年度（1976年）</td>
<td>加古川環境調査（その2）報告書</td>
<td>その他の調査</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>昭和53年度（1978年）</td>
<td>加古川生物調査報告書</td>
<td>その他の調査</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>昭和54年度（1979年）</td>
<td>加古川大堰生物環境調査報告書</td>
<td>その他の調査</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>昭和55年度（1980年）</td>
<td>加古川生物環境調査業務報告書</td>
<td>その他の調査</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>昭和57年度（1982年）</td>
<td>加古川大堰生物環境調査報告書</td>
<td>その他の調査</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>昭和62年度（1987年）</td>
<td>加古川大堰生物環境調査報告書</td>
<td>その他の調査</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平成元年度（1989年）</td>
<td>加古川魚類相生態環境調査報告書</td>
<td>その他の調査</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平成2年度（1990年）</td>
<td>加古川・揖保川魚類相調査業務報告書（河川水辺の国勢調査（魚介類調査））</td>
<td>国勢調査</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平成2年度加古川大堰周辺魚類・水生生物調査業務報告書</td>
<td>国勢調査</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平成4年度（1992年）</td>
<td>河川水辺の国勢調査 平成4年度加古川水系魚介類調査報告書</td>
<td>国勢調査</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>河川水辺の国勢調査 平成4年度加古川水系底生動物調査報告書</td>
<td>国勢調査</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>河川水辺の国勢調査 平成4年度加古川水系陸生昆虫類等調査報告書</td>
<td>国勢調査</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>年度</td>
<td>調査件名</td>
<td>調査区分</td>
<td>調査対象</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平成5年度（1993年）</td>
<td>河川水辺の国勢調査 平成5年度 加古川水系魚類調査報告書</td>
<td>国勢調査</td>
<td>〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平成6年度（1994年）</td>
<td>平成6年度 加古川大堰魚道調査作業報告書</td>
<td>その他の調査 〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平成7年度（1995年）</td>
<td>河川水辺の国勢調査 平成7年度 加古川水系両生類・爬虫類・哺乳類調査報告書</td>
<td>国勢調査</td>
<td>〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>河川水辺の国勢調査 平成7年度 加古川水系植物調査報告書</td>
<td>その他の調査 〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>加古川河川環境調査作業 加古川大堰下流報告書</td>
<td>その他の調査 〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平成8年度（1996年）</td>
<td>河川水辺の国勢調査 平成8年度 加古川水系陸上昆虫類等調査報告書</td>
<td>国勢調査</td>
<td>〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>加古川河川環境調査作業 加古川大堰下流報告書</td>
<td>その他の調査 〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>平成8年度 加古川大堰魚道調査作業報告書</td>
<td>その他の調査 〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平成9年度（1997年）</td>
<td>平成9年度 加古川大堰魚道調査作業報告書</td>
<td>その他の調査 〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平成9年・10年（1997・1998年）</td>
<td>平成9年度・平成10年度 加古川水系魚介類調査報告書</td>
<td>国勢調査</td>
<td>〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平成10年度（1998年）</td>
<td>平成10年度 加古川水系鳥類調査報告書</td>
<td>国勢調査</td>
<td>〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>平成10年度 加古川大堰河川水辺の国勢調査（動植物プランクトン）業務報告書</td>
<td>国勢調査</td>
<td>〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>平成10年度 加古川大堰魚道調査作業報告書</td>
<td>その他の調査 〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>加古川大堰周辺底質・底生生物調査報告書</td>
<td>その他の調査 〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平成11年度（1999年）</td>
<td>平成11年度 加古川大堰魚道調査作業報告書</td>
<td>その他の調査 〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平成11年・12年（1999・2000年）</td>
<td>河川水辺の国勢調査 平成11年度・平成12年度 加古川水系植物調査報告書</td>
<td>国勢調査</td>
<td>〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平成12年度（2000年）</td>
<td>河川水辺の国勢調査 平成12年度 加古川水系両生類・爬虫類・哺乳類調査報告書</td>
<td>国勢調査</td>
<td>〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>平成12年度 加古川大堰魚類調査業務報告書</td>
<td>その他の調査 〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 6.1-4（3） 加古川大堰での生物に係る調査実施状況

<table>
<thead>
<tr>
<th>年度</th>
<th>調査件名</th>
<th>調査区分</th>
<th>調査対象</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成13年度（2001年）</td>
<td>河川水辺の国勢調査 平成13年度 加古川水系陸上昆虫類等調査報告書</td>
<td>国勢調査</td>
<td>魚類</td>
</tr>
<tr>
<td></td>
<td>平成13年度 加古川大堰魚類調査業務報告書</td>
<td>その他の調査</td>
<td>生物</td>
</tr>
<tr>
<td></td>
<td>加古川水生生物簡易調査報告書</td>
<td>その他の調査</td>
<td>植物</td>
</tr>
<tr>
<td>平成14年度（2002年）</td>
<td>平成14年度 加古川水系魚介類調査報告書</td>
<td>国勢調査</td>
<td>魚類</td>
</tr>
<tr>
<td></td>
<td>平成14年度 加古川水系底生動物調査報告書</td>
<td>国勢調査</td>
<td>生物</td>
</tr>
<tr>
<td></td>
<td>平成14年度 加古川大堰魚類調査業務報告書</td>
<td>その他の調査</td>
<td>植物</td>
</tr>
<tr>
<td></td>
<td>平成14年度 加古川水生生物簡易調査報告書</td>
<td>その他の調査</td>
<td>植物</td>
</tr>
<tr>
<td>平成15年度（2003年）</td>
<td>平成15年度 加古川水系植物調査報告書</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>平成15年度 加古川大堰河川水辺の国勢調査（動植物プランクトン）業務報告書</td>
<td>国勢調査</td>
<td>魚類</td>
</tr>
<tr>
<td></td>
<td>平成15年度 加古川大堰魚類調査業務報告書</td>
<td>その他の調査</td>
<td>生物</td>
</tr>
<tr>
<td></td>
<td>加古川水生生物簡易調査報告書</td>
<td>その他の調査</td>
<td>植物</td>
</tr>
<tr>
<td>平成16年度（2004年）</td>
<td>平成16年度 加古川水系鳥類調査報告書</td>
<td>国勢調査</td>
<td>魚類</td>
</tr>
<tr>
<td></td>
<td>平成16年度 加古川大堰魚類調査業務報告書</td>
<td>その他の調査</td>
<td>生物</td>
</tr>
<tr>
<td>平成17年度（2005年）</td>
<td>平成17年度 加古川水系両生類・爬虫類・哺乳類調査報告書</td>
<td>国勢調査</td>
<td>魚類</td>
</tr>
<tr>
<td></td>
<td>平成17年度 加古川大堰魚類調査業務報告書</td>
<td>その他の調査</td>
<td>生物</td>
</tr>
<tr>
<td></td>
<td>加古川水生生物調査調査結果報告書</td>
<td>その他の調査</td>
<td>植物</td>
</tr>
<tr>
<td>平成18年度（2006年）</td>
<td>平成18年度 河川水辺の国勢調査（陸上昆虫類等）業務（加古川水系）報告書</td>
<td>国勢調査</td>
<td>魚類</td>
</tr>
<tr>
<td></td>
<td>平成18年度 加古川大堰魚類調査業務報告書</td>
<td>その他の調査</td>
<td>生物</td>
</tr>
<tr>
<td>平成19年度（2007年）</td>
<td>平成19年度 河川水辺の国勢調査（魚類）業務報告書</td>
<td>国勢調査</td>
<td>魚類</td>
</tr>
<tr>
<td></td>
<td>平成19年度 河川水辺の国勢調査（魚類）業務（鳥類調査編）報告書</td>
<td>国勢調査</td>
<td>生物</td>
</tr>
<tr>
<td></td>
<td>平成19年度 河川水辺の国勢調査（魚類）業務（陸上調査編）報告書</td>
<td>その他の調査</td>
<td>生物</td>
</tr>
<tr>
<td></td>
<td>平成19年度 加古川大堰魚類調査検討業務報告書</td>
<td>その他の調査</td>
<td>生物</td>
</tr>
<tr>
<td>年度</td>
<td>調査件名</td>
<td>調査区分</td>
<td>調査対象</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>平成20年度（2008年）</td>
<td>平成20.21年度 河川水辺の国勢調査業務（平成20年度 加古川水系 底生動物調査）報告書</td>
<td>国勢調査</td>
<td>魚類</td>
</tr>
<tr>
<td></td>
<td>H20 加古川大堰河川水辺の国勢調査（動植物プランクトン）業務 報告書</td>
<td>国勢調査</td>
<td>底生動物</td>
</tr>
<tr>
<td></td>
<td>平成20年度 加古川大堰魚類調査検討業務 報告書</td>
<td>他的の調査</td>
<td>動植物</td>
</tr>
<tr>
<td>平成22年度（2010年）</td>
<td>平成22年度 加古川・揖保川河川水辺の国勢調査業務（加古川水系 河川情報基図作成調査編）報告書</td>
<td>国勢調査</td>
<td>鳥類</td>
</tr>
<tr>
<td></td>
<td>平成22年度 加古川・揖保川河川水辺の国勢調査業務（加古川水系 植物調査編）報告書</td>
<td>国勢調査</td>
<td>両生類・爬虫類・哺乳類</td>
</tr>
<tr>
<td></td>
<td>加古川大堰環境等調査業務 報告書</td>
<td>他的の調査</td>
<td>植物</td>
</tr>
<tr>
<td>平成23年度（2011年）</td>
<td>加古川大堰環境調査業務 報告書</td>
<td>他的の調査</td>
<td>玉川等調査</td>
</tr>
<tr>
<td>平成24年度（2012年）</td>
<td>加古川揖保川水辺現地調査（魚類・鳥類）業務 報告書</td>
<td>国勢調査</td>
<td>他的の調査</td>
</tr>
<tr>
<td></td>
<td>加古川大堰環境調査業務 報告書</td>
<td>他的の調査</td>
<td>玉川等調査</td>
</tr>
<tr>
<td>平成25年度（2013年）</td>
<td>加古川大堰水辺現地調査（動植物プランクトン）業務 報告書</td>
<td>国勢調査</td>
<td>他的の調査</td>
</tr>
<tr>
<td></td>
<td>河川の現地調査（底生動物）調査業務 報告書</td>
<td>国勢調査</td>
<td>他的の調査</td>
</tr>
<tr>
<td></td>
<td>加古川大堰環境調査業務 報告書</td>
<td>他的の調査</td>
<td>他的の調査</td>
</tr>
<tr>
<td>平成26年度（2014年）</td>
<td>加古川揖保川河川水辺の国勢調査（河川環境基図作成調査等）業務 報告書</td>
<td>国勢調査</td>
<td>他的の調査</td>
</tr>
<tr>
<td></td>
<td>加古川大堰環境調査業務 報告書</td>
<td>他的の調査</td>
<td>他的の調査</td>
</tr>
<tr>
<td>平成27年度（2015年）</td>
<td>加古川揖保川河川水辺の国勢調査（両生類・爬虫類・哺乳類）業務 報告書</td>
<td>国勢調査</td>
<td>他的の調査</td>
</tr>
<tr>
<td></td>
<td>加古川大堰環境調査業務 報告書</td>
<td>他的の調査</td>
<td>他的の調査</td>
</tr>
<tr>
<td>平成28年度（2016年）</td>
<td>加古川揖保川河川水辺の国勢調査（陸上昆虫類等）業務 報告書</td>
<td>国勢調査</td>
<td>他的の調査</td>
</tr>
<tr>
<td></td>
<td>加古川大堰環境調査業務 報告書</td>
<td>他的の調査</td>
<td>他的の調査</td>
</tr>
</tbody>
</table>
1）魚類

加古川大堰およびその周辺で実施された魚類調査の調査内容を表 6.1-5 に、調査地区の位置を

図 6.1-3 に、堰の魚道での魚類調査の調査内容を表 6.1-6 に示す。

分析・評価の対象年度では、平成 24年度に河川水辺の国勢調査における魚類調査が実施されているほか、平成24年度から平成28年度の年毎に魚道に係る調査も実施されている。

表 6.1-5（1）加古川大堰での魚類調査の調査内容

<table>
<thead>
<tr>
<th>調査年度</th>
<th>調査件名</th>
<th>調査範囲</th>
<th>調査地区</th>
<th>報告書調査地区番号</th>
<th>調査時期</th>
<th>調査方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成2年（1990年）</td>
<td>加古川・摂保川魚類相調査業務報告書（河川水辺の国勢調査：魚介類調査）</td>
<td>下流河川</td>
<td>St.1</td>
<td>St.1</td>
<td>H02.11</td>
<td>投網（4.8mm）、タモ網、刺網、セルビン、カニカゴ、潜水観察</td>
</tr>
<tr>
<td></td>
<td></td>
<td>湖水域内</td>
<td>St.5</td>
<td>St.2</td>
<td>H02.11</td>
<td>投網（4.8mm）、タモ網、刺網、セルビン、カニカゴ、潜水観察</td>
</tr>
<tr>
<td>平成4年（1992年）</td>
<td>河川水辺の国勢調査</td>
<td>下流河川</td>
<td>St.1</td>
<td>St.2</td>
<td>H04.11</td>
<td>投網（12.15mm）、タモ網、刺網（18.34.60mm）、セルビン、じゃこ網、はえなわ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.2</td>
<td>St.3</td>
<td>H04.11</td>
<td>投網（12.15mm）、タモ網、刺網（18.34.60mm）、セルビン、じゃこ網、はえなわ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>湖水域内</td>
<td>St.5</td>
<td>St.4</td>
<td>H04.11</td>
<td>投網（12.15mm）、タモ網、刺網（18.34.60mm）、セルビン、じゃこ網、はえなわ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>流入河川</td>
<td>St.7</td>
<td>St.5</td>
<td>H04.11</td>
<td>投網（12.15mm）、タモ網、刺網（18.34.60mm）、セルビン、じゃこ網、はえなわ</td>
</tr>
<tr>
<td>平成9年（1997年）</td>
<td>平成9年度・平成10年度加古川水系魚介類調査報告書</td>
<td>下流河川</td>
<td>St.1</td>
<td>加加姫3</td>
<td>H09.08</td>
<td>投網（12.18mm）、タモ網、刺網、はえなわ、セルビン、カニカゴ、潜水</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.2</td>
<td>加加姫4</td>
<td>H09.08</td>
<td>投網（12.18mm）、タモ網、刺網、はえなわ、セルビン、カニカゴ、潜水</td>
</tr>
<tr>
<td></td>
<td></td>
<td>湖水域内</td>
<td>St.4</td>
<td>加加姫5</td>
<td>H09.08</td>
<td>投網（12.18mm）、タモ網、刺網、はえなわ、セルビン、カニカゴ、潜水</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.5</td>
<td>加加姫6</td>
<td>H09.08</td>
<td>投網（12.18mm）、タモ網、刺網、はえなわ、セルビン、カニカゴ、潜水</td>
</tr>
<tr>
<td></td>
<td></td>
<td>流入河川</td>
<td>St.6</td>
<td>加加姫7</td>
<td>H09.08</td>
<td>投網（12.18mm）、タモ網、刺網、はえなわ、セルビン、カニカゴ、潜水</td>
</tr>
<tr>
<td>調査年度</td>
<td>調査件名</td>
<td>調査範囲</td>
<td>調査地区</td>
<td>報告書調査 地区番号</td>
<td>調査時期</td>
<td>調査方法</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>平成14年 (2002年)</td>
<td>加古川水系魚介類調査報告書</td>
<td>下流河川</td>
<td>加加姫3</td>
<td>H14.05〜06</td>
<td>6月〜8月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水、セルビン、小型定置網</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫4</td>
<td>H14.05〜06</td>
<td>8月〜10月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水、セルビン、小型定置網</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫5</td>
<td>H14.05〜06</td>
<td>8月〜10月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水、セルビン、小型定置網</td>
</tr>
<tr>
<td></td>
<td></td>
<td>湖水域内</td>
<td>加加姫3</td>
<td>H14.05〜06</td>
<td>6月〜8月</td>
<td>発網</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫6</td>
<td>H14.05〜06</td>
<td>8月〜10月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水、セルビン、小型定置網</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫6</td>
<td>H14.05〜06</td>
<td>6月〜8月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水、セルビン、小型定置網</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫7</td>
<td>H14.05〜06</td>
<td>6月〜8月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水、セルビン、小型定置網</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫8</td>
<td>H14.05〜06</td>
<td>6月〜8月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水、セルビン、小型定置網</td>
</tr>
<tr>
<td></td>
<td>名水河川</td>
<td>加加姫3</td>
<td>H14.05〜06</td>
<td>6月〜8月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水、セルビン、小型定置網</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>加加姫4</td>
<td>H14.05〜06</td>
<td>6月〜8月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水、セルビン、小型定置網</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>加加姫5</td>
<td>H14.05〜06</td>
<td>6月〜8月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水、セルビン、小型定置網</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫6</td>
<td>H14.05〜06</td>
<td>6月〜8月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水、セルビン、小型定置網</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫7</td>
<td>H14.05〜06</td>
<td>6月〜8月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水、セルビン、小型定置網</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫8</td>
<td>H14.05〜06</td>
<td>6月〜8月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水、セルビン、小型定置網</td>
</tr>
<tr>
<td>平成19年 (2007年)</td>
<td>加古川水系魚介類調査報告書</td>
<td>下流河川</td>
<td>加加姫3</td>
<td>H19.05〜06</td>
<td>6月〜8月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫4</td>
<td>H19.05〜06</td>
<td>6月〜8月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫5</td>
<td>H19.05〜06</td>
<td>6月〜8月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水</td>
</tr>
<tr>
<td></td>
<td></td>
<td>湖水域内</td>
<td>加加姫3</td>
<td>H19.05〜06</td>
<td>6月〜8月</td>
<td>投網</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫6</td>
<td>H19.05〜06</td>
<td>6月〜8月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫7</td>
<td>H19.05〜06</td>
<td>6月〜8月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫8</td>
<td>H19.05〜06</td>
<td>6月〜8月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水</td>
</tr>
<tr>
<td></td>
<td>流入河川</td>
<td>加加姫3</td>
<td>H19.05〜06</td>
<td>6月〜8月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫4</td>
<td>H19.05〜06</td>
<td>6月〜8月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫5</td>
<td>H19.05〜06</td>
<td>6月〜8月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫6</td>
<td>H19.05〜06</td>
<td>6月〜8月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫7</td>
<td>H19.05〜06</td>
<td>6月〜8月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫8</td>
<td>H19.05〜06</td>
<td>6月〜8月</td>
<td>投網(12.18mm)、タモ網、刺網、はえなわ、カニカゴ、潜水</td>
</tr>
<tr>
<td>平成24年 (2012年)</td>
<td>加古川水系魚介類調査報告書</td>
<td>下流河川</td>
<td>加加姫3</td>
<td>H24.05〜06</td>
<td>6月〜8月</td>
<td>投網</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫4</td>
<td>H24.05〜06</td>
<td>6月〜8月</td>
<td>投網</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫5</td>
<td>H24.05〜06</td>
<td>6月〜8月</td>
<td>投網</td>
</tr>
<tr>
<td></td>
<td></td>
<td>湖水域内</td>
<td>加加姫3</td>
<td>H24.05〜06</td>
<td>6月〜8月</td>
<td>投網</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫6</td>
<td>H24.05〜06</td>
<td>6月〜8月</td>
<td>投網</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫7</td>
<td>H24.05〜06</td>
<td>6月〜8月</td>
<td>投網</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫8</td>
<td>H24.05〜06</td>
<td>6月〜8月</td>
<td>投網</td>
</tr>
<tr>
<td></td>
<td>流入河川</td>
<td>加加姫3</td>
<td>H24.05〜06</td>
<td>6月〜8月</td>
<td>投網</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫4</td>
<td>H24.05〜06</td>
<td>6月〜8月</td>
<td>投網</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫5</td>
<td>H24.05〜06</td>
<td>6月〜8月</td>
<td>投網</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>加加姫6</td>
<td>H24.05〜06</td>
<td>6月〜8月</td>
<td>投網</td>
</tr>
<tr>
<td>調査範囲</td>
<td>調査地区</td>
<td>地区名称</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>下流河川</td>
<td>St. 1</td>
<td>加古川橋</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. 2</td>
<td>西川合流</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. 3</td>
<td>大堰直下流</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湛水域内</td>
<td>St. 4</td>
<td>大堰周辺</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. 5</td>
<td>美嚢川合流</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流入河川</td>
<td>St. 6</td>
<td>万願寺川合流</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. 7</td>
<td>栗田橋</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図 6.1-3 加古川大堰およびその周辺での魚類調査地区
<table>
<thead>
<tr>
<th>調査年度</th>
<th>調査件名</th>
<th>調査範囲</th>
<th>調査地区</th>
<th>調査時期</th>
<th>調査方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成2年（1990年）</td>
<td>平成2年度加古川大堰周辺魚類・水生生物調査業務報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H02.04 H02.05 H02.06</td>
<td>刺網、水平式捕獲網、ビデオカメラ、魚道内魚類かいまし、巻網</td>
</tr>
<tr>
<td>平成6年（1994年）</td>
<td>平成6年度加古川大堰魚道調査作業報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H06.05~07</td>
<td>目視調査、採捕調査（採捕籠）、ビデオ撮影</td>
</tr>
<tr>
<td>平成7年（1995年）</td>
<td>平成7年度加古川大堰魚道調査作業報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H07.05~07</td>
<td>目視調査、採捕調査（採捕籠）、ビデオ撮影</td>
</tr>
<tr>
<td>平成8年（1996年）</td>
<td>平成8年度加古川大堰魚道調査作業報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H08.05~07</td>
<td>目視調査、採捕調査（採捕籠）、ビデオ撮影</td>
</tr>
<tr>
<td>平成9年度（1997年）</td>
<td>平成9年度加古川大堰魚道調査作業報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H09.05~07</td>
<td>目視調査、採捕調査（採捕籠）、ビデオ撮影</td>
</tr>
<tr>
<td>平成10年度（1998年）</td>
<td>平成10年度加古川大堰魚道調査作業報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H10.05~07</td>
<td>目視調査、採捕調査（採捕籠）、ビデオ撮影</td>
</tr>
<tr>
<td>平成11年度（1999年）</td>
<td>平成11年度加古川大堰魚道調査作業報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H11.05~07</td>
<td>目視調査、採捕調査（採捕籠）、ビデオ撮影</td>
</tr>
<tr>
<td>平成12年度（2000年）</td>
<td>平成12年度加古川大堰魚類調査業務報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H12.05~07</td>
<td>目視調査、採捕調査（採捕籠）、ビデオ撮影</td>
</tr>
<tr>
<td>平成13年度（2001年）</td>
<td>平成13年度加古川大堰魚類調査業務報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H13.05~07</td>
<td>目視調査、採捕調査（採捕籠）、ビデオ撮影</td>
</tr>
<tr>
<td>平成14年度（2002年）</td>
<td>平成14年度加古川大堰魚類調査業務報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H14.05~07</td>
<td>目視調査、採捕調査（採捕籠）、ビデオ撮影</td>
</tr>
<tr>
<td>平成15年度（2003年）</td>
<td>平成15年度加古川大堰魚類調査業務報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H15.05~08</td>
<td>目視調査、採捕調査（採捕籠）、ビデオ撮影</td>
</tr>
<tr>
<td>平成16年度（2004年）</td>
<td>平成16年度加古川大堰魚道調査作業報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H16.05~07</td>
<td>目視調査、採捕調査（採捕籠）、ビデオ撮影</td>
</tr>
<tr>
<td>平成17年度（2005年）</td>
<td>平成17年度加古川大堰魚類調査業務報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H17.05~06</td>
<td>目視調査、採捕調査（採捕籠）、ビデオ撮影</td>
</tr>
<tr>
<td>平成18年度（2006年）</td>
<td>平成18年度加古川大堰魚類調査業務報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H18.05~07</td>
<td>目視調査、採捕調査（採捕籠）、ビデオ撮影</td>
</tr>
<tr>
<td>平成19年度（2007年）</td>
<td>平成19年度加古川大堰魚類調査検討業務報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H19.05~06</td>
<td>目視調査、採捕調査（採捕籠）、ビデオ撮影</td>
</tr>
<tr>
<td>平成20年度（2008年）</td>
<td>平成20年度加古川大堰魚類調査検討業務報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H20.05~07</td>
<td>目視調査、採捕調査（採捕籠）、ビデオ撮影</td>
</tr>
<tr>
<td>平成21年度（2009年）</td>
<td>平成21年度加古川大堰環境等調査業務報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H21.05~07</td>
<td>目視調査、採捕調査（採捕籠）、ビデオ撮影</td>
</tr>
<tr>
<td>平成22年度（2010年）</td>
<td>平成22年度加古川大堰環境等調査業務報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H22.05~07</td>
<td>目視調査、採捕調査（採捕籠）、ビデオ撮影</td>
</tr>
<tr>
<td>調査年度</td>
<td>調査件名</td>
<td>調査範囲</td>
<td>調査地区</td>
<td>調査時期</td>
<td>調査方法</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>平成23年（2011年）</td>
<td>平成23年度 加古川大堰環境調査業務 報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H23.06〜07</td>
<td>目視調査、採捕調査（採捕籠）、ビデオ撮影</td>
</tr>
<tr>
<td></td>
<td></td>
<td>下流河川</td>
<td>下流</td>
<td>H23.06〜07</td>
<td>潜水、採捕調査</td>
</tr>
<tr>
<td>平成24年（2012年）</td>
<td>平成24年度 加古川大堰環境調査業務 報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H24.04〜05</td>
<td>敷網及び小型定置網による採捕調査</td>
</tr>
<tr>
<td></td>
<td></td>
<td>下流河川</td>
<td>下流</td>
<td>H24.04〜05</td>
<td>投網、タモ網、地引き網などによる採捕調査</td>
</tr>
<tr>
<td>平成25年（2013年）</td>
<td>平成25年度 加古川大堰環境調査業務 報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H25.06</td>
<td>敷網及び小型定置網による採捕調査</td>
</tr>
<tr>
<td></td>
<td></td>
<td>下流河川</td>
<td>下流</td>
<td>H25.06</td>
<td>投網、タモ網、地引き網などによる採捕調査</td>
</tr>
<tr>
<td>平成26年（2014年）</td>
<td>平成26年度 加古川大堰環境調査業務 報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H26.05〜06</td>
<td>敷網及び小型定置網による採捕調査</td>
</tr>
<tr>
<td></td>
<td></td>
<td>下流河川</td>
<td>下流</td>
<td>H26.05〜06</td>
<td>投網、タモ網、地引き網などによる採捕調査</td>
</tr>
<tr>
<td>平成27年（2015年）</td>
<td>平成27年度 加古川大堰環境調査業務 報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H27.05〜06</td>
<td>敷網及び小型定置網による採捕調査</td>
</tr>
<tr>
<td></td>
<td></td>
<td>下流河川</td>
<td>下流</td>
<td>H27.05〜06</td>
<td>投網、タモ網、地引き網などによる採捕調査</td>
</tr>
<tr>
<td>平成28年（2016年）</td>
<td>平成28年度 加古川大堰環境調査業務 報告書</td>
<td>大堰魚道</td>
<td>魚道</td>
<td>H28.05〜06</td>
<td>箱網及び小型定置網による採捕調査</td>
</tr>
<tr>
<td></td>
<td></td>
<td>下流河川</td>
<td>下流</td>
<td>H28.05〜06</td>
<td>投網、タモ網、地引き網などによる採捕調査</td>
</tr>
</tbody>
</table>
2) 底生動物

加古川大堰およびその周辺で実施された底生動物調査の調査内容を表 6.1-7 に、調査地区の位置を図 6.1-4 に示す。

分析・評価の対象年度では、平成 25年度に河川水辺の国勢調査における底生動物調査が実施されている。

表 6.1-7 (1) 加古川大堰での底生動物調査の調査内容

<table>
<thead>
<tr>
<th>調査年度</th>
<th>調査件名</th>
<th>調査範囲</th>
<th>調査地点</th>
<th>報告書番号</th>
<th>調査時期</th>
<th>調査方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成4年 (1992年)</td>
<td>河川水辺の国勢調査 平成4年度 加古川水系底生動物調査報告書</td>
<td>下流河川</td>
<td>St.1</td>
<td>H05.01</td>
<td>コドラート(25×25cm)による定量採集、定性採集</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.2</td>
<td>H05.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>湖水域内 (湖水前)</td>
<td>St.9</td>
<td>St.4</td>
<td>H05.01</td>
<td>コドラート(25×25cm)による定量採集、定性採集</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H05.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>流入河川</td>
<td>St.11</td>
<td>St.5</td>
<td>H05.01</td>
<td>コドラート(25×25cm)による定量採集、定性採集</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H05.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>平成9年 (1997年)</td>
<td>平成9年度 加古川水系底生動物調査報告書</td>
<td>下流河川</td>
<td>St.1</td>
<td>加加姫3</td>
<td>H09.08</td>
<td>コドラート(25×25cm)による定量採集、定性採集</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.2</td>
<td>加加姫4</td>
<td>H10.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.4</td>
<td>加加姫5</td>
<td>H09.08</td>
<td>コドラート(25×25cm)による定量採集、定性採集</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H10.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>湖水域内</td>
<td>St.7</td>
<td>加加姫6</td>
<td>H09.08</td>
<td>コドラート(25×25cm)による定量採集、定性採集</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H10.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>流入河川</td>
<td>St.10</td>
<td>加加姫7</td>
<td>H09.08</td>
<td>コドラート(25×25cm)による定量採集、定性採集</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H10.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>St.11</td>
<td>加加姫8</td>
<td>H09.08</td>
<td>コドラート(25×25cm)による定量採集、定性採集</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H10.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>平成10年 (1998年)</td>
<td>加古川大堰周辺底質・底生生物調査報告書</td>
<td>下流河川</td>
<td>St.4</td>
<td>11.8km</td>
<td>H10.08</td>
<td>エクマンバージによる採取</td>
</tr>
<tr>
<td></td>
<td>湖水域内</td>
<td>St.5</td>
<td>12.0km</td>
<td>H10.08</td>
<td>エクマンバージによる採取</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St.6</td>
<td>13.0km</td>
<td>H10.08</td>
<td>エクマンバージによる採取</td>
<td></td>
<td></td>
</tr>
<tr>
<td>平成13年 (2001年)</td>
<td>平成13年度 加古川大堰魚類調査業務報告書</td>
<td>下流河川</td>
<td>St.1</td>
<td>St.6</td>
<td>H13.08</td>
<td>コドラール(50×50cm)による定量採集</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.3</td>
<td>St.5</td>
<td>H13.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>流入河川</td>
<td>St.9</td>
<td>St.4</td>
<td>H13.08</td>
<td>コドラール(50×50cm)による定量採集</td>
<td></td>
</tr>
</tbody>
</table>
表 6.1-7 (2) 加古川大堰での底生動物調査の調査内容

<table>
<thead>
<tr>
<th>調査年度</th>
<th>調査件名</th>
<th>調査範囲</th>
<th>調査地点</th>
<th>報告書調査</th>
<th>地点番号</th>
<th>調査時期</th>
<th>調査方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成14年(2002年)</td>
<td>河川水辺の国勢調査</td>
<td>平成14年度 加古川水系底生動物調査報告書</td>
<td>下流河川</td>
<td>St.1</td>
<td>加加姫2</td>
<td>H14.08 H15.02</td>
<td>コドラール(25×25cm)による定量採集、定性採集</td>
</tr>
<tr>
<td>平成14年(2002年)</td>
<td></td>
<td></td>
<td></td>
<td>St.4</td>
<td>加加姫3</td>
<td>H14.08 H15.02</td>
<td>コドラール(25×25cm)による定量採集、定性採集</td>
</tr>
<tr>
<td></td>
<td></td>
<td>湖水域内</td>
<td>St.7</td>
<td>加加姫4</td>
<td></td>
<td>H14.08 H15.02</td>
<td>コドラール(25×25cm)による定量採集、定性採集</td>
</tr>
<tr>
<td></td>
<td></td>
<td>流入河川</td>
<td>St.10</td>
<td>加加姫5</td>
<td></td>
<td>H14.08 H15.02</td>
<td>コドラール(25×25cm)による定量採集、定性採集</td>
</tr>
<tr>
<td>平成14年(2002年)</td>
<td>平成14年度 加古川水系底生動物調査報告書</td>
<td></td>
<td>下流河川</td>
<td>St.1</td>
<td>加古川橋</td>
<td>H14.08</td>
<td>コドラール(50×50cm)による定量採集</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>St.3</td>
<td>池尻橋</td>
<td>H14.08</td>
<td>コドラール(50×50cm)による定量採集</td>
</tr>
<tr>
<td></td>
<td></td>
<td>流入河川</td>
<td>St.9</td>
<td>大住橋</td>
<td>H14.08</td>
<td>コドラール(50×50cm)による定量採集</td>
<td></td>
</tr>
<tr>
<td>平成15年(2003年)</td>
<td>加古川水生生物簡易調査報告書</td>
<td></td>
<td>下流河川</td>
<td>St.1</td>
<td>St.6</td>
<td>H15.09</td>
<td>コドラール(50×50cm)による定量採集</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>St.3</td>
<td>St.5</td>
<td>H15.09</td>
<td>コドラール(50×50cm)による定量採集</td>
</tr>
<tr>
<td></td>
<td></td>
<td>流入河川</td>
<td>St.9</td>
<td>St.4</td>
<td>H15.09</td>
<td>コドラール(50×50cm)による定量採集</td>
<td></td>
</tr>
<tr>
<td>平成17年(2005年)</td>
<td>加古川水生生物調査結果報告書</td>
<td></td>
<td>下流河川</td>
<td>St.1</td>
<td>St.7</td>
<td>H17.09</td>
<td>コドラール(50×50cm)による定量採集、定性採集</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>St.3</td>
<td>St.6</td>
<td>H17.09</td>
<td>コドラール(50×50cm)による定量採集、定性採集</td>
</tr>
<tr>
<td></td>
<td></td>
<td>流入河川</td>
<td>St.8</td>
<td>St.5</td>
<td>H17.09</td>
<td>コドラール(50×50cm)による定量採集、定性採集</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>St.9</td>
<td>St.4</td>
<td>H17.09</td>
<td>コドラール(50×50cm)による定量採集、定性採集</td>
</tr>
<tr>
<td>平成20年(2008年)</td>
<td>平成20年度河川水辺の国勢調査業務(平成20年度加古川水系底生動物調査)報告書</td>
<td></td>
<td>下流河川</td>
<td>St.1</td>
<td>加加姫2</td>
<td>H20.09 H21.02</td>
<td>コドラール(25×25cm)による定量採集、定性採集</td>
</tr>
<tr>
<td></td>
<td></td>
<td>湖水域内</td>
<td>St.7</td>
<td>加加姫3</td>
<td></td>
<td>H20.09 H21.02</td>
<td>コドラール(25×25cm)による定量採集、定性採集</td>
</tr>
<tr>
<td></td>
<td></td>
<td>流入河川</td>
<td>St.11</td>
<td>加加姫4</td>
<td></td>
<td>H20.09 H21.02</td>
<td>コドラール(25×25cm)による定量採集、定性採集</td>
</tr>
<tr>
<td>平成25年(2013年)</td>
<td>水辺の現地調査(底生動物)調査業務報告書</td>
<td></td>
<td>下流河川</td>
<td>St.1</td>
<td>加加姫2</td>
<td>H25.08 H26.01</td>
<td>定量調査、定性調査</td>
</tr>
<tr>
<td></td>
<td></td>
<td>湖水域内</td>
<td>St.7</td>
<td>加加姫3</td>
<td></td>
<td>H25.08 H26.01</td>
<td>定量調査、定性調査</td>
</tr>
<tr>
<td></td>
<td></td>
<td>流入河川</td>
<td>St.11</td>
<td>加加姫4</td>
<td></td>
<td>H25.08 H26.01</td>
<td>定量調査、定性調査</td>
</tr>
</tbody>
</table>
図 6.1-4 加古川大堰およびその周辺での底生動物調査地区
3) 動植物プランクトン

加古川大堰およびその周辺で実施された動植物プランクトン調査の調査内容を表 6.1-8 に、調査地区の位置を図 6.1-5 に示す。

分析・評価の対象年度では、平成25年度に河川水辺の国勢調査における動植物プランクトン調査が実施されている。

表 6.1-8 加古川大堰およびその周辺での動植物プランクトン調査内容

<table>
<thead>
<tr>
<th>調査年度</th>
<th>調査件名</th>
<th>調査範囲</th>
<th>調査地区</th>
<th>報告書調査地区番号</th>
<th>調査時期</th>
<th>調査方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成10年 (1998年)</td>
<td>平成10年度 加古川大堰河川水辺の国勢調査(動植物プランクトン)業務報告書</td>
<td>下流河川</td>
<td>St.1</td>
<td>St.3</td>
<td>H10.08, H10.11, H11.01, H11.03</td>
<td>採水法(動物・植物), ネット法(動物)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.2</td>
<td>St.2</td>
<td>H10.08, H10.11, H11.01, H11.03</td>
<td>採水法(動物・植物), ネット法(動物)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.3</td>
<td>St.1</td>
<td>H10.08, H10.11, H11.01, H11.03</td>
<td>採水法(動物・植物), ネット法(動物)</td>
</tr>
<tr>
<td>平成15年 (2003年)</td>
<td>平成15年度 加古川大堰河川水辺の国勢調査(動植物プランクトン)業務報告書</td>
<td>下流河川</td>
<td>St.1</td>
<td>St.3</td>
<td>H15.09, H15.11, H16.01, H16.03</td>
<td>採水法(動物・植物), ネット法(動物)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.2</td>
<td>St.2</td>
<td>H15.09, H15.11, H16.01, H16.03</td>
<td>採水法(動物・植物), ネット法(動物)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.3</td>
<td>St.1</td>
<td>H15.09, H15.11, H16.01, H16.03</td>
<td>採水法(動物・植物), ネット法(動物)</td>
</tr>
<tr>
<td>平成20年 (2008年)</td>
<td>平成20年度 加古川大堰河川水辺の国勢調査(動植物プランクトン)業務報告書</td>
<td>下流河川</td>
<td>St.1</td>
<td>加加下1</td>
<td>H20.09, H20.11, H21.01, H21.03</td>
<td>採水法(動物・植物), ネット法(動物)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.2</td>
<td>加加湖1</td>
<td>H20.09, H20.11, H21.01, H21.03</td>
<td>採水法(動物・植物), ネット法(動物)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.3</td>
<td>加加湖2</td>
<td>H20.09, H20.11, H21.01, H21.03</td>
<td>採水法(動物・植物), ネット法(動物)</td>
</tr>
<tr>
<td>平成25年 (2013年)</td>
<td>加古川大堰水辺現地調査(動植物プランクトン)業務報告書</td>
<td>下流河川</td>
<td>St.1</td>
<td>加加下1</td>
<td>H25.09, H25.11, H26.01, H26.03</td>
<td>採水法(動物・植物), ネット法(動物)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.2</td>
<td>加加湖1</td>
<td>H25.09, H25.11, H26.01, H26.03</td>
<td>採水法(動物・植物), ネット法(動物)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.3</td>
<td>加加湖2</td>
<td>H25.09, H25.11, H26.01, H26.03</td>
<td>採水法(動物・植物), ネット法(動物)</td>
</tr>
</tbody>
</table>
国 6.1-5 加古川大堰周辺およびその周辺での動植物プランクトン調査地区

<table>
<thead>
<tr>
<th>調査範囲</th>
<th>調査地区</th>
<th>地区名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>下流河川</td>
<td>St. 1</td>
<td>大堰下流</td>
</tr>
<tr>
<td>湖水域内</td>
<td>St. 2</td>
<td>大堰周辺</td>
</tr>
<tr>
<td></td>
<td>St. 3</td>
<td>上荘橋</td>
</tr>
</tbody>
</table>
4）植物
加古川大堰およびその周辺で実施された植物調査の調査内容を表 6.1-9 に示す。分析・評価の対象年度では、植物調査の実施はない。

表 6.1-9（1）加古川大堰およびその周辺での植物調査内容

<table>
<thead>
<tr>
<th>調査年度</th>
<th>調査件名</th>
<th>調査範囲</th>
<th>調査地区</th>
<th>報告書調査地区番号</th>
<th>調査時期</th>
<th>調査方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成7年（1995年）</td>
<td>河川水辺の国勢調査</td>
<td>全域</td>
<td>－</td>
<td>－</td>
<td>H07.10～12</td>
<td>植生図作成調査</td>
</tr>
<tr>
<td></td>
<td>平成7年度加古川水系植物調査報告書</td>
<td></td>
<td>－</td>
<td>－</td>
<td>H07.10～11</td>
<td>計数護査</td>
</tr>
<tr>
<td></td>
<td>下流河川St.1</td>
<td>新加古川橋</td>
<td>H07.05</td>
<td>H07.07</td>
<td></td>
<td>植物調査</td>
</tr>
<tr>
<td></td>
<td>流入河川St.2</td>
<td>大住橋</td>
<td>H07.05</td>
<td>H07.07</td>
<td></td>
<td>植物調査</td>
</tr>
<tr>
<td></td>
<td>St.3</td>
<td>栗田橋</td>
<td>H07.05</td>
<td>H07.07</td>
<td></td>
<td>植物調査</td>
</tr>
<tr>
<td>平成11・12年（1999・2000年）</td>
<td>河川水辺の国勢調査 平成11年度加古川水系植物調査報告書</td>
<td>全域</td>
<td>－</td>
<td>－</td>
<td>H11.11～12</td>
<td>植生図作成調査</td>
</tr>
<tr>
<td></td>
<td>下流河川St.1</td>
<td>加加姫F2</td>
<td>H11.08</td>
<td>H11.10</td>
<td></td>
<td>植物調査</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H11.08</td>
<td>H11.10</td>
<td></td>
<td>植物断面調査</td>
</tr>
<tr>
<td></td>
<td>流入河川St.2</td>
<td>加加姫F3</td>
<td>H11.08</td>
<td>H11.10</td>
<td></td>
<td>植物調査</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H11.08</td>
<td>H11.10</td>
<td></td>
<td>植物断面調査</td>
</tr>
<tr>
<td></td>
<td>St.3</td>
<td>加加姫F4</td>
<td>H11.08</td>
<td>H11.10</td>
<td></td>
<td>植物断面調査</td>
</tr>
<tr>
<td>平成15年（2003年）</td>
<td>平成15年度加古川水系植物調査報告書</td>
<td>全域</td>
<td>－</td>
<td>－</td>
<td>H15.10～11</td>
<td>植生図作成調査</td>
</tr>
<tr>
<td></td>
<td>下流河川St.1</td>
<td>加加姫F2</td>
<td>H15.05</td>
<td>H15.07</td>
<td>H15.10</td>
<td>植物調査</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H15.04</td>
<td>H15.08</td>
<td></td>
<td>ヤナギ類調査</td>
</tr>
<tr>
<td></td>
<td>流入河川St.2</td>
<td>加加姫F3</td>
<td>H15.05</td>
<td>H15.07</td>
<td>H15.10</td>
<td>植物調査</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H15.04</td>
<td>H15.08</td>
<td></td>
<td>ヤナギ類調査</td>
</tr>
<tr>
<td></td>
<td>St.3</td>
<td>加加姫F4</td>
<td>H15.04</td>
<td>H15.08</td>
<td></td>
<td>ヤナギ類調査</td>
</tr>
</tbody>
</table>
表 6.1-9（2） 加古川大堰およびその周辺での植物調査内容

<table>
<thead>
<tr>
<th>調査年度</th>
<th>調査件名</th>
<th>調査範囲</th>
<th>調査地区</th>
<th>報告書調査地区番号</th>
<th>調査時期</th>
<th>調査方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成22年（2010年）</td>
<td>平成22年度 加古川・撮保川河川水辺の国勢調査業務(加古川水系河川情報基図作成調査編)報告書</td>
<td>全域</td>
<td>—</td>
<td>—</td>
<td>H22.9～11</td>
<td>植生図作成調査 群落組成調査</td>
</tr>
<tr>
<td></td>
<td>下流河川</td>
<td>St.1</td>
<td>加加姫F3</td>
<td>H22.07 H22.10</td>
<td>植物相調査</td>
<td></td>
</tr>
<tr>
<td></td>
<td>流入河川</td>
<td>St.2</td>
<td>加加姫4</td>
<td>H22.07 H22.10</td>
<td>植物相調査</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>St.3</td>
<td>加加姫5</td>
<td>H22.07 H22.10</td>
<td>植物相調査 植生断面調査(22.10のみ)</td>
<td></td>
</tr>
<tr>
<td>平成26年（2014年）</td>
<td>加古川撮保川河川水辺の国勢調査(河川環境基図作成調査等)報告書</td>
<td>下流河川</td>
<td>St.1</td>
<td>加加姫F3</td>
<td>H26.11</td>
<td>植生図作成調査 群落組成調査</td>
</tr>
<tr>
<td></td>
<td>流入河川</td>
<td>St.2</td>
<td>加加姫4</td>
<td>H26.11</td>
<td>植生図作成調査 群落組成調査</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>St.3</td>
<td>加加姫5</td>
<td>H26.11</td>
<td>植生図作成調査 群落組成調査</td>
<td></td>
</tr>
</tbody>
</table>
図 6.1-6 加古川大堰およびその周辺での植物調査地区

<table>
<thead>
<tr>
<th>調査範囲</th>
<th>調査地区</th>
<th>地区名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>下流河川</td>
<td>St. 1</td>
<td>新加古川橋</td>
</tr>
<tr>
<td>流入河川</td>
<td>St. 2</td>
<td>大住橋</td>
</tr>
<tr>
<td></td>
<td>St. 3</td>
<td>粟田橋</td>
</tr>
</tbody>
</table>
5) 鳥類

加古川大堰およびその周辺で実施された鳥類調査の調査内容を表 6.1-10 に、調査地区の位置を図 6.1-7 に示す。

分析・評価の対象年度では、平成 24 年度に河川水辺の国勢調査における鳥類調査が実施されている。

<table>
<thead>
<tr>
<th>調査年度</th>
<th>調査年月</th>
<th>調査名称</th>
<th>調査範囲</th>
<th>調査地区</th>
<th>報告書調査地区番号</th>
<th>調査時期</th>
<th>調査方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成5年（1993年）</td>
<td></td>
<td>河川水辺の国勢調査</td>
<td>下流河川</td>
<td>St.3</td>
<td>H05.05 H05.06 H05.09 H05.12</td>
<td></td>
<td>ライセンサ法(2.0km) 地区センサス法(100×100m)定位記録法</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>流入河川</td>
<td>St.8, St.9</td>
<td>H05.05 H05.06 H05.09 H05.12</td>
<td></td>
<td>ライセンサ法(2.0km) 地区センサス法(100×100m)定位記録法</td>
</tr>
<tr>
<td>平成10年（1998年）</td>
<td></td>
<td>平成10年度 加古川水系鳥類調査報告書</td>
<td>下流河川</td>
<td>St.1</td>
<td>加加姫2 H10.06 H10.09 H11.01 H11.03</td>
<td></td>
<td>ライセンサ法(1.0km×3) 定点記録法(0.8km)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.2</td>
<td>加加姫3 H10.06 H10.09 H11.01 H11.03</td>
<td></td>
<td>ライセンサ法(1.0km×3) 定点記録法(0.8km)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>湛水域内</td>
<td>St.5</td>
<td>加加姫4 H10.06 H10.09 H11.01 H11.03</td>
<td></td>
<td>ライセンサ法(1.0km×3) 定点記録法(0.8km)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.6</td>
<td>加加姫5 H10.06 H10.09 H11.01 H11.03</td>
<td></td>
<td>ライセンサ法(1.0km×3) 定点記録法(0.8km)</td>
<td></td>
</tr>
<tr>
<td>平成16年（2004年）</td>
<td></td>
<td>平成16年度 加古川水系鳥類調査報告書</td>
<td>下流河川</td>
<td>St.1</td>
<td>加加姫2 H16.04 H16.06 H16.09 H17.01</td>
<td></td>
<td>ライセンサ法(1.0km×3) 定点記録法(0.8km)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.2</td>
<td>加加姫3 H16.04 H16.06 H16.09 H17.01</td>
<td></td>
<td>ライセンサ法(1.0km×3) 定点記録法(0.8km)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>湛水域内</td>
<td>St.5</td>
<td>加加姫4 H16.04 H16.06 H16.09 H17.01</td>
<td></td>
<td>ライセンサ法(1.0km×3) 定点記録法(0.8km)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.6</td>
<td>加加姫5 H16.04 H16.06 H16.09 H17.01</td>
<td></td>
<td>ライセンサ法(1.0km×3) 定点記録法(0.8km)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>流入河川</td>
<td>St.9</td>
<td>加加姫6 H16.04 H16.06 H16.09 H17.01</td>
<td></td>
<td>ライセンサ法(1.0km×3) 定点記録法(0.4km)</td>
</tr>
</tbody>
</table>
表 6.1-10（2） 加古川大堰およびその周辺での鳥類調査内容

<table>
<thead>
<tr>
<th>調査年度</th>
<th>調査件名</th>
<th>調査範囲</th>
<th>調査地区</th>
<th>報告書調査</th>
<th>調査時期</th>
<th>調査方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成24年（2012年）</td>
<td>加古川揖保川水辺現地調査（魚類・鳥類）業務報告書</td>
<td>下流河川</td>
<td>St.4</td>
<td>加加姫4(R/L)～12(R)km</td>
<td>H24.04 H24.05 H24.06 H24.08 H24.09 H24.10 H25.01</td>
<td>スポットセンサス法、集団分布地調査</td>
</tr>
<tr>
<td></td>
<td></td>
<td>湖水域内</td>
<td>St.7</td>
<td>加加姫12(L)～16(R/L)km</td>
<td>H24.04 H24.05 H24.06 H24.08 H24.09 H24.10 H25.01</td>
<td>スポットセンサス法、集団分布地調査</td>
</tr>
<tr>
<td></td>
<td></td>
<td>流入河川</td>
<td>St.10</td>
<td>加加姫17(R/L)～24(R/L)km</td>
<td>H24.04 H24.05 H24.06 H24.08 H24.09 H24.10 H25.01</td>
<td>スポットセンサス法、集団分布地調査</td>
</tr>
</tbody>
</table>
図 6.1-7（1） 加古川大堰およびその周辺での鳥類調査地区

<table>
<thead>
<tr>
<th>調査範囲</th>
<th>調査地区</th>
<th>地区名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>下流河川</td>
<td>St.1</td>
<td>加古川橋</td>
</tr>
<tr>
<td></td>
<td>St.2</td>
<td>西川合流</td>
</tr>
<tr>
<td></td>
<td>St.3</td>
<td>池尻橋</td>
</tr>
<tr>
<td></td>
<td>St.4</td>
<td>加加姫4(R/L)〜12(R)km</td>
</tr>
<tr>
<td>潜水域内</td>
<td>St.5</td>
<td>大堰周辺</td>
</tr>
<tr>
<td></td>
<td>St.6</td>
<td>美嚢川合流</td>
</tr>
<tr>
<td></td>
<td>St.7</td>
<td>加加姫12(L)〜16(R/L)km</td>
</tr>
<tr>
<td>流入河川</td>
<td>St.8</td>
<td>万願寺川合流</td>
</tr>
<tr>
<td></td>
<td>St.9</td>
<td>粟田橋</td>
</tr>
<tr>
<td></td>
<td>St.10</td>
<td>加加姫17(R/L)〜24(R/L)km</td>
</tr>
</tbody>
</table>

図 6.1-7（1） 加古川大堰およびその周辺での鳥類調査地区
<table>
<thead>
<tr>
<th>調査範囲</th>
<th>調査地区</th>
<th>調査地区</th>
</tr>
</thead>
<tbody>
<tr>
<td>下流河川</td>
<td>St.4</td>
<td>加加姫4(R/L)〜12(R)km</td>
</tr>
<tr>
<td>湿水域内</td>
<td>St.7</td>
<td>加加姫12(L)〜16(R/L)km</td>
</tr>
<tr>
<td>流入河川</td>
<td>St.10</td>
<td>加加姫17(R/L)〜24(R/L)km</td>
</tr>
</tbody>
</table>

図 6.1-7（2） 加古川大堰およびその周辺での鳥類調査地区
6）両生類・爬虫類・哺乳類

加古川大堰およびその周辺で実施された両生類・爬虫類調査の調査内容を表 6.1-11 に、哺乳類調査の調査内容を表 6.1-12 に、調査地区の位置を図 6.1-8 に示す。

分析・評価の対象年度では、平成 27 年度に河川水辺の国勢調査における両生類・爬虫類・哺乳類調査が実施されている。

<table>
<thead>
<tr>
<th>調査年度</th>
<th>調査件名</th>
<th>調査範囲</th>
<th>調査地区</th>
<th>報告書調査地区番号</th>
<th>調査時期</th>
<th>調査方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成7年 (1995年)</td>
<td>河川水辺の国勢調査 平成7年度 加古川水系両生類・爬虫類・哺乳類調査報告書</td>
<td>下流河川</td>
<td>St.1 (加古川市升田池先)</td>
<td>H07.03</td>
<td>目撃・鳴き声確認法</td>
<td></td>
</tr>
<tr>
<td>平成12年度 (2000年)</td>
<td>河川水辺の国勢調査 平成12年度 加古川水系両生類・爬虫類・哺乳類調査報告書</td>
<td>下流河川</td>
<td>St.1 加加姫2</td>
<td>H12.05 H12.07 H12.09</td>
<td>目撃法、トラップ法(カニカゴ)</td>
<td></td>
</tr>
<tr>
<td>平成17年度 (2005年)</td>
<td>河川水辺の国勢調査 平成17年度 加古川水系両生類・爬虫類・哺乳類調査報告書</td>
<td>下流河川</td>
<td>St.1 加加姫2</td>
<td>H17.05 H17.07 H17.10</td>
<td>目撃法、トラップ法(カニカゴ)</td>
<td></td>
</tr>
<tr>
<td>平成27年 (2015年)</td>
<td>加古川揖保川河川水辺の国勢調査(両生類・爬虫類・哺乳類)業務 報告書</td>
<td>下流河川</td>
<td>St.1 加加姫2</td>
<td>H27.05 H27.07 H27.08 H27.09 H27.10 H27.12 H28.01</td>
<td>目撃法、捕獲法、トラップ法</td>
<td></td>
</tr>
</tbody>
</table>

表 6.1-11 加古川大堰およびその周辺での両生類・爬虫類調査内容
表 6.1-12 　加古川大堰およびその周辺での哺乳類調査内容

<table>
<thead>
<tr>
<th>調査年度</th>
<th>調査件名</th>
<th>調査範囲</th>
<th>調査地区</th>
<th>調査方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成7年(1995年)</td>
<td>河川水辺の国勢調査 平成7年度　加古川水系両生類・亀類・哺乳類調査報告書</td>
<td>下流河川</td>
<td>St.1</td>
<td>目撃・フィールドサイン法、トラップ法、無人撮影法</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.2 (加古川市呉田地先)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>流入河川</td>
<td>St.2</td>
<td>目撃・フィールドサイン法、トラップ法、無人撮影法</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.3 (小野市亀田地先)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.4 (小野市米生地先)</td>
<td></td>
</tr>
<tr>
<td>平成12年(2000年)</td>
<td>河川水辺の国勢調査 平成12年度　加古川水系両生類・亀類・哺乳類調査報告書</td>
<td>下流河川</td>
<td>St.1</td>
<td>目撃法、コウモリ探知機、自動撮影法、フィールドサイン法、トラップ法(シャーマントラップ、墜落缶、モグラバサミ、カゴワナ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.3</td>
<td>目撃法、コウモリ探知機、自動撮影法、フィールドサイン法、トラップ法(シャーマントラップ、墜落缶、モグラバサミ、カゴワナ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.4</td>
<td>目撃法、コウモリ探知機、自動撮影法、フィールドサイン法、トラップ法(シャーマントラップ、墜落缶、モグラバサミ、カゴワナ)</td>
</tr>
<tr>
<td>平成17年(2005年)</td>
<td>平成17年度　加古川水系両生類・亀類・哺乳類調査報告書</td>
<td>下流河川</td>
<td>St.1</td>
<td>目撃法、バットディテクターフィールドサイン法、トラップ法(シャーマントラップ、モールトラップ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.3</td>
<td>目撃法、バットディテクターフィールドサイン法、トラップ法(シャーマントラップ、モールトラップ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.4</td>
<td>目撃法、バットディテクターフィールドサイン法、トラップ法(シャーマントラップ、モールトラップ)</td>
</tr>
<tr>
<td>平成27年(2015年)</td>
<td>加古川揺備川河川水辺の国勢調査(両生類・亀類・哺乳類)業務 報告書</td>
<td>下流河川</td>
<td>St.1</td>
<td>トRAP法、バットディテクター法、無人撮影装置</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>St.5</td>
<td>トRAP法、バットディテクター法、無人撮影装置</td>
</tr>
<tr>
<td></td>
<td></td>
<td>流入河川</td>
<td>St.5</td>
<td>トRAP法、バットディテクター法、無人撮影装置</td>
</tr>
</tbody>
</table>
図 6.1-8 加古川大堰およびその周辺での両生類・爬虫類・哺乳類調査地区

<table>
<thead>
<tr>
<th>調査範囲</th>
<th>調査地区</th>
<th>地区名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>下流河川</td>
<td>St. 1</td>
<td>西川合流上流</td>
</tr>
<tr>
<td></td>
<td>St. 2</td>
<td>黍田樋門</td>
</tr>
<tr>
<td></td>
<td>St. 3</td>
<td>万歳橋下流</td>
</tr>
<tr>
<td></td>
<td>St. 4</td>
<td>万願寺川合流地点上流</td>
</tr>
<tr>
<td></td>
<td>St. 5</td>
<td>粟田橋</td>
</tr>
</tbody>
</table>

流入河川
7) 陸上昆虫類等

加古川大堰およびその周辺で実施された陸上昆虫類等の調査内容を表 6.1-13 に、調査地区の位置を図 6.1-9 に示す。

分析・評価の対象年度では、平成 28年度に河川水辺の国勢調査における陸上昆虫類等調査が実施されている。

<p>| 平成4年 (1992年) | 河川水辺の国勢調査 平成4年度 加古川水系陸上昆虫類等調査報告書 | 下流河川 | St.2 | St.2 (加古川市長田先) | H04.06 | H04.08 | H04.10 | スウィーピング法 | ビーティング法 | ベイトトラップ法 | 任意採集法 |
| 流入河川 | St.3 | St.3 (小野市粟生町先) | H04.06 | H04.08 | H04.10 | スウィーピング法 | ビーティング法 | ベイトトラップ法 | 任意採集法 | | |
| | St.4 | St.4 (小野市粟生町先) | H04.06 | H04.08 | H04.10 | スウィーピング法 | ビーティング法 | ベイトトラップ法 | 任意採集法 |
| 平成8年 (1996年) | 河川水辺の国勢調査 平成8年度 加古川水系陸上昆虫類等調査報告書 | 下流河川 | St.1 | St.2 | H08.06 | H08.07 | H08.09 | スウィーピング法 | 任意採集法 | ベイトトラップ法 | ピットホールトラップ法 |
| 流入河川 | St.3 | St.3 | H08.06 | H08.07 | H08.09 | スウィーピング法 | 任意採集法 | ベイトトラップ法 | ピットホールトラップ法 |
| | St.4 | St.4 | H08.06 | H08.07 | H08.09 | スウィーピング法 | 任意採集法 | ベイトトラップ法 | ピットホールトラップ法 |
| 平成13年 (2001年) | 河川水辺の国勢調査 平成13年度 加古川水系陸上昆虫類等調査報告書 | 下流河川 | St.1 | 加加姫2 | H13.04 | H13.07 | H13.10 | 任意採集法 | スウィーピング法 | ビーティング法 | ベイトトラップ法 |
| 流入河川 | St.3 | 加加姫3 | H13.04 | H13.07 | H13.10 | 任意採集法 | スウィーピング法 | ベイトトラップ法 |
| | St.4 | 加加姫4 | H13.04 | H13.07 | H13.10 | 任意採集法 | スウィーピング法 | ベイトトラップ法 | ピットホールトラップ法 |</p>
<table>
<thead>
<tr>
<th>調査年度</th>
<th>調査件名</th>
<th>調査範囲</th>
<th>報告書調査地区</th>
<th>報告書調査地区番号</th>
<th>調査時期</th>
<th>調査方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成18年（2006年）</td>
<td>平成18年度 河川水辺の国勢調査（陸上昆虫類等）業務（加古川水系）報告書</td>
<td>下流河川</td>
<td>St.2</td>
<td>加加姫2</td>
<td>H18.05 H18.07 H18.09</td>
<td>任意採集（見つけ採り、スイビング法、ピーティング法、石おこし採集法）、目摺法、ライトトラップ法（ボックス法）、ピットフォールトラップ法、糞トラップ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>流入河川</td>
<td>St.4</td>
<td>加加姫3</td>
<td>H18.05 H18.07 H18.09</td>
<td>任意採集（見つけ採り、スイビング法、ピーティング法、石おこし採集法）、目摺法、ライトトラップ法（ボックス法）、ピットフォールトラップ法、糞トラップ</td>
</tr>
<tr>
<td>平成28年（2016年）</td>
<td>加古川揖保川河川水辺の国勢調査（陸上昆虫類等）業務 報告書</td>
<td>下流河川</td>
<td>St.2</td>
<td>加加姫2</td>
<td>H28.05 H28.07 H28.08 H28.09 H28.10</td>
<td>任意採集（見つけ採り、スイビング法、ピーティング法、石おこし採集法）、目摺法、タモ網採集、ライトトラップ法（ボックス法）、ピットフォールトラップ法</td>
</tr>
<tr>
<td></td>
<td></td>
<td>流入河川</td>
<td>St.4</td>
<td>加加姫3</td>
<td>H28.05 H28.07 H28.08 H28.09 H28.10</td>
<td>任意採集（見つけ採り、スイビング法、ピーティング法、石おこし採集法）、目摺法、タモ網採集、ライトトラップ法（ボックス法）、ピットフォールトラップ法</td>
</tr>
</tbody>
</table>
図 6.1-9 加古川大堰およびその周辺での陸上昆虫類等調査地区
6.2 加古川大堰周辺の環境の把握

6.2.1 加古川水系の概要

加古川水系の概要図を図 6.2-1 に示す。

加古川は、その源を兵庫県朝来市丹波山東町と丹波市青垣町の市境にある粟鹿山（標高 962m）に発し、丹波市山南町において左支川の篠山川を合わせ、西脇市において右支川の杉原川と野間川を、小野市において左支川の東条川、右支川の方願寺川を合わせ、さらに三木市において左支川の美嚢川を合わせながら南下し、播磨平野から播磨灘へと注ぐ兵庫県を代表する一級河川である。

流域は、県内 11 市 3 町にわたり、流路延長 96.0 km、流域面積 1,730km² と県全体面積（約 8,377 km²）の 20.7％を占める。流域のうち、山地が 1,160km²（67％）、平地が 570km²（33％）であり、流域市町は、上流部の丹波地域、中下流部の東播磨地域に大別することができる。

加古川の植生は、上流域ではスギ・ヒノキ植林が主体であり、中流域ではアカマツ群落が主体となっている。下流および河口域では、水田雑草群落が中心となっており、特に、小野市、加西市、三木市周辺には、数多くのため池が点在し農業用水として利用されている。

図 6.2-1 加古川水系の概要
6.2.2 堰の湛水域およびその周辺の環境の概況

加古川大堰は、加古川河口より約12kmの兵庫県加古川市に位置する。
加古川大堰周辺の自然環境の現況は、下記のとおりである。

(1) 堰の湛水域内およびその周辺の自然環境の概況

加古川大堰の湛水域内およびその周辺の自然環境の現況を図6.2-2に示す。

最新年度の河川水辺の国勢調査結果によると、湛水域内では、在来種のアブラハヤ、コウライモロコ等の魚類のほか、外来種のブルーギル、オオクチバス等の生息も確認されている。比較的水深の浅くなる湛水域の上流部では、モノアラガイ、ヒラマキミズマイマイ、コオイムシ等の底生動物の生息が確認されている。

また、湛水域周辺の上空には、湛水域内に生息する魚類を餌とするミサゴも飛来し、餌場として利用している。
(2) 流入河川の自然環境の概況

加古川大堰の流入河川の自然環境の概況を図6.2-3に示す。

最新年度の河川水辺の国勢調査結果によると、流入河川では在来種のアブラボテ、コウライモロコ、アカザ等の魚類のほか、外来種のブルーギル、オオクチバス等の生息も確認されている。

水際部を利用する生物としては、両生類のトノサマガエル、爬虫類のニホンイシガメ、ニホンスッポンのほか、外来種で両生類のウシガエル、哺乳類のヌートリア、アライグマ等の生息も確認されている。陸上昆虫類等では、カトリヤンマ、ヒゲコガネ、ケテイカカズラの湿生環境に生息する種の生息が確認されている。

鳥類では、河川敷のヨシ原を利用するオオヨシキリや砂礫河原を利用するコチドリ等の生息が確認されている。また、豊岡市で放鳥が行われているコウノトリの飛来も確認されている。

植物では、湿生の在来種のハンゲショウ、タコノアシ、ミクリ等のほか、外来種のアレチウリ、オオフサモ、オオタカ等の生息も確認されている。

※1:スジシマドジョウ中型種は、最新の生物リストではチュウガタスジシマドジョウに種名変更されている。
※2:メダカ南日本集団は、最新の生物リストではミナミメダカに種名変更されている。
注1:重要種および外来種は、最新年の水国調査の調査地区における結果を示している。
注2:鳥類の重要種は、スポットセンサスの調査地点より観察された種を示している。
注3:下図は河川環境基図(H26)を使用している。
下流河川の自然環境の概況

下流河川の自然環境の概況を図 6.2-4 に示す。

最新年度の河川水辺の国勢調査結果によると、流入河川では在来種のカネヒラ、カワヒガイ、シマヒレヨシノボリ等の魚類のほか、外来種のブルーギル、オオクチバス等の生息も確認されている。水際部が植物に被覆され、水深の浅い箇所では、クロダカワニナ、モノアラガイ、ミゾレヌマエビ等の底生動物の生息が確認されている。

水際部を利用する生物としては、両生類のトノサマガエル、ニホンヤモリのほか、外来種で両生類のウシガエル、哺乳類のヌートリア、アライグマ等の生息も確認されている。陸上昆虫類等では、コガムシ、ヒゲコガネ等の湿生環境に生息する種の生息が確認されている。

鳥類では、河川敷のヨシ原を利用するオオヨシキリや魚食性のミサゴ、カワセミの生息が確認されている。

植物では、湿生の在来種のタコノアシ、サイカチ、フサスゲ等のほか、外来種のアレチウリ、オオフサモの生育も確認されている。

図 6.2-4 下流河川の自然環境の概況

※1: 外来のAzolla属に属する種は、全て特定外来生物に指定されている。
※2: メダカ南日本集団は、最新の生物リストではミナミメダカに種名変更されている。
※3: スジシマドジョウ中型種は、最新の生息・生息環境ではチュウガタスジシマドジョウに種名変更されている。
※4: サツキマスは、最新の生物リストではサツキマス(アマゴ)に種名変更されている。
注1: 重要種および外来種は、最新年度の調査結果における結果を示している。
注2: 鳥類の調査結果は、ポイントサンスズにおける調査点数を示している。
注3: 調査の対象河川は、特定の河川を示している。
(4) 堰周辺の植生の概況
堰周辺の経年の植生面積の状況を図 6.2-5 に示す。
植生を抽出した範囲は、生物の分析・評価のために設定した 4.0km～24.0km とした。
堰周辺の自然植生は、高水敷は広く草本群落が中心であり、最新の平成 26 年度では全体の約 40%を占めていた。木本群落は、ヤナギ類に係る群落が中心の河畔林であり、平成 22 年度以降に占める割合は、比較的に安定していた。砂礫河原となる自然裸地の割合も、平成 11 年度以降、比較的に安定していた。

図 6.2-5 植生面積（流入河川・堰周辺・下流河川）割合の経年変化

参考：加古川における河道内樹木管理
国土交通省近畿地方整備局姫路河川国道事務所では、河川環境に配慮した河道内樹木管理を実施している。
河道内樹木の管理サイクル（輪伐）のイメージを図 6.2-6 に示す。
加古川では、区間内の河道内樹木の同時伐採は行わず、管理サイクルに合わせて、中州毎に実施する輪伐を行うことで、河道内樹木が一度に消失することができ、河川環境に配慮した河道内樹木管理を実施している。
(5) 自然再生事業

加古川での自然再生事業に係る整備メニュー別の整備予定箇所を図 6.2-7 に示す。

加古川では、加古川大堰を含む広く上下流で自然再生事業を計画、もしくは実施中である。自然再生の整備メニューは、①礫河原の再生、②瀬・淵の再生、③ワンドの再生、④上下流連続性の再生、⑤流域との連続性の再生の 5 つである。既に、③ワンドの再生と④上下流連続性の再生に係る一部は、施工済の箇所もあり、その効果の検証をするためのモニタリングを実施中である。

自然再生事業は、加古川大堰の流入河川および下流河川で予定されており、今後の事業の進展に伴い、生物の生息・生育環境への効果が期待される。

図 6.2-7 自然再生の整備メニュー別の整備箇所
6.2.3 河川水辺の国勢調査等における確認種の概況

生物調査項目別の最新調査年度および準拠した水国リストを表 6.2-1 に示す。加古川大堰周辺で確認されている生物の確認種は、次頁以降に整理した。

確認種の和名、学名および並び順は、「ダム等管理フォローアップ定期報告書作成の手引き[平成 26年度版]（平成 26年 4月、国土交通省水管理・国土保全局河川管理課）」で示されており、生物調査項目別の最新年度の調査結果報告書で整理された「河川水辺の国勢調査生物リスト（国土交通省）」に、原則として準拠した。

表 6.2-1 生物調査項目別の最新年度および準拠した水国リスト

<table>
<thead>
<tr>
<th>調査対象</th>
<th>最新の調査年度</th>
<th>準拠した水国リスト</th>
</tr>
</thead>
<tbody>
<tr>
<td>魚類</td>
<td>平成 24年度</td>
<td>平成 24年度</td>
</tr>
<tr>
<td>底生動物</td>
<td>平成 25年度</td>
<td>平成 25年度</td>
</tr>
<tr>
<td>動植物プランクトン</td>
<td>平成 25年度</td>
<td>平成 25年度</td>
</tr>
<tr>
<td>植物</td>
<td>平成 22年度</td>
<td>平成 22年度</td>
</tr>
<tr>
<td>鳥類</td>
<td>平成 24年度</td>
<td>平成 24年度</td>
</tr>
<tr>
<td>両生類・爬虫類・哺乳類</td>
<td>平成 27年度</td>
<td>平成 27年度</td>
</tr>
<tr>
<td>陸上昆虫類等</td>
<td>平成 28年度</td>
<td>平成 28年度</td>
</tr>
</tbody>
</table>
(1) 魚類
加古川大堰およびその周辺における魚類の確認状況を
表 6.2-2 に示す。

加古川では、河川水辺の国勢調査の試行として、平成2年度より魚類に係る調査を実施しており、2回目の平成4年度を1巡目とし、最新の平成24年度で5巡目となる。

平成2年度から平成24年度の調査において、オイカワ、コウライモロコ、カマツカ等、計6目14科56種が確認されている。

魚種別の確認状況をみると、全ての調査年度において確認された種は、タイリクバラタナゴ、オイカワ、カマツカ、ギギ、ブルーギル、オオクチバス、カワヨシノボリの7種で、これらの種は加古川大堰およびその周辺に多く生息する種と考えられる。
表 6.2-2 (1) 加古川大堰およびその周辺の魚類の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H2</td>
</tr>
<tr>
<td>1</td>
<td>ウナギ目</td>
<td>ウナギ科</td>
<td>ニホンウナギ</td>
<td>Anguilla japonica</td>
<td>●●●●</td>
</tr>
<tr>
<td>2</td>
<td>コイ目</td>
<td>コイ科</td>
<td>ウナギ</td>
<td>Cyprinus carpio</td>
<td>●●●●</td>
</tr>
<tr>
<td>3</td>
<td>ゲンゴロウブナ</td>
<td>Carassius cuvieri</td>
<td>●●●●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ガンブナ</td>
<td>Carassius auratus langsdorfi</td>
<td>●●●●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>オオキンブナ</td>
<td>Carassius auratus buergeri</td>
<td>●●●●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ガンブナ</td>
<td>Carassius sp.</td>
<td>●●●●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ヤリタナゴ</td>
<td>Tanakia lanceolata</td>
<td>●●●●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>カネヒラ</td>
<td>Acheilognathus rhombeus</td>
<td>●●●●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>イチモンジタナゴ</td>
<td>Acheilognathus oyanostigma</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>タイリクバラタガ</td>
<td>Rhodeus ocellatus ocellatus</td>
<td>●●●●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ハス</td>
<td>Opsariichthys uncirostris uncirostris</td>
<td>●●●●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>カワヒガイ</td>
<td>Zacco platypus</td>
<td>●●●●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>カワムツ</td>
<td>Zacco temminckii</td>
<td>●●●●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>カシマツ</td>
<td>Zacco sieboldii</td>
<td>●●●●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>アブラハヤ</td>
<td>Phoxinus lagowskii steindachneri</td>
<td>●●●●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>イトモロコ</td>
<td>Squalidus gracilis gracilis</td>
<td>●●●●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>スゴモロコ</td>
<td>Squalidus chankaensis biwae</td>
<td>●●●●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>コウライモロコ</td>
<td>Squalidus chankaensis subsp.</td>
<td>●●●●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>ドジョウ科</td>
<td>Cyprinidae</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>ドジョウ</td>
<td>Misgurnus anguillicaudatus</td>
<td>●●●●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>シマドジョウ</td>
<td>Cobitis biwae</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>スジシマドジョウ中型種</td>
<td>Cobitis sp.3</td>
<td>●●●●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>語</td>
<td>目</td>
<td>科</td>
<td>属</td>
<td>种</td>
<td>例</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>33</td>
<td>ナマズ目</td>
<td>ギギ科</td>
<td>Pseudobagrus nudiceps</td>
<td>●●●●●●</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>ナマズ科</td>
<td>ナマズ</td>
<td>Silurus asotus</td>
<td>●●●● ●</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>アカザ科</td>
<td>アカザ</td>
<td>Liobagrus reinii</td>
<td>●●●●● ●</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>サケ目</td>
<td>アユ科</td>
<td>Plecoglossus altivelis altivelis</td>
<td>●●●● ●●</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>サケ科</td>
<td>ニジマス</td>
<td>Oncorhynchus mykiss</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>サツキマス</td>
<td>Oncorhynchus masou ishikawae</td>
<td>● ●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>ダツ目</td>
<td>メダカ科</td>
<td>Dryzas latipes</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>ススキ目</td>
<td>サンフィッシュ科</td>
<td>Lepomis macrochirus</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>サケ目</td>
<td>ボラ科</td>
<td>Mugil cephalus cephalus</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>ボラ科</td>
<td>ボラ</td>
<td>Odontobutis obscura</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>ダツ目</td>
<td>ドンコ科</td>
<td>Trandiger brevispinis</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>ハゼ科</td>
<td>カワアナゴ</td>
<td>Gymnomogobius petshiliensis</td>
<td>● •</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>ウキゴリ</td>
<td>Gymnomogobius urotaenia</td>
<td>● ● ● ●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>サケ科</td>
<td>コクラクハゼ</td>
<td>Rhinogobius fluviatilis</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>サケ科</td>
<td>シマヨシノボリ</td>
<td>Rhinogobius sp.CB</td>
<td>●●● ● ●</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>サケ科</td>
<td>奥ヨシノボリ</td>
<td>Rhinogobius kurodai</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>サケ科</td>
<td>トウヨシノボリ</td>
<td>Rhinogobius kurodai</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>サケ科</td>
<td>シマヒレヨシノボリ</td>
<td>Rhinogobius flumineu</td>
<td>●●●●●●</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>サケ科</td>
<td>タイワンドジョウ科</td>
<td>Channa maculata</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>サケ科</td>
<td>カムルチー</td>
<td>Channa argus</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
</tbody>
</table>

合計：6目 14科 56種 56種 14種 27種 37種 52種 46種 49種

※1）分類体系および同定精度は「河川水辺の国勢調査のための生物リスト」（平成24年公表 水情報国土データ管理センター）を基準とした。
(2) 底生動物

加古川大堰およびその周辺における底生動物の確認状況を表 6.2-3 に示す。

加古川では、平成 4 年度より底生動物に係る河川水辺の国勢調査が実施されており、最新の平成25年度で5巡目となる。

平成4年度から平成25年度の調査において、計8門14綱35目102科250種の底生動物が確認されている。

表 6.2-3（1） 加古川大堰およびその周辺の底生動物の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>門名</th>
<th>綱名</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>海綿動物門</td>
<td>普通海綿綱</td>
<td>サラカメメン</td>
<td>タンスイカメメン</td>
<td>Eunapius fragilis</td>
<td>●</td>
<td>H4</td>
</tr>
<tr>
<td>2</td>
<td>極形動物門</td>
<td>動物門</td>
<td>サンカアクマカメメン科</td>
<td>サンカアクマカメメン</td>
<td>Spongillidae</td>
<td>●</td>
<td>H5</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>三岐腸目</td>
<td>アメリカナミウズムシ</td>
<td>アメリカナミウズムシ</td>
<td>Dirardia tigrina</td>
<td>●</td>
<td>H6</td>
</tr>
<tr>
<td>4</td>
<td>頭形動物門</td>
<td>サンカアクマカメメン科</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>Spongilla</td>
<td>●</td>
<td>H7</td>
</tr>
<tr>
<td>5</td>
<td>曲形動物門</td>
<td>内肛綱</td>
<td>足胞目</td>
<td>シマミズウドンゲ</td>
<td>Urnatella</td>
<td>●</td>
<td>H8</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>腹足綱</td>
<td>アマオブネガイ目</td>
<td>アマオブネガイ</td>
<td>Clithon</td>
<td>●</td>
<td>H9</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>原始紐目</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>Spongilla</td>
<td>●</td>
<td>H14</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>Spongilla</td>
<td>●</td>
<td>H15</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>Spongilla</td>
<td>●</td>
<td>H16</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>Spongilla</td>
<td>●</td>
<td>H25</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>Spongilla</td>
<td>●</td>
<td>H25</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>Spongilla</td>
<td>●</td>
<td>H25</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>Spongilla</td>
<td>●</td>
<td>H25</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>Spongilla</td>
<td>●</td>
<td>H25</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>Spongilla</td>
<td>●</td>
<td>H25</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>Spongilla</td>
<td>●</td>
<td>H25</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>Spongilla</td>
<td>●</td>
<td>H25</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>Spongilla</td>
<td>●</td>
<td>H25</td>
</tr>
<tr>
<td>19</td>
<td>-</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>Spongilla</td>
<td>●</td>
<td>H25</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>Spongilla</td>
<td>●</td>
<td>H25</td>
</tr>
<tr>
<td>21</td>
<td>-</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>Spongilla</td>
<td>●</td>
<td>H25</td>
</tr>
<tr>
<td>22</td>
<td>-</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>Spongilla</td>
<td>●</td>
<td>H25</td>
</tr>
<tr>
<td>23</td>
<td>-</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>Spongilla</td>
<td>●</td>
<td>H25</td>
</tr>
<tr>
<td>24</td>
<td>-</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>タンスイカメメン</td>
<td>Spongilla</td>
<td>●</td>
<td>H25</td>
</tr>
</tbody>
</table>

6-47
表 6.2-3（2） 加古川大堰およびその周辺の底生動物の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>門名</th>
<th>綱名</th>
<th>目名</th>
<th>科名</th>
<th>種名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>多脚動物門</td>
<td>多脚動物纲</td>
<td>イシガイ目</td>
<td>イシガイ科</td>
<td>イシガイ</td>
<td>Unio douglasiae nipponensis</td>
<td>H4 H9 H14 H18 H25</td>
</tr>
<tr>
<td>26</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>多脚動物門</td>
<td>サンガヨカイ目</td>
<td>サンガヨカイ科</td>
<td>サンガヨカイ</td>
<td>サンガヨカイ</td>
<td>Hediste sp.</td>
<td>H4 H9 H14 H18 H25</td>
</tr>
<tr>
<td>29</td>
<td>多脚動物門</td>
<td>多脚動物纲</td>
<td>オヨギミミズ目</td>
<td>オヨギミミズ科</td>
<td>オヨギミミズ</td>
<td>Corbicula japonica</td>
<td>H4 H9 H14 H18 H25</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>32</td>
<td>多脚動物門</td>
<td>多脚動物纲</td>
<td>タンガミミズ目</td>
<td>タンガミミズ科</td>
<td>タンガミミズ</td>
<td>Branchiura sowerbyi</td>
<td>H4 H9 H14 H18 H25</td>
</tr>
<tr>
<td>33</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>34</td>
<td>多脚動物門</td>
<td>多脚動物纲</td>
<td>ミミズ科</td>
<td>ミミズ科</td>
<td>ミミズ</td>
<td>Laimodrius hoffmeisteri</td>
<td>H4 H9 H14 H18 H25</td>
</tr>
<tr>
<td>35</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>36</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>37</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>38</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>39</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>40</td>
<td>多脚動物門</td>
<td>多脚動物纲</td>
<td>タンガミミズ目</td>
<td>タンガミミズ科</td>
<td>タンガミミズ</td>
<td>Slavina appendiculata</td>
<td>H4 H9 H14 H18 H25</td>
</tr>
<tr>
<td>41</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>42</td>
<td>多脚動物門</td>
<td>多脚動物纲</td>
<td>タンガミミズ目</td>
<td>タンガミミズ科</td>
<td>タンガミミズ</td>
<td>Tubifex tubifex</td>
<td>H4 H9 H14 H18 H25</td>
</tr>
<tr>
<td>43</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>44</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>45</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>46</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>47</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>48</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>49</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>多脚動物門</td>
<td>多脚動物纲</td>
<td>グロシフォニ科</td>
<td>グロシフォニ科</td>
<td>グロシフォニ</td>
<td>Glossiphoniidae</td>
<td>H4 H9 H14 H18 H25</td>
</tr>
<tr>
<td>51</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>52</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>53</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>54</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>55</td>
<td>多脚動物門</td>
<td>多脚動物纲</td>
<td>グロシフォニ科</td>
<td>グロシフォニ科</td>
<td>グロシフォニ</td>
<td>Glossiphoniidae</td>
<td>H4 H9 H14 H18 H25</td>
</tr>
<tr>
<td>56</td>
<td>多脚動物門</td>
<td>多脚動物纲</td>
<td>グロシフォニ科</td>
<td>グロシフォニ科</td>
<td>グロシフォニ</td>
<td>Glossiphoniidae</td>
<td>H4 H9 H14 H18 H25</td>
</tr>
<tr>
<td>57</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>58</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>59</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
表 6.2-3 (3) 加古川大堰およびその周辺の底生動物の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>門名</th>
<th>綱名</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>軟甲綱</td>
<td>(節足動物門)</td>
<td>(ヨコエビ目)</td>
<td>ハマトビムシ科</td>
<td>Platorchestia 属</td>
<td>Platorchestia sp.</td>
<td>H4 H9 H14 H18 H25</td>
</tr>
<tr>
<td>62</td>
<td>軟甲綱</td>
<td>(節足動物門)</td>
<td>(ヨコエビ目)</td>
<td>ハマトビムシ科</td>
<td>Platorchestia sp.</td>
<td>Platorchestia sp.</td>
<td>H4 H9 H14 H18 H25</td>
</tr>
<tr>
<td>63</td>
<td>カゲロウ目</td>
<td>(蜉蝣目)</td>
<td>(ヨコエビ目)</td>
<td>ハマトビムシ科</td>
<td>Platorchestia 属</td>
<td>Platorchestia sp.</td>
<td>H4 H9 H14 H18 H25</td>
</tr>
<tr>
<td>64</td>
<td>カゲロウ目</td>
<td>(蜉蝣目)</td>
<td>(ヨコエビ目)</td>
<td>ハマトビムシ科</td>
<td>Platorchestia 属</td>
<td>Platorchestia sp.</td>
<td>H4 H9 H14 H18 H25</td>
</tr>
<tr>
<td>65</td>
<td>カゲロウ目</td>
<td>(蜉蝣目)</td>
<td>(ヨコエビ目)</td>
<td>ハマトビムシ科</td>
<td>Platorchestia 属</td>
<td>Platorchestia sp.</td>
<td>H4 H9 H14 H18 H25</td>
</tr>
<tr>
<td>66</td>
<td>カゲロウ目</td>
<td>(蜉蝣目)</td>
<td>(ヨコエビ目)</td>
<td>ハマトビムシ科</td>
<td>Platorchestia 属</td>
<td>Platorchestia sp.</td>
<td>H4 H9 H14 H18 H25</td>
</tr>
<tr>
<td>67</td>
<td>カゲロウ目</td>
<td>(蜉蝣目)</td>
<td>(ヨコエビ目)</td>
<td>ハマトビムシ科</td>
<td>Platorchestia 属</td>
<td>Platorchestia sp.</td>
<td>H4 H9 H14 H18 H25</td>
</tr>
<tr>
<td>68</td>
<td>カゲロウ目</td>
<td>(蜉蝣目)</td>
<td>(ヨコエビ目)</td>
<td>ハマトビムシ科</td>
<td>Platorchestia 属</td>
<td>Platorchestia sp.</td>
<td>H4 H9 H14 H18 H25</td>
</tr>
<tr>
<td>69</td>
<td>カゲロウ目</td>
<td>(蜉蝣目)</td>
<td>(ヨコエビ目)</td>
<td>ハマトビムシ科</td>
<td>Platorchestia 属</td>
<td>Platorchestia sp.</td>
<td>H4 H9 H14 H18 H25</td>
</tr>
<tr>
<td>70</td>
<td>カゲロウ目</td>
<td>(蜉蝣目)</td>
<td>(ヨコエビ目)</td>
<td>ハマトビムシ科</td>
<td>Platorchestia 属</td>
<td>Platorchestia sp.</td>
<td>H4 H9 H14 H18 H25</td>
</tr>
</tbody>
</table>

注：学名は、調査年度No.がH4、H9、H14、H18、H25の順に記載されています。
<table>
<thead>
<tr>
<th>No.</th>
<th>門名</th>
<th>群名</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>キイロカゲロウ</td>
<td>Potamothorax forensus</td>
<td>●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>104</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>オオカマダガカゲロウ</td>
<td>Cincticostella elongata</td>
<td>● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>105</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>オオマダガカゲロウ</td>
<td>Brunella basalis</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>106</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>シリガマダガカゲロウ</td>
<td>Epheritheria elongata</td>
<td>●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>107</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>エラフマダガカゲロウ</td>
<td>Ephemera setigera</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>108</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>アカマダガカゲロウ</td>
<td>Uosacantha punctata</td>
<td>● ● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>109</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>アカタチガカゲロウ</td>
<td>Uosacantha punctata</td>
<td>● ● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>110</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>オオカゲロウ</td>
<td>Caenis sp.</td>
<td>● ● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>111</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>ホソミイトトンボ</td>
<td>Aciagrion migratum</td>
<td>● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>112</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>アジアイトトンボ</td>
<td>Ischnura asiatica</td>
<td>●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>113</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>サリナガマダラカゲロウ</td>
<td>Cincticostella elongata</td>
<td>●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>114</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>タマラカゲロウ</td>
<td>Paracercion calamorum</td>
<td>● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>115</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>サラジイカイトトンボ</td>
<td>Paracercion hirugyphicum</td>
<td>● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>116</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>イトトンボ</td>
<td>Coenagrionidae</td>
<td>●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>117</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>モガラカゲロウ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>118</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワカゲロウ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>119</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワカゲロウ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>120</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワカゲロウ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>121</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>イトトンボ</td>
<td>Coenagrionidae</td>
<td>●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>122</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>123</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>124</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>125</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>126</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>127</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>128</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>129</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>130</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>131</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>132</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>133</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>134</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>135</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>136</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>137</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>138</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>139</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>140</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>141</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>142</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>143</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>144</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>145</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>146</td>
<td>人工（寄生）</td>
<td>カゲロウ目（または寄生）</td>
<td>カゲロウ科</td>
<td>カワトンボ</td>
<td>Caenis sp.</td>
<td>● ● ●</td>
<td>H4 H9 H14 H25</td>
</tr>
<tr>
<td>No.</td>
<td>門名</td>
<td>綱名</td>
<td>目名</td>
<td>科名</td>
<td>種名</td>
<td>学名</td>
<td>学名</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>147</td>
<td>6-51</td>
<td>カメムシ目</td>
<td>半翅目</td>
<td>ミズギワカメムシ科</td>
<td>ミジリガタキカマシ</td>
<td>Bioraenthes ornata</td>
<td>●</td>
</tr>
<tr>
<td>148</td>
<td>6-51</td>
<td>タイコウチ科</td>
<td>多足目</td>
<td>タイコウチ</td>
<td>サルダラパリペス</td>
<td>Saldula pallipes</td>
<td>●</td>
</tr>
<tr>
<td>149</td>
<td>6-51</td>
<td>カオイムシ科</td>
<td>ヒメズムシ目</td>
<td>カオイムシ</td>
<td>カオイムシ</td>
<td>Apoopus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>150</td>
<td>6-51</td>
<td>タイコウチ科</td>
<td>ヒメズムシ目</td>
<td>タイコウチ</td>
<td>タイコウチ</td>
<td>Leucotrophes japonensis</td>
<td>●</td>
</tr>
<tr>
<td>151</td>
<td>6-51</td>
<td>ミズカマキリ</td>
<td>カモサカ目</td>
<td>ミズカマキリ</td>
<td>ミズカマキリ</td>
<td>Ranatra chinesis</td>
<td>●</td>
</tr>
<tr>
<td>152</td>
<td>6-51</td>
<td>ハイミズカマキリ</td>
<td>カモサカ目</td>
<td>ハイミズカマキリ</td>
<td>ハイミズカマキリ</td>
<td>Ranatra unicolor</td>
<td>●</td>
</tr>
<tr>
<td>153</td>
<td>6-51</td>
<td>ミズカマキリ</td>
<td>カモサカ目</td>
<td>ミズカマキリ</td>
<td>ミズカマキリ</td>
<td>Anisopa kyojiparensis</td>
<td>●</td>
</tr>
<tr>
<td>154</td>
<td>6-51</td>
<td>マユカマキリ</td>
<td>カモサカ目</td>
<td>マユカマキリ</td>
<td>マユカマキリ</td>
<td>Anisopa trichoptera</td>
<td>●</td>
</tr>
<tr>
<td>155</td>
<td>6-51</td>
<td>ハイミズカマキリ</td>
<td>カモサカ目</td>
<td>ハイミズカマキリ</td>
<td>ハイミズカマキリ</td>
<td>Ranatra unicolor</td>
<td>●</td>
</tr>
<tr>
<td>156</td>
<td>6-51</td>
<td>ミズカマキリ</td>
<td>カモサカ目</td>
<td>ミズカマキリ</td>
<td>ミズカマキリ</td>
<td>Anisopa kyojiparensis</td>
<td>●</td>
</tr>
<tr>
<td>157</td>
<td>6-51</td>
<td>ヒメズムシ</td>
<td>カモサカ目</td>
<td>ヒメズムシ</td>
<td>ヒメズムシ</td>
<td>Anisopa kyojiparensis</td>
<td>●</td>
</tr>
<tr>
<td>158</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>159</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>160</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>161</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>162</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>163</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>164</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>165</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>166</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>167</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>168</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>169</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>170</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>171</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>172</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>173</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>174</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>175</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>176</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>177</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>178</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>179</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>180</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>181</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>182</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>183</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>184</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>185</td>
<td>6-51</td>
<td>サンボカオン</td>
<td>カモサカ目</td>
<td>サンボカオン</td>
<td>サンボカオン</td>
<td>Sisyphus japonicus</td>
<td>●</td>
</tr>
</tbody>
</table>

学名: Sisyridae

表 6.2-3 (5) 加古川大堰およびその周辺の底生動物の確認状況

注: これらのデータは研究内容に基づいて整理されたものであり、詳細な説明は省略しています。
<table>
<thead>
<tr>
<th>No.</th>
<th>門名</th>
<th>綱名</th>
<th>目名</th>
<th>科名</th>
<th>種名</th>
<th>学名</th>
<th>検査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>186</td>
<td>(節足動物)</td>
<td>(昆虫綱)</td>
<td>(ハエ目)</td>
<td>(双翅目)</td>
<td>(ユスリカ科)</td>
<td>Anatopynia 属</td>
<td>Anatopynia sp.</td>
</tr>
<tr>
<td>187</td>
<td>Brilia 属</td>
<td>Brilia sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>Cardiocladius 属</td>
<td>Cardiocladius sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>Chironomus 属</td>
<td>Chironomus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Cladotanytarsus 属</td>
<td>Cladotanytarsus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>Conchapelopia 属</td>
<td>Conchapelopia sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>Gritotopus 属</td>
<td>Gritotopus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>Cryptochironomus 属</td>
<td>Cryptochironomus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>Demicryptochironomus 属</td>
<td>Demicryptochironomus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>Diamesa 属</td>
<td>Diamesa sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>Dirotendipes 属</td>
<td>Dirotendipes sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>Lepidostoma 属</td>
<td>Lepidostoma sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>Eukiefferiella 属</td>
<td>Eukiefferiella sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>Hydrobaenus 属</td>
<td>Hydrobaenus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>Limnophyes 属</td>
<td>Limnophyes sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>Lipiniella 属</td>
<td>Lipiniella sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>Microtendipes 属</td>
<td>Microtendipes sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>Orthocladius 属</td>
<td>Orthocladius sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>Pagastia 属</td>
<td>Pagastia sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Parachironomus 属</td>
<td>Parachironomus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>Parametriocnemus 属</td>
<td>Parametriocnemus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>Paratendipes 属</td>
<td>Paratendipes sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>Pentaneura 属</td>
<td>Pentaneura sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>Polypedilum 属</td>
<td>Polypedilum sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>Potthastia 属</td>
<td>Potthastia longimana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>Potthastia 属</td>
<td>Potthastia sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>Procladius 属</td>
<td>Procladius sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>Propsocerus 属</td>
<td>Propsocerus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>Rheoecritotopus 属</td>
<td>Rheoecritotopus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>Rheotanytarsus 属</td>
<td>Rheotanytarsus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>Stictochironomus 属</td>
<td>Stictochironomus akamusi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>Tanytarsus 属</td>
<td>Tanytarsus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>Tanytarsus 属</td>
<td>Tanytarsus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>Thienemannia 属</td>
<td>Thienemannia sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>Tokunagaia 属</td>
<td>Tokunagaia sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>Vetterina 属</td>
<td>Vetterina sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>Xenochironomus 属</td>
<td>Xenochironomus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>Chironomidae 属</td>
<td>Chironomidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>Sulex 属</td>
<td>Sulex sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>Simulium 属</td>
<td>Simulium quinquestriatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>Simulium 属</td>
<td>Simulium suzuki</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>Ulpotonomyia 属</td>
<td>Ulpotonomyia sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>Eretes 属</td>
<td>Eretes gracilis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>Hydrophilus 属</td>
<td>Hydrophilus japonicus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>Platambus 属</td>
<td>Platambus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>Orectochilus 属</td>
<td>Orectochilus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>Drosophila 属</td>
<td>Drosophila sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>Enochus 属</td>
<td>Enochrus simulans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>Helicharsa 属</td>
<td>Helicharsa pellens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>Hydrophila 属</td>
<td>Hydrophila affinis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>Hydroporina 属</td>
<td>Hydroporina sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>Laccobius 属</td>
<td>Laccobius fragilis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 6.2-3 (6) 加古川大堰およびその周辺の底生動物の確認状況
表 6.2-3（7） 加古川大堰およびその周辺の底生動物の確認状況

<table>
<thead>
<tr>
<th>項目</th>
<th>類別</th>
<th>目</th>
<th>科</th>
<th>属</th>
<th>種</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>238</td>
<td>節肢動物門（昆虫綱）</td>
<td>6-53</td>
<td>昆虫</td>
<td>(ガムシ科)</td>
<td>Regimbartia attenuata</td>
<td>Ø</td>
</tr>
<tr>
<td>239</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>ヒメガムシ</td>
<td>Stenolophus rufipes</td>
<td>Ø</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>ガムシ科 Hydrophilidae</td>
<td>Steenelmis nipponica</td>
<td>Ø</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>242</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>243</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>ガムシ科 Hydrophilidae</td>
<td>Steenelmis vulgaris</td>
<td>Ø</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>246</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>248</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>249</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>8門</td>
<td>35目</td>
<td>102科</td>
<td>250種</td>
<td>250種</td>
<td>88種</td>
</tr>
</tbody>
</table>

※1）分類体系および同定精度は「河川水辺の国勢調査のための生物リスト」（平成25年公表、水情報国土データ管理センター）に準じた。
(3) 動植物プランクトン
加古川大堰およびその周辺における植物プランクトンの確認状況を表 6.2-4 に、動物プランクトンの確認状況を表 6.2-5 に示す。
加古川大堰では、「河川水辺の国勢調査基本調査マニュアル【ダム湖版】」に準拠した動植物プランクトン調査を実施している。
加古川大堰では、平成 10 年度より動植物プランクトンに係る河川水辺の国勢調査を実施しており、最新の平成 25 年度で 4 巡目となる。
平成 10 年度から平成 25 年度の調査において、計 8 門 11 綱 17 目 45 科 228 種の植物プランクトン、計 13 門 18 綱 22 目 41 科 134 種の動物プランクトンが確認されている。

表 6.2-4 (1) 加古川大堰およびその周辺の植物プランクトンの確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>門名</th>
<th>綱名</th>
<th>目名</th>
<th>科名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>藍色植物門</td>
<td>藍藻綱</td>
<td>クロオコックス目</td>
<td>Aphanocapsa sp.</td>
<td>Chroococcus sp.</td>
<td>H10</td>
</tr>
<tr>
<td>2</td>
<td>ネンジュモ目</td>
<td>ブレウロカブサ目</td>
<td>ネンジュモ科</td>
<td>Anabaena flos-aquae</td>
<td>Anabaena sp.</td>
<td>H15</td>
</tr>
<tr>
<td>3</td>
<td>ユレモ科</td>
<td>レオココックス科</td>
<td>ユレモ科</td>
<td>Lyngbya sp.</td>
<td>Lyngbya contorta</td>
<td>H20</td>
</tr>
<tr>
<td>4</td>
<td>グンモ目</td>
<td>レオココックス科</td>
<td>クロオコックス科</td>
<td>Oscillatoria sp.</td>
<td>Phormidium sp.</td>
<td>H25</td>
</tr>
<tr>
<td>5</td>
<td>クリプトモナス目</td>
<td>クリプトモナス目</td>
<td>クリプトモナス目</td>
<td>Chroomonas sp.</td>
<td>Cryptomonas sp.</td>
<td>H10</td>
</tr>
<tr>
<td>6</td>
<td>不等毛植物門</td>
<td>惣毛藻綱</td>
<td>ベリディニウム目</td>
<td>Gymnodinium sp.</td>
<td>Cryptophyceae sp.</td>
<td>H15</td>
</tr>
<tr>
<td>7</td>
<td>クリプトモナス目</td>
<td>クリプトモナス目</td>
<td>グンモ目</td>
<td>Ceratium hirundinella</td>
<td>Peridinium bipes</td>
<td>H20</td>
</tr>
<tr>
<td>8</td>
<td>ベリディニウム目</td>
<td>グンモ目</td>
<td>クリソコックス科</td>
<td>Chrysoococcus sp.</td>
<td>Dinobryon bavaricum</td>
<td>H25</td>
</tr>
<tr>
<td>9</td>
<td>ベリディニウム目</td>
<td>グンモ目</td>
<td>グンモ目</td>
<td>Peridinium bipes</td>
<td>Dinobryon cylindricum</td>
<td>H10</td>
</tr>
<tr>
<td>10</td>
<td>ベリディニウム目</td>
<td>グンモ目</td>
<td>グンモ目</td>
<td>Peridinium bipes</td>
<td>Dinobryon divergens</td>
<td>H15</td>
</tr>
<tr>
<td>11</td>
<td>ベリディニウム目</td>
<td>グンモ目</td>
<td>グンモ目</td>
<td>Peridinium bipes</td>
<td>Dinobryon sertularia</td>
<td>H20</td>
</tr>
<tr>
<td>12</td>
<td>ベリディニウム目</td>
<td>グンモ目</td>
<td>グンモ目</td>
<td>Peridinium bipes</td>
<td>Dinobryon sertularia</td>
<td>H25</td>
</tr>
<tr>
<td>13</td>
<td>ベリディニウム目</td>
<td>グンモ目</td>
<td>グンモ目</td>
<td>Chroomonas sp.</td>
<td>Cryptomonas sp.</td>
<td>H10</td>
</tr>
<tr>
<td>14</td>
<td>ベリディニウム目</td>
<td>グンモ目</td>
<td>グンモ目</td>
<td>Peridinium bipes</td>
<td>Dinobryon bavaricum</td>
<td>H15</td>
</tr>
<tr>
<td>15</td>
<td>ベリディニウム目</td>
<td>グンモ目</td>
<td>グンモ目</td>
<td>Peridinium bipes</td>
<td>Dinobryon divergens</td>
<td>H20</td>
</tr>
<tr>
<td>16</td>
<td>ベリディニウム目</td>
<td>グンモ目</td>
<td>グンモ目</td>
<td>Peridinium bipes</td>
<td>Dinobryon sertularia</td>
<td>H25</td>
</tr>
<tr>
<td>17</td>
<td>ベリディニウム目</td>
<td>グンモ目</td>
<td>グンモ目</td>
<td>Chroomonas sp.</td>
<td>Cryptomonas sp.</td>
<td>H10</td>
</tr>
<tr>
<td>18</td>
<td>ベリディニウム目</td>
<td>グンモ目</td>
<td>グンモ目</td>
<td>Peridinium bipes</td>
<td>Dinobryon bavaricum</td>
<td>H15</td>
</tr>
<tr>
<td>19</td>
<td>ベリディニウム目</td>
<td>グンモ目</td>
<td>グンモ目</td>
<td>Peridinium bipes</td>
<td>Dinobryon divergens</td>
<td>H20</td>
</tr>
<tr>
<td>20</td>
<td>ベリディニウム目</td>
<td>グンモ目</td>
<td>グンモ目</td>
<td>Peridinium bipes</td>
<td>Dinobryon sertularia</td>
<td>H25</td>
</tr>
<tr>
<td>21</td>
<td>ベリディニウム目</td>
<td>グンモ目</td>
<td>グンモ目</td>
<td>Chroomonas sp.</td>
<td>Cryptomonas sp.</td>
<td>H10</td>
</tr>
<tr>
<td>22</td>
<td>ベリディニウム目</td>
<td>グンモ目</td>
<td>グンモ目</td>
<td>Peridinium bipes</td>
<td>Dinobryon bavaricum</td>
<td>H15</td>
</tr>
<tr>
<td>23</td>
<td>ベリディニウム目</td>
<td>グンモ目</td>
<td>グンモ目</td>
<td>Peridinium bipes</td>
<td>Dinobryon divergens</td>
<td>H20</td>
</tr>
<tr>
<td>24</td>
<td>ベリディニウム目</td>
<td>グンモ目</td>
<td>グンモ目</td>
<td>Peridinium bipes</td>
<td>Dinobryon sertularia</td>
<td>H25</td>
</tr>
</tbody>
</table>
表 6.2-4（2）加古川大堰およびその周辺での植物プランクトンの確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>门名</th>
<th>纲名</th>
<th>目名</th>
<th>科名</th>
<th>学名</th>
<th>科名</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>(不等毛</td>
<td>(黄金色</td>
<td>(シヌラ科</td>
<td>Mallomonas sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>植物门</td>
<td>(モラス目</td>
<td>Synura sp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>-</td>
<td>-</td>
<td>Chrysophyceae sp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>硅藻纲</td>
<td>中心目</td>
<td>Cyclotella meneghiniana</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>38</td>
<td>-</td>
<td>Cyclotella sp.</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>39</td>
<td>-</td>
<td>Discostella stelligera</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>40</td>
<td>-</td>
<td>Skeletonema potamos</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>41</td>
<td>-</td>
<td>Stephanodiscus sp.</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>42</td>
<td>-</td>
<td>Thalassiosira bramaputrai</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>43</td>
<td>-</td>
<td>Thalassiosira sp.</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>44</td>
<td>-</td>
<td>Thalassiosiraceae sp.</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>45</td>
<td>-</td>
<td>Aulacoseira ambigua</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>46</td>
<td>-</td>
<td>Aulacoseira distans</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>47</td>
<td>-</td>
<td>Aulacoseira granulata</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>48</td>
<td>-</td>
<td>Aulacoseira granulata var. angustissima</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>49</td>
<td>-</td>
<td>Aulacoseira italicca</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
<td>Aulacoseira italicca f. curvata</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>51</td>
<td>-</td>
<td>Melosira varians</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>52</td>
<td>-</td>
<td>Coscinodiscaceae sp.</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>53</td>
<td>-</td>
<td>Actinocyclus sp.</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>54</td>
<td>-</td>
<td>Urosolenia longiseta</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>55</td>
<td>-</td>
<td>Acanthoceras zachariasii</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>56</td>
<td>-</td>
<td>Asterionella formosa</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>57</td>
<td>-</td>
<td>Ctenophora pulchella</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>58</td>
<td>-</td>
<td>Diatoma vulgaris</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>59</td>
<td>-</td>
<td>Fragilaria capitellata</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>60</td>
<td>-</td>
<td>Fragilaria capucina</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>61</td>
<td>-</td>
<td>Fragilaria crotonensis</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>62</td>
<td>-</td>
<td>Fragilaria rumpens</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>63</td>
<td>-</td>
<td>Fragilaria vaucheriae</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>64</td>
<td>-</td>
<td>Fragilaria sp.</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>65</td>
<td>-</td>
<td>Meridion circulare var. constrictum</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>66</td>
<td>-</td>
<td>Staurosira construens</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>67</td>
<td>-</td>
<td>Ulnaria acus</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>68</td>
<td>-</td>
<td>Ulnaria inaequialis</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>69</td>
<td>-</td>
<td>Ulnaria ulna</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>70</td>
<td>-</td>
<td>Ulnaria ungeriana</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>71</td>
<td>-</td>
<td>Eunotia sp.</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>72</td>
<td>-</td>
<td>Amphora sp.</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>73</td>
<td>-</td>
<td>Cymbella tumida</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>74</td>
<td>-</td>
<td>Cymbella turigida</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>75</td>
<td>-</td>
<td>Cymbella turigida var. nipponica</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>76</td>
<td>-</td>
<td>Cymbella sp.</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>77</td>
<td>-</td>
<td>Encyonema minutum</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>78</td>
<td>-</td>
<td>Encyonema sp.</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>79</td>
<td>-</td>
<td>Gomphonema okunoi</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>80</td>
<td>-</td>
<td>Gomphonema quadrupunctatum</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

調査年度：H10 H15 H20 H25
表 6.2-4（3） 加古川大堰およびその周辺での植物プランクトンの確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>門名</th>
<th>綱名</th>
<th>目名</th>
<th>科名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>(不等毛植物門)</td>
<td>(珪藻綱)</td>
<td>(羽状目)</td>
<td>ナビクラ科</td>
<td>Gomphonema parvulum</td>
<td>H10 H15 H20 H25</td>
</tr>
<tr>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gomphonema sp.</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gyrosigma sp.</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Navicula capitata</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Navicula confervacea</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Navicula cryptotenella</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Navicula lanceolata</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Navicula sp.</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pinnularia sp.</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reimeria sinuata</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rhocosphenia abbreviata</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sellaphora pupula</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Achnanthes sp.</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Achnanthidium minutissimum</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Achnanthidium sp.</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cocconeis pediculus</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cocconeis placentula</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Planothidium lanceolatum</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Planothidium sp.</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bacillaria paxillifer</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nitzschia acicularis</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nitzschia dissipata</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nitzschia fruticosa</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nitzschia levidensis var. salinarum</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nitzschia linearis</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nitzschia palea</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nitzschia paleacea</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nitzschia sp.</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cymatopleura solea</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Surirella angusta</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Surirella brebissonii</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Surirella sp.</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dichotomococcus curvatus</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Centritractus beloniphorus</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Euglena sp.</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lepocinclis sp.</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phacus sp.</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trachelomonas volvocina</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trachelomonas sp.</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carteria sp.</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chlamydomonas sp.</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chlorogonium elongatum</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chlorogonium sp.</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lobomonas sp.</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chlamydomonadaceae sp.</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pteromonas aculeata</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pteromonas sp.</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eudorina elegans</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gonium pectorale</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gonium sp.</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pandorina morum</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Navicula sp.</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Volvox aureus</td>
<td></td>
</tr>
</tbody>
</table>
表 6.2-4（4） 加古川大堰およびその周辺での植物プランクトンの確認状況

| 番号 | （緑色植物門） | （緑藻綱） | （クロロコックム目） | キャラキュム科 | クロロコックム科
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>134</td>
<td>135</td>
<td>136</td>
<td>137</td>
<td>138</td>
<td>139</td>
</tr>
<tr>
<td>136</td>
<td>137</td>
<td>138</td>
<td>Schroederia setigera</td>
<td>Tetraedron caudatum</td>
<td>Tetraedron caudatum var. longispinum</td>
</tr>
<tr>
<td>138</td>
<td>140</td>
<td>141</td>
<td>Tetraedron minimum</td>
<td>Tetraedron muticum</td>
<td>Tetraedron trigonum</td>
</tr>
<tr>
<td>142</td>
<td></td>
<td>143</td>
<td>Tetraedron sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td></td>
<td>145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>146</td>
<td></td>
<td>147</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>149</td>
<td>150</td>
<td>Ankistrodesmus bibraianus</td>
<td>Ankistrodesmus falcatus</td>
<td>Ankistrodesmus gracilis</td>
</tr>
<tr>
<td>150</td>
<td>151</td>
<td>152</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td></td>
<td>154</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td></td>
<td>155</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td></td>
<td>157</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>158</td>
<td>159</td>
<td>Lagerheimia chodatii</td>
<td>Lagerheimia genevensis</td>
<td>Lagerheimia subsalsa</td>
</tr>
<tr>
<td>159</td>
<td>160</td>
<td>161</td>
<td></td>
<td></td>
<td>Lagerheimia wratislaviensis</td>
</tr>
<tr>
<td>161</td>
<td>162</td>
<td>163</td>
<td>Monoraphidium caribeum</td>
<td>Monoraphidium contortum</td>
<td>Monoraphidium griffithii</td>
</tr>
<tr>
<td>163</td>
<td>164</td>
<td>165</td>
<td></td>
<td></td>
<td>Monoraphidium minutum</td>
</tr>
<tr>
<td>165</td>
<td>166</td>
<td>167</td>
<td></td>
<td></td>
<td>Monoraphidium sp.</td>
</tr>
<tr>
<td>167</td>
<td>168</td>
<td>169</td>
<td>Nephrochlamys subsolitaria</td>
<td>Nephrocytium sp.</td>
<td>Oocystis lacustris</td>
</tr>
<tr>
<td>169</td>
<td>170</td>
<td>171</td>
<td></td>
<td></td>
<td>Oocystis sp.</td>
</tr>
<tr>
<td>170</td>
<td>172</td>
<td>173</td>
<td></td>
<td></td>
<td>Selenastrum minutum</td>
</tr>
<tr>
<td>172</td>
<td>174</td>
<td>175</td>
<td></td>
<td></td>
<td>Siderocelis ornata</td>
</tr>
<tr>
<td>174</td>
<td>175</td>
<td>176</td>
<td></td>
<td></td>
<td>Treubaria setigera</td>
</tr>
<tr>
<td>176</td>
<td>177</td>
<td>178</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>178</td>
<td>179</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（緑色植物門）（緑藻綱）（クロロコックム目）（ミクラクティニウム科）（ボトリオコックス科）（ディクティオスファリウム科）

（緑色植物門）（緑藻綱）（クロロコックム目）（ミクラクティニウム科）（ボトリオコックス科）（ディクティオスファリウム科）
<table>
<thead>
<tr>
<th>No.</th>
<th>門名</th>
<th>綱名</th>
<th>目名</th>
<th>科名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>181</td>
<td>(緑色植物門)</td>
<td>(緑藻綱)</td>
<td>(クロロコック目)</td>
<td>セネデスムス科</td>
<td>Actinastrum hantzschii</td>
<td>H10 H15 H20 H25</td>
</tr>
<tr>
<td>182</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Actinastrum hantzschii var. fluviatile</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>183</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coelastrum morus</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>184</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coelastrum cambriicum</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coelastrum microporum</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coelastrum sphaericum</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>187</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coelastrum sp</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>188</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crucigenia apiculata</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>189</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crucigenia crucifera</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crucigenia fenestrata</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>191</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crucigenia irregularis</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>192</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crucigenia tetrabrachia</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>193</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crucigenia sp</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>194</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scenedesmus abundans</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>195</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scenedesmus acuminatus</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scenedesmus acutus</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>197</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scenedesmus arcuatus</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>198</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scenedesmus bicaudatus</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>199</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scenedesmus denticulatus</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scenedesmus ecornis</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scenedesmus intermedius</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>202</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scenedesmus opoliensis</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>203</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scenedesmus quadricauda</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>204</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scenedesmus spinosus</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>205</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scenedesmus sp.</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>206</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tetrallantos lagerheimii</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tetrastrum heterocanthum</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>208</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tetrastrum staurogeniaeforme</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>209</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tetrastrum sp.</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Westella botryoides</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>211</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>アミドロ科</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>212</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pediastrum asymmetricum</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>213</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pediastrum boryanum</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>214</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pediastrum duplex var. gracilimum</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>215</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pediastrum simplex</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>216</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pediastrum simplex var. duodenarium</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>217</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pediastrum tetras</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>218</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>コッコミクサ科</td>
<td>Elakatothrix gelatinosa</td>
</tr>
</tbody>
</table>
表 6.2-4 (6) 加古川大堰およびその周辺での植物プランクトンの確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>門名</th>
<th>綱名</th>
<th>目名</th>
<th>科名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>219</td>
<td>緑色植物門</td>
<td>緑藻綱</td>
<td>ホシミドロ科</td>
<td>Mougeotia sp.</td>
<td>219</td>
<td>ホシミドロ科 Mougeotia sp.</td>
</tr>
<tr>
<td>220</td>
<td></td>
<td></td>
<td></td>
<td>Arthrodesmus sp.</td>
<td>220</td>
<td>Arthrodesmus sp.</td>
</tr>
<tr>
<td>221</td>
<td></td>
<td></td>
<td></td>
<td>Closterium acutum var. variabile</td>
<td>221</td>
<td>Closterium acutum var. variabile</td>
</tr>
<tr>
<td>222</td>
<td></td>
<td></td>
<td></td>
<td>Closterium sp.</td>
<td>222</td>
<td>Closterium sp.</td>
</tr>
<tr>
<td>223</td>
<td></td>
<td></td>
<td></td>
<td>Cosmarium sp.</td>
<td>223</td>
<td>Cosmarium sp.</td>
</tr>
<tr>
<td>224</td>
<td></td>
<td></td>
<td></td>
<td>Euastrum sp.</td>
<td>224</td>
<td>Euastrum sp.</td>
</tr>
<tr>
<td>225</td>
<td></td>
<td></td>
<td></td>
<td>Spondylosium sp.</td>
<td>225</td>
<td>Spondylosium sp.</td>
</tr>
<tr>
<td>226</td>
<td></td>
<td></td>
<td></td>
<td>Staurastrum dorsidentiferum var. ornatum</td>
<td>226</td>
<td>Staurastrum dorsidentiferum var. ornatum</td>
</tr>
<tr>
<td>227</td>
<td></td>
<td></td>
<td></td>
<td>Staurastrum sp.</td>
<td>227</td>
<td>Staurastrum sp.</td>
</tr>
</tbody>
</table>

合計 8門 11網 17目 45科 228種 119種 118種 112種 136種

※1）分類体系および同定精度は「河川水辺の国勢調査のための生物リスト」（平成26年公表、水情報国土データ管理センター）に準じた。
<table>
<thead>
<tr>
<th>No.</th>
<th>門名</th>
<th>綱名</th>
<th>目名</th>
<th>科名</th>
<th>種名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>肉質鞭毛虫門</td>
<td>葉状根足虫綱</td>
<td>アメーバ目</td>
<td>Amoebidae sp.</td>
<td>●</td>
<td>H10</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Amoebida sp.</td>
<td>●</td>
<td>H15 H20 H25</td>
</tr>
<tr>
<td>3</td>
<td>真性真正葉状根足虫目</td>
<td>-</td>
<td>アルケラ科</td>
<td>Arcella discoides</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Arcella gibbosa</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>アルケラ科</td>
<td>Arcella vulgaris</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Arcella sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Arcellidae sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ディフルギア科</td>
<td>-</td>
<td>Diffugia acuminata</td>
<td>Diffugia corona</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Diffugia limnetica</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ケントロピキシス科</td>
<td>-</td>
<td>Centropyxis aculeata</td>
<td>Centropyxis sp.</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>糸状根足虫綱</td>
<td>グロミア目</td>
<td>キフォデリア科</td>
<td>Cyphoderia margaritacea</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Cyphoderia sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>真正太陽虫綱</td>
<td>原口目</td>
<td>トリネマ科</td>
<td>Trinema sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>-</td>
<td>エウグリファ科</td>
<td>Euglypha tuberculata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Euglypha sp.</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>糸状根足虫綱</td>
<td>小毛目</td>
<td>フロントニア科</td>
<td>Frontoniidae sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Paramecidae sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>頭足門</td>
<td>融毛目</td>
<td>エピティリス科</td>
<td>Epistylis sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Epistylidae sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>頭足門</td>
<td>吸管虫目</td>
<td>ボルティリウス科</td>
<td>Vorticella sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Vorticellidae sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>多膜綱</td>
<td>小毛目</td>
<td>ストロンピディウム科</td>
<td>Strombidium sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Strombidium sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Tintinnopsis lacustris</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Tintinnopsis sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Oligotrichida sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Oligotrichida sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Euplotidae sp.</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Hypotrichida sp.</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>CILIOPHORA sp.</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Hydrozoa sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Brachionus angularis</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Brachionus calyciflorus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Brachionus falcatus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Brachionus forficula</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Brachionus quadridentatus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>門名</td>
<td>綱名</td>
<td>目名</td>
<td>科名</td>
<td>種名</td>
<td>調査年度</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>46</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>47</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>48</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>49</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>50</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>51</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>52</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>53</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>54</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>55</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>56</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>57</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>58</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>59</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>60</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>62</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>63</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>64</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>65</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>66</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>67</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>68</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>69</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>70</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>71</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>72</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>73</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>74</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>75</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>76</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>77</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>78</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>79</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>80</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>81</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>82</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>83</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>84</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>85</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>86</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>87</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>88</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>89</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>90</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>91</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>92</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>93</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>94</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>95</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
<td>6-61</td>
</tr>
<tr>
<td>No.</td>
<td>調査年度</td>
<td>門名</td>
<td>目名</td>
<td>科名</td>
<td>種名</td>
<td>96</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>-----------------------</td>
<td>------</td>
<td>----</td>
</tr>
</tbody>
</table>

※1 分類体系および同定精度は「河川水辺の国勢調査のための生物リスト」（平成26年公表、水情報国土データ管理センター）に準じた。
(4) 植物
加古川大堰およびその周辺における植物の確認状況を表 6.2-6 に示す。
加古川では、平成 7 年度より植物に係る河川水辺の国勢調査が実施されており、最新の
平成 22 年度で 4 巡目となる。
なお、河川環境基図調査でも植物の確認種を記録しており、最新年度は平成 26 年度であ
る。
平成 7 年度から平成 26 年度の調査において、計 111 科 622 種の植物が確認されている。

表 6.2-6（1） 加古川大堰およびその周辺での植物の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査項目</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>植物</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H7</td>
</tr>
<tr>
<td>1</td>
<td>トクサ科</td>
<td>スギナ</td>
<td>Equisetum arvense</td>
<td>●●●●●●</td>
</tr>
<tr>
<td>2</td>
<td>イヌドクサ科</td>
<td>イヌドクサ</td>
<td>Equisetum arvense</td>
<td>●●●●●●</td>
</tr>
<tr>
<td>3</td>
<td>ハナヤスリ科</td>
<td>フユノハナラビ</td>
<td>Botrychium ternatum</td>
<td>●</td>
</tr>
<tr>
<td>4</td>
<td>フサシダ科</td>
<td>カニクサ</td>
<td>Lygodium japonicum</td>
<td>●●●●</td>
</tr>
<tr>
<td>5</td>
<td>コバノイシカグマ科</td>
<td>イワヒメワラビ</td>
<td>Hypolepis punctata</td>
<td>●</td>
</tr>
<tr>
<td>6</td>
<td>ウラビ</td>
<td>Pteridium aquilinum</td>
<td>var. latiusculum</td>
<td>●●</td>
</tr>
<tr>
<td>7</td>
<td>ホングウシダ科</td>
<td>ホラシノブ</td>
<td>Sphenomeris chinensis</td>
<td>●</td>
</tr>
<tr>
<td>8</td>
<td>ミズワラビ科</td>
<td>ミズワラビ</td>
<td>Ceratopteris thalictroides</td>
<td>●</td>
</tr>
<tr>
<td>9</td>
<td>イノモトソウ科</td>
<td>イノモトソウ</td>
<td>Pteris multifida</td>
<td>●●</td>
</tr>
<tr>
<td>10</td>
<td>チャセンシダ科</td>
<td>トラノオシダ</td>
<td>Asplenium incisum</td>
<td>●</td>
</tr>
<tr>
<td>11</td>
<td>コバノヒノキシダ</td>
<td>Asplenium sarelii</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>オンダ科</td>
<td>オニヤブソテツ</td>
<td>Cyrtomium falcatum</td>
<td>●</td>
</tr>
<tr>
<td>13</td>
<td>オンダ科</td>
<td>オニヤブソテツ</td>
<td>Cyrtomium fortunei</td>
<td>●</td>
</tr>
<tr>
<td>14</td>
<td>ヒメシダ科</td>
<td>ミゾシダ</td>
<td>Stegnogramma pozoispp. mollissima</td>
<td>●</td>
</tr>
<tr>
<td>15</td>
<td>ホシダ</td>
<td>Thelypteris acuminata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>メンサ科</td>
<td>シケサ</td>
<td>Deparia japonica</td>
<td>●●</td>
</tr>
<tr>
<td>17</td>
<td>ウラボシ科</td>
<td>ノキシノブ</td>
<td>Lepisorus thunbergianus</td>
<td>●</td>
</tr>
<tr>
<td>18</td>
<td>アカウキサ科</td>
<td>Azolla属</td>
<td>Azolla sp.</td>
<td>●</td>
</tr>
<tr>
<td>19</td>
<td>マツ科</td>
<td>アカマツ</td>
<td>Pinus densiflora</td>
<td>●</td>
</tr>
<tr>
<td>20</td>
<td>クルミ科</td>
<td>オニグリミ</td>
<td>Juglans ailanthifolia</td>
<td>●</td>
</tr>
<tr>
<td>21</td>
<td>クルミ科</td>
<td>オニグリミ</td>
<td>Platycarya strobilacea</td>
<td>●</td>
</tr>
<tr>
<td>22</td>
<td>ヤナギ科</td>
<td>ヤナギ</td>
<td>Salix babylonica</td>
<td>var. lavalie</td>
</tr>
<tr>
<td>23</td>
<td>ヤナギ科</td>
<td>アカヤナギ</td>
<td>Salix chaenomeloides</td>
<td>●●</td>
</tr>
<tr>
<td>24</td>
<td>シャヤナギ</td>
<td>Salix eriocarpa</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>カワヤナギ</td>
<td>Salix gilgiana</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>ネコヤナギ</td>
<td>Salix gracillistyla</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>キヌヤナギ</td>
<td>Salix kinuyanagi</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>コリヤナギ</td>
<td>Salix koreyamagi</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>オオタチヤナギ</td>
<td>Salix pierotii</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>コメヤナギ</td>
<td>Salix serissaefolia</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>
表 6.2-6 (2) 加古川大堰およびその周辺での植物の確認状況

<table>
<thead>
<tr>
<th>№</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>タチヤナギ</td>
<td>Salix subfragilis</td>
<td>●●●</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>やナギ科</td>
<td>ヨシノヤナギ</td>
<td>Salix yoshinoi</td>
<td>●</td>
</tr>
<tr>
<td>33</td>
<td>やナギ属</td>
<td>Salix sp.</td>
<td>●●</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>ブナ科</td>
<td>Castanea crenata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>アラカシ</td>
<td>Quercus glauca</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>コナラ</td>
<td>Quercus serrata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>アベマキ</td>
<td>Quercus variabilis</td>
<td>●●</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>エノキ</td>
<td>Celtis sinensis var. japonica</td>
<td>●●●●</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>アキニレ</td>
<td>Ulmus parvifolia</td>
<td>●●●●</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>クワ科</td>
<td>Fatoua villosa</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>イヌビワ</td>
<td>Ficus erecta</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>イタビカズラ</td>
<td>Ficus oxyphylla</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>カナムグラ</td>
<td>Humulus japonicus</td>
<td>●●●</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>カマクワ</td>
<td>Morus australis</td>
<td>●●●</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>カマクワ</td>
<td>Morus alba</td>
<td>●●</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>イラクサ科</td>
<td>Boehmeria japonica var. longispica</td>
<td>●●●</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>カラムシ</td>
<td>Boehmeria nivea var. concolor</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>ナンバンカラムシ</td>
<td>Boehmeria nivea var. tenacissima</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>イチブマオ</td>
<td>Boehmeria plataniifolia</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>ナガバヤブマオ</td>
<td>Boehmeria sieboldiana</td>
<td>●●●</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>コアカソ</td>
<td>Boehmeria spicata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>アオミズ</td>
<td>Pilea hamaoi</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>アオミズ</td>
<td>Pilea pumila</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>ビャクダン科</td>
<td>Thesium chinense</td>
<td>●●●</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>タデ科</td>
<td>Fagopyrum cymosum</td>
<td>●●</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>サクラタデ</td>
<td>Persicaria conspicua</td>
<td>●●</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>イナギタデ</td>
<td>Persicaria hydropiper</td>
<td>●●●</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>シロバナサクラタデ</td>
<td>Persicaria japonica</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>オオイヌタデ</td>
<td>Persicaria japonica</td>
<td>●●</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>イナゴタデ</td>
<td>Persicaria longiseta</td>
<td>●●●</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>サギタデ</td>
<td>Persicaria maackiana</td>
<td>●●</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>サギタデ</td>
<td>Persicaria nipponensis</td>
<td>●●</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>イシミカワ</td>
<td>Persicaria perfoliata</td>
<td>●●●</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>ホソバノウナギツカミ</td>
<td>Persicaria praetermissa</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>サナエタデ</td>
<td>Persicaria scabra</td>
<td>●●</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>ママコノシリヌグイ</td>
<td>Persicaria senticosa</td>
<td>●●</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>アカウナギツカミ</td>
<td>Persicaria sieboldii</td>
<td>●●</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>サソバ</td>
<td>Persicaria thunbergii</td>
<td>●●●</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>ミチヤナギ</td>
<td>Polygonum aviculare</td>
<td>●●●</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>イタドリ</td>
<td>Reynoutria japonica</td>
<td>●●●</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>スイバ</td>
<td>Rumex acetosa</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>ヒメスイバ</td>
<td>Rumex acetosella</td>
<td>●●</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>アレチギシギシ</td>
<td>Rumex conglomeratus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>ナガバギシギシ</td>
<td>Rumex crispus</td>
<td>●●</td>
<td></td>
</tr>
</tbody>
</table>
表 6.2-6（3） 加古川大堰およびその周辺での植物の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>タデ科</td>
<td>タデ</td>
<td>Rumex japonicus</td>
<td>H7 H11-12 H15 H22 H22 H26</td>
</tr>
<tr>
<td>76</td>
<td>タデ科</td>
<td>タデ</td>
<td>Rumex obtusifolius</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>77</td>
<td>タデ科</td>
<td>タデ</td>
<td>Rumex sp.</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>78</td>
<td>タデ科</td>
<td>タデ</td>
<td>Phytolacca americana</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>79</td>
<td>タデ科</td>
<td>タデ</td>
<td>Mollugo pentaphylla</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>80</td>
<td>タデ科</td>
<td>タデ</td>
<td>Mollugo verticillata</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>81</td>
<td>タデ科</td>
<td>タデ</td>
<td>Portulaca oleracea</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>82</td>
<td>タデ科</td>
<td>タデ</td>
<td>Arenaria serpyllifolia</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>83</td>
<td>タデ科</td>
<td>タデ</td>
<td>Cerastium glomeratum</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>84</td>
<td>タデ科</td>
<td>タデ</td>
<td>Cerastium holosteoides var.angustifolium</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>85</td>
<td>タデ科</td>
<td>タデ</td>
<td>Dianthus armeria</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>86</td>
<td>タデ科</td>
<td>タデ</td>
<td>Dianthus superbus var.longicalycinus</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>87</td>
<td>タデ科</td>
<td>タデ</td>
<td>Petrohragia nanteuilii</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>88</td>
<td>タデ科</td>
<td>タデ</td>
<td>Sagina japonica</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>89</td>
<td>タデ科</td>
<td>タデ</td>
<td>Silene armeria</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>90</td>
<td>タデ科</td>
<td>タデ</td>
<td>Silene gallica</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>91</td>
<td>タデ科</td>
<td>タデ</td>
<td>Silene gallica var.quinquevulnera</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>92</td>
<td>タデ科</td>
<td>タデ</td>
<td>Spergularia rubra</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>93</td>
<td>タデ科</td>
<td>タデ</td>
<td>Stellaria alsine var.undulata</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>94</td>
<td>タデ科</td>
<td>タデ</td>
<td>Stellaria aquatica</td>
<td>● ● ● ● ● ●</td>
</tr>
<tr>
<td>95</td>
<td>タデ科</td>
<td>タデ</td>
<td>Stellaria media</td>
<td>● ● ● ● ● ●</td>
</tr>
<tr>
<td>96</td>
<td>タデ科</td>
<td>タデ</td>
<td>Stellaria neglecta</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>97</td>
<td>タデ科</td>
<td>タデ</td>
<td>Chenopodium album</td>
<td>● ● ● ● ● ●</td>
</tr>
<tr>
<td>98</td>
<td>タデ科</td>
<td>タデ</td>
<td>Chenopodium album var.centrorubrum</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>99</td>
<td>タデ科</td>
<td>タデ</td>
<td>Chenopodium ambrosioides</td>
<td>● ● ● ● ● ●</td>
</tr>
<tr>
<td>100</td>
<td>タデ科</td>
<td>タデ</td>
<td>Chenopodium ambrosioides var.anthelminticum</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>101</td>
<td>タデ科</td>
<td>タデ</td>
<td>Achyranthes bidentata var.japonica</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>102</td>
<td>タデ科</td>
<td>タデ</td>
<td>Achyranthes bidentata var.tomentosa</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>103</td>
<td>タデ科</td>
<td>タデ</td>
<td>Alternanthera nodiflora</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>104</td>
<td>タデ科</td>
<td>タデ</td>
<td>Alternanthera philoxeroides</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>105</td>
<td>タデ科</td>
<td>タデ</td>
<td>Alternanthera sessilis</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>106</td>
<td>タデ科</td>
<td>タデ</td>
<td>Amaranthus hybridus</td>
<td>● ● ● ● ● ●</td>
</tr>
<tr>
<td>107</td>
<td>タデ科</td>
<td>タデ</td>
<td>Amaranthus lividus</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>108</td>
<td>タデ科</td>
<td>タデ</td>
<td>Amaranthus viridis</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>No.</td>
<td>科和名</td>
<td>種和名</td>
<td>学名</td>
<td>調査項目</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>109</td>
<td>ヒユ科</td>
<td>ノゲイトウ</td>
<td>Celosia argentea</td>
<td>H7 H11-12 H15 H22 H26</td>
</tr>
<tr>
<td>110</td>
<td>ケイトウ</td>
<td>Celosia cristata</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>マツプサ科</td>
<td>サネカズラ</td>
<td>Kadsura japonica</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>112</td>
<td>クスノキ科</td>
<td>クスノキ</td>
<td>Cinnamomum camphora</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>113</td>
<td>ヤブニッケイ</td>
<td>Cinnamomum japonicum</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>シロダモ</td>
<td>Neolitsea sericea</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>キンボウゲ科</td>
<td>ヒメウズ</td>
<td>Aquilegia adoxoides</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>116</td>
<td>ボタンツル</td>
<td>Clematis apiifolia</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>ハンショウツル</td>
<td>Clematis japonica</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>ケキツネノボタン</td>
<td>Ranunculus cantoniensis</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>ウマノアシガタ</td>
<td>Ranunculus japonicus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>トゲミノキツネノボタン</td>
<td>Ranunculus muricatus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>タガラシ</td>
<td>Ranunculus sceleratus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>キツネノボタン</td>
<td>Ranunculus silerifolius</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>アキカラマツ</td>
<td>Thalictrum minus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>メギ科</td>
<td>ナンテン</td>
<td>Nandina domestica</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>125</td>
<td>アケビ科</td>
<td>ヨウアケビ</td>
<td>Akebia x pentaphylla</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>126</td>
<td>アケビ科</td>
<td>アケビ</td>
<td>Akebia quinata</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>127</td>
<td>ミツバアケビ</td>
<td>Akebia trifoliata</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>ツツラフジ科</td>
<td>アオツツラフジ</td>
<td>Cocculus orbiculatus</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>129</td>
<td>マツモ科</td>
<td>マツモ</td>
<td>Ceratophyllum demersum</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>130</td>
<td>ドクダミ科</td>
<td>ドクダミ</td>
<td>Houttuynia cordata</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>131</td>
<td>ハンゲショウ</td>
<td>Saururus chinensis</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>ウマノスズクサ科</td>
<td>ウマノスズクサ</td>
<td>Aristolochia debilis</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>133</td>
<td>ツバキ科</td>
<td>タブツバキ</td>
<td>Camellia japonica</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>134</td>
<td>オトギリソウ科</td>
<td>オトギリソウ</td>
<td>Hypericum erectum</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>135</td>
<td>ケシ科</td>
<td>ナガミヒナゲシ</td>
<td>Papaver dubium</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>136</td>
<td>アブラナ科</td>
<td>ハタザオ</td>
<td>Arabis glabra</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>137</td>
<td>セイヨウカラシナ</td>
<td>Brassica juncea</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>ナツナ</td>
<td>Capsella bursa-pastoris var. triangularis</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>タネツケバナ</td>
<td>Cardamine flexuosa</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>ミズタガラシ</td>
<td>Cardamine lyrata</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>オオバタネツケバナ</td>
<td>Cardamine scutata</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>マメグナツメソウ</td>
<td>Lepidium virginicum</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>ノラニナガシ</td>
<td>Nasturtium officinale</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>ヒメイヌガラシ</td>
<td>Rorippa x brachyceras</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>コイヌガラシ</td>
<td>Rorippa cantoniensis</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>イヌガラシ</td>
<td>Rorippa indica</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>スカシタゴボウ</td>
<td>Rorippa islandica</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>カネイガラシ</td>
<td>Sisymbrium officinale</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>イヌカキネガラシ</td>
<td>Sisymbrium orientale</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>アブラナ科</td>
<td>Cruciferae</td>
<td>● ● ● ●</td>
<td></td>
</tr>
</tbody>
</table>

表 6.2-6 (4) 加古川大堰およびその周辺での植物の確認状況
<table>
<thead>
<tr>
<th>No.</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>151</td>
<td>(ベンケイソウ科)</td>
<td>コモチマンネングサ</td>
<td>Sedum bulbiferum</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>152</td>
<td>タイトゴメ</td>
<td>Sedum japonicum ssp. oryzifolium</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>153</td>
<td>オノマンネングサ</td>
<td>Sedum lineare</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>154</td>
<td>メキシコマンネングサ</td>
<td>Sedum mexicanum</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>オルマンネングサ</td>
<td>Sedum serratum</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>タコノアシ</td>
<td>Penthorum chinense</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>Pittosporum tobiria</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>キンミズヒキ</td>
<td>Agrimonia japonica</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>ヘビイチゴ</td>
<td>Duchesnea chrysantha</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>ヤブヘビイチゴ</td>
<td>Duchesnea indica</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>ミツバツチグリ</td>
<td>Potentilla freyniana</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>オヘビイチゴ</td>
<td>Potentilla recta</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>オヘビイチゴ</td>
<td>Potentilla sudaica var. robusta</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>オキジムシロ</td>
<td>Potentilla supina</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>パラ科</td>
<td>Rhaphiolepis umbellata</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>ネイバラ</td>
<td>Rosa multiflora</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>ミヤコイバラ</td>
<td>Rosa paniculigera</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>テリハノイバラ</td>
<td>Rosa wichuraiana</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>クサイイチゴ</td>
<td>Rubus hirsutus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>ナツシロイチゴ</td>
<td>Rubus parvifolius</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>マメ科</td>
<td>Aeschynomene indica</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>ネムノキ</td>
<td>Albizia julibrissin</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>イタチハギ</td>
<td>Amorpha fruticosa</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>Amphicarpaea edgeworthii var. japonica</td>
<td>● ● ● ●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>ホドイモ</td>
<td>Apios fortunei</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>ケンゲ</td>
<td>Astragalus sinicus</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>カワラケツメイ</td>
<td>Chamaecrista nomame</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>アレチヌスビトハギ</td>
<td>Desmodium paniculatum</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>ノアズキ</td>
<td>Dunbaria villosa</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>サイカキ</td>
<td>Gleditsia japonica</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>ソルマメ</td>
<td>Glycine max ssp. soja</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>コマツナギ</td>
<td>Indigofera pseudotinctoria</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>マルバハズソウ</td>
<td>Kummerowia stipulacea</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>ヤハズソウ</td>
<td>Kummerowia striata</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>メドハギ</td>
<td>Lespedeza cuneata</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>オババハギ</td>
<td>Lespedeza davurica</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>カラメハギ</td>
<td>Lespedeza inschanica</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>ネコハギ</td>
<td>Lespedeza pilosa</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>イヌハギ</td>
<td>Lespedeza tomentosa</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>マキエハギ</td>
<td>Lespedeza virginata</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>セイヨウミヤコグサ</td>
<td>Lotus corniculatus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>ミヤコグサ</td>
<td>Lotus corniculatus var. japonicus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>コメツフウマゴヤシ</td>
<td>Medicago lupulina</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>ウマゴヤシ</td>
<td>Medicago polymorpha</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>

表 6.2-6 (5) 加古川大堰およびその周辺での植物の確認状況
表 6.2-6 (6) 加古川大堰およびその周辺での植物の確認状況

<table>
<thead>
<tr>
<th>№</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>植物</th>
<th>植物</th>
<th>植物</th>
<th>植物</th>
<th>環境基図</th>
<th>環境基図</th>
</tr>
</thead>
<tbody>
<tr>
<td>195</td>
<td>マメ科</td>
<td>のうさきうまとや</td>
<td>Medicago sativa</td>
<td>●●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>H7</td>
<td>H11-12</td>
</tr>
<tr>
<td>196</td>
<td>シロバナシナガワハギ</td>
<td>Millettia officinalis</td>
<td>ssp. alba</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>H15</td>
<td>H22</td>
</tr>
<tr>
<td>197</td>
<td>ナツフジ</td>
<td>Robinia pseudoacacia</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>H22</td>
<td>H22</td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>クララ</td>
<td>Sophora flavescens</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>クルマツメクサ</td>
<td>Trifolium campestre</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>コメツブツメクサ</td>
<td>Trifolium dubium</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>ムラサキツメクサ</td>
<td>Trifolium pratense</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>シロツメクサ</td>
<td>Vicia angustifolia</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>スズメノエンドウ</td>
<td>Vicia hirsuta</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>カスマグサ</td>
<td>Vicia tetrasperma</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>ヤハズエンドウ</td>
<td>Vicia angustifolia var.nipponensis</td>
<td>●●●●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>ヤブツルアズキ</td>
<td>Vigna angularis var.nipponensis</td>
<td>●●●●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>カタバミ</td>
<td>Oxalis corniculata</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>カタバミ</td>
<td>Oxalis corniculata var. rubrifolia</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>オタチカタバミ</td>
<td>Oxalis corymbosa</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>オオニシキノウ</td>
<td>Olayis stricta</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>アメリカフウロ</td>
<td>Geranium carolinianum</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>ゲンノショウ</td>
<td>Geranium thunbergii</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>エノキシノウ</td>
<td>Acalypha australis</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>ハイニシキノウ</td>
<td>Euphorbia helioscopia</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>コニシキノウ</td>
<td>Euphorbia maculata</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>アカメガシワ</td>
<td>Mallotus japonicus</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>サンショウ</td>
<td>Zanthoxylum armatum</td>
<td>Z. piperitum</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>ヒトツバハギ</td>
<td>Zanthoxylum armatum var. subtrifoliatum</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>ヤマハゼ</td>
<td>Zanthoxylum piperitum</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>カエデ科</td>
<td>Acer buergerianum</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>ニジギキ</td>
<td>Celastrus orbiculatus</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>コマユミ</td>
<td>Euonymus alatus</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>マサキ</td>
<td>Euonymus japonicus</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>マユミ</td>
<td>Euonymus sieboldianus</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 6.2-6 (7) 加古川大堰およびその周辺での植物の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>238</td>
<td>ブドウ科</td>
<td>ノブドウ</td>
<td>Ampelopsis glandulosa var. heterophylla</td>
<td>H7 H11-12 H15 H22 H26</td>
</tr>
<tr>
<td>239</td>
<td>ヤブガラシ科</td>
<td>ヤブガラシ</td>
<td>Cayratia japonica</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>240</td>
<td>ツタ科</td>
<td>ツタ</td>
<td>Parthenocissus tricuspidata</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>241</td>
<td>エビヅル科</td>
<td>エビヅル</td>
<td>Vitis ricifolia var. lobata</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>242</td>
<td>アオイ科</td>
<td>ムクゲ</td>
<td>Hibiscus syriacus</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>243</td>
<td>グミ科</td>
<td>ナウシログミ</td>
<td>Elaeagnus pungens</td>
<td>● ● ●</td>
</tr>
<tr>
<td>244</td>
<td>アキドメ科</td>
<td>アキドメ</td>
<td>Elaeagnus umbellata</td>
<td>● ● ●</td>
</tr>
<tr>
<td>245</td>
<td>スミレ科</td>
<td>アリアスミレ</td>
<td>Viola betonica var. albescens</td>
<td>● ●</td>
</tr>
<tr>
<td>246</td>
<td>タチツボスミレ科</td>
<td>タチツボスミレ</td>
<td>Viola gynoceras</td>
<td>● ●</td>
</tr>
<tr>
<td>247</td>
<td>スミレ科</td>
<td>スミレ</td>
<td>Viola mandshurica</td>
<td>● ● ●</td>
</tr>
<tr>
<td>248</td>
<td>ツボスミレ科</td>
<td>ツボスミレ</td>
<td>Viola xercescens</td>
<td>● ● ●</td>
</tr>
<tr>
<td>249</td>
<td>ミソハコベ科</td>
<td>ミソハコベ</td>
<td>Elatine triandra var. pedicellata</td>
<td>● ●</td>
</tr>
<tr>
<td>250</td>
<td>ウリ科</td>
<td>ゴキツル</td>
<td>Actinostemma lobatum</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>251</td>
<td>マクサ科</td>
<td>マクサ</td>
<td>Cucumis melo</td>
<td>● ●</td>
</tr>
<tr>
<td>252</td>
<td>アマチャヅル科</td>
<td>アマチャヅル</td>
<td>Gynostemma pentaphyllum</td>
<td>● ●</td>
</tr>
<tr>
<td>253</td>
<td>スズメウリ科</td>
<td>スズメウリ</td>
<td>Melothria japonica</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>254</td>
<td>アレチウリ科</td>
<td>アレチウリ</td>
<td>Sicyos angulatus</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>255</td>
<td>カラスウリ科</td>
<td>カラスウリ</td>
<td>Trichosanthes cucumeroides</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>256</td>
<td>ミソハギ科</td>
<td>ホソバヒメミソハギ</td>
<td>Ammannia coccinea</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>257</td>
<td>ミソハギ科</td>
<td>ミソハギ</td>
<td>Lythrum anceps</td>
<td>● ● ●</td>
</tr>
<tr>
<td>258</td>
<td>キサギサ科</td>
<td>キサギサ</td>
<td>Rotala indica var. uliginosa</td>
<td>● ●</td>
</tr>
<tr>
<td>259</td>
<td>ヒシ科</td>
<td>ヒシ</td>
<td>Trapa japonica</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>260</td>
<td>アカバナ科</td>
<td>アカバナ</td>
<td>Epilobium parricholophum</td>
<td>● ●</td>
</tr>
<tr>
<td>261</td>
<td>アメリカミズキサギ科</td>
<td>アメリカミズキサギ</td>
<td>Ludwigia decurrens</td>
<td>● ● ●</td>
</tr>
<tr>
<td>262</td>
<td>チョウジタデ科</td>
<td>チョウジタデ</td>
<td>Ludwigia epilobioides</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>263</td>
<td>ミズユキノシタ科</td>
<td>ミズユキノシタ</td>
<td>Ludwigia ovalis</td>
<td>● ● ●</td>
</tr>
<tr>
<td>264</td>
<td>メマツヨイグサ科</td>
<td>メマツヨイグサ</td>
<td>Oenothera biennis</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>265</td>
<td>オオマツヨイグサ科</td>
<td>オオマツヨイグサ</td>
<td>Oenothera erythrosepala</td>
<td>● ● ●</td>
</tr>
<tr>
<td>266</td>
<td>コマツヨイグサ科</td>
<td>コマツヨイグサ</td>
<td>Oenothera laciniata</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>267</td>
<td>アレチマツヨイグサ科</td>
<td>アレチマツヨイグサ</td>
<td>Oenothera parviflora</td>
<td>● ● ●</td>
</tr>
<tr>
<td>268</td>
<td>ウツシショウ科</td>
<td>ウツシショウ</td>
<td>Oenothera rosea</td>
<td>● ● ●</td>
</tr>
<tr>
<td>269</td>
<td>ミツヨイグサ科</td>
<td>ミツヨイグサ</td>
<td>Oenothera stricta</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>270</td>
<td>アリノトウガサ科</td>
<td>アリノトウガサ</td>
<td>Myriophyllum brasiliense</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>271</td>
<td>ホザキノフサモ科</td>
<td>ホザキノフサモ</td>
<td>Myriophyllum spicatum</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>272</td>
<td>ミズキ科</td>
<td>ミズキ</td>
<td>Myriophyllum spp.</td>
<td>● ● ●</td>
</tr>
<tr>
<td>273</td>
<td>ウコギ科</td>
<td>ウコギ</td>
<td>Acanthopanax spinosus</td>
<td>● ●</td>
</tr>
<tr>
<td>274</td>
<td>カクレミノ科</td>
<td>カクレミノ</td>
<td>Dendropanax trifidas</td>
<td>● ● ●</td>
</tr>
<tr>
<td>275</td>
<td>キソノ科</td>
<td>キソノ</td>
<td>Hedera rhombea</td>
<td>● ● ●</td>
</tr>
</tbody>
</table>

6-69
<table>
<thead>
<tr>
<th>No.</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>276</td>
<td>セリ科</td>
<td>セリ科</td>
<td>Apium leptophyllum</td>
<td>H7 H11-12 H15 H22 H26</td>
</tr>
<tr>
<td>277</td>
<td>ツボサ科</td>
<td>Gentella asiatica</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>278</td>
<td>マツバゼリ</td>
<td>Chidium japonicum</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>279</td>
<td>マツバ</td>
<td>Cryptotaenia japonica</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>ノラニンジン</td>
<td>Daucus carota</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>281</td>
<td>ハナウド</td>
<td>Haelium nipponicum</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>282</td>
<td>ノチドメ</td>
<td>Hydrocotyle maritima</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>283</td>
<td>オオチドメ</td>
<td>Hydrocotyle ramiﬂora</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>284</td>
<td>チドメグサ</td>
<td>Hydrocotyle sibthorpioides</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>285</td>
<td>ヒメチドメ</td>
<td>Hydrocotyle yabei</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>286</td>
<td>ヤブジラミ</td>
<td>Torilis japonica</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>287</td>
<td>オヤブジラミ</td>
<td>Torilis scabra</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>288</td>
<td>ヒメヨツバムグラ</td>
<td>Trachelospermum asiaticum</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>289</td>
<td>アセビ科</td>
<td>Pieris japonica</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>マンリョウ科</td>
<td>Ardisia japonica</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>291</td>
<td>サクラソウ科</td>
<td>Lysimachia japonica var. subsessilis</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>292</td>
<td>カキノキ科</td>
<td>Diospyros kaki</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>サツジ科</td>
<td>Ardisia japonica</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>294</td>
<td>ヤブコウジ科</td>
<td>Ardisia crenata</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>295</td>
<td>ヤブコウジ科</td>
<td>Ardisia crenata</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>296</td>
<td>リンデウ科</td>
<td>Centaurium pulchellum</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>297</td>
<td>ガファウ科</td>
<td>Metaplexis japonica</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>298</td>
<td>キョウチクトウ科</td>
<td>Trachelospermum asiaticum var. intermedium</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>299</td>
<td>テケイカズラ</td>
<td>Trachelospermum asiaticum var. intermedium</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>サツジ科</td>
<td>Trachelospermum asiaticum var. intermedium</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>301</td>
<td>ハガイモ科</td>
<td>Trachelospermum asiaticum var. intermedium</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>302</td>
<td>アカネ科</td>
<td>Diodia teres</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>303</td>
<td>メリケンムグラ</td>
<td>Diodia virginiana</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>304</td>
<td>ヒメヨツバムグラ</td>
<td>Galium gracilens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>キクムグラ</td>
<td>Galium kikumugura</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>306</td>
<td>カマムグラ</td>
<td>Galium pogonanthum</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>307</td>
<td>サツジガラム</td>
<td>Galium spurium var. echinospermon</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>308</td>
<td>サツジガラム</td>
<td>Galium trifidum var. brevipedunculatum</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>309</td>
<td>カラマツバ</td>
<td>Galium verum var. asiaticum f. nikoense</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>ガルキー</td>
<td>Galium sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>311</td>
<td>フタバムグラ</td>
<td>Hedyotis diffusa</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>312</td>
<td>ハサイガサ</td>
<td>Hedyotis Lindleyana var. hirsuta</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>313</td>
<td>ペダリアスカメン</td>
<td>Paederia scandens</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>314</td>
<td>コヒルガオ</td>
<td>Calystegia hederacea</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>ヒルガオ</td>
<td>Calystegia japonica</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>316</td>
<td>ハマヒルガオ</td>
<td>Calystegia soldanella</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>317</td>
<td>ノナハガオ</td>
<td>Cuscuta japonica</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>318</td>
<td>アオイゴケ</td>
<td>Dichondra micrantha</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>319</td>
<td>マルハガオ</td>
<td>Ipomoea coccinea</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>№</td>
<td>科和名</td>
<td>種和名</td>
<td>学名</td>
<td>調査項目</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>320</td>
<td>ヒルガオ科</td>
<td>アメリカアサガオ</td>
<td>Ipomoea hederacea</td>
<td>H7</td>
</tr>
<tr>
<td>321</td>
<td></td>
<td>マルバアメイカリサガオ</td>
<td>Ipomoea hederacea var. integrissima</td>
<td>H11-12</td>
</tr>
<tr>
<td>322</td>
<td></td>
<td>マメアサガオ</td>
<td>Ipomoea lacunosa</td>
<td>H15</td>
</tr>
<tr>
<td>323</td>
<td></td>
<td>ホシアサガオ</td>
<td>Ipomoea triloba</td>
<td>H22</td>
</tr>
<tr>
<td>324</td>
<td>ムラサキ科</td>
<td>ハナイバナ</td>
<td>Bothriospernum tenellum</td>
<td>H22</td>
</tr>
<tr>
<td>325</td>
<td></td>
<td>ノハラムラサキ</td>
<td>Myosotis arvensis</td>
<td>H26</td>
</tr>
<tr>
<td>326</td>
<td></td>
<td>ミズタビラコ</td>
<td>Trigonotis brevipes</td>
<td></td>
</tr>
<tr>
<td>327</td>
<td></td>
<td>キュウリグサ</td>
<td>Trigonotis peduncularis</td>
<td></td>
</tr>
<tr>
<td>328</td>
<td>クマツガラ科</td>
<td>コムラサキ</td>
<td>Callicarpa dichotoma</td>
<td></td>
</tr>
<tr>
<td>329</td>
<td></td>
<td>ヒメイワダレソウ</td>
<td>Lippia canescens</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td></td>
<td>ヤナギハナガサ</td>
<td>Verbena bonariensis</td>
<td></td>
</tr>
<tr>
<td>331</td>
<td></td>
<td>アレチハナガサ</td>
<td>Verbena brasiliensis</td>
<td></td>
</tr>
<tr>
<td>332</td>
<td>アワゴケ科</td>
<td>ミズハコベ</td>
<td>Callitriche verna</td>
<td></td>
</tr>
<tr>
<td>333</td>
<td>シソ科</td>
<td>クルマバナ</td>
<td>Clinopodium chinense var. parviflorum</td>
<td></td>
</tr>
<tr>
<td>334</td>
<td></td>
<td>トウバナ</td>
<td>Clinopodium gracile</td>
<td></td>
</tr>
<tr>
<td>335</td>
<td></td>
<td>カキドオシ</td>
<td>Orachoma hederacea var. grandis</td>
<td></td>
</tr>
<tr>
<td>336</td>
<td></td>
<td>ホトケノサ</td>
<td>Lamium amplexicaule</td>
<td></td>
</tr>
<tr>
<td>337</td>
<td></td>
<td>オドリコソウ</td>
<td>Lamium barbatum</td>
<td></td>
</tr>
<tr>
<td>338</td>
<td></td>
<td>ヒメオドリコソウ</td>
<td>Lamium purpureum</td>
<td></td>
</tr>
<tr>
<td>339</td>
<td></td>
<td>メハジキ</td>
<td>Leonurus japonicus</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td></td>
<td>シロネ</td>
<td>Lycopus lucidus</td>
<td></td>
</tr>
<tr>
<td>341</td>
<td></td>
<td>コシロネ</td>
<td>Lycopus ramosissimus var. japonicus</td>
<td></td>
</tr>
<tr>
<td>342</td>
<td></td>
<td>ヨウシュハッカ</td>
<td>Mentha arvensis</td>
<td></td>
</tr>
<tr>
<td>343</td>
<td></td>
<td>ハッカ</td>
<td>Mentha arvensis var. piperascens</td>
<td></td>
</tr>
<tr>
<td>344</td>
<td></td>
<td>オランダハッカ</td>
<td>Mentha spicata</td>
<td></td>
</tr>
<tr>
<td>345</td>
<td></td>
<td>ヒメジソ</td>
<td>Mosla dianthera</td>
<td></td>
</tr>
<tr>
<td>346</td>
<td></td>
<td>イヌコウジュ</td>
<td>Mosla punctulata</td>
<td></td>
</tr>
<tr>
<td>347</td>
<td></td>
<td>シソ</td>
<td>Perilla frutescens var. acuta</td>
<td></td>
</tr>
<tr>
<td>348</td>
<td></td>
<td>ミソウジュ</td>
<td>Salvia plecteia</td>
<td></td>
</tr>
<tr>
<td>349</td>
<td></td>
<td>イヌゴマ</td>
<td>Stachys riederi var. intermedia</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td></td>
<td>ニガクサ</td>
<td>Teucrium japonicum</td>
<td></td>
</tr>
<tr>
<td>351</td>
<td>ナス科</td>
<td>クコ</td>
<td>Lycium chinense</td>
<td></td>
</tr>
<tr>
<td>352</td>
<td></td>
<td>ホオズキ</td>
<td>Physalis alkekengi var. franchetii</td>
<td></td>
</tr>
<tr>
<td>353</td>
<td></td>
<td>ヒロハフウリンホオズキ</td>
<td>Physalis angulata</td>
<td></td>
</tr>
<tr>
<td>354</td>
<td></td>
<td>ヒメセンナリホオズキ</td>
<td>Physalis pubescens</td>
<td></td>
</tr>
<tr>
<td>355</td>
<td></td>
<td>ウルナスビ</td>
<td>Solanum carolinense</td>
<td></td>
</tr>
<tr>
<td>356</td>
<td></td>
<td>イヌホオズキ</td>
<td>Solanum nigrum</td>
<td></td>
</tr>
<tr>
<td>357</td>
<td></td>
<td>ヤマサンコ</td>
<td>Solanum pseudocapsicum</td>
<td></td>
</tr>
<tr>
<td>358</td>
<td></td>
<td>アメリカイヌホオズキ</td>
<td>Solanum ptycanthum</td>
<td></td>
</tr>
<tr>
<td>359</td>
<td>ゴマノハグサ科</td>
<td>キクモ</td>
<td>Limnophila sessiliflora</td>
<td></td>
</tr>
</tbody>
</table>
表 6.2-6（10） 加古川大堰およびその周辺での植物の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査項目</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>植物</td>
</tr>
<tr>
<td>360</td>
<td>(ゴマノハグサ科)</td>
<td>マツバウンラン</td>
<td>Linaria canadensis</td>
<td>H7</td>
</tr>
<tr>
<td>361</td>
<td>タケトアゼナ</td>
<td>Linderia dubia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>362</td>
<td>アメリカアゼナ</td>
<td>Linderia dubia ssp. major</td>
<td></td>
<td></td>
</tr>
<tr>
<td>363</td>
<td>アゼウガラン</td>
<td>Linderia miranthera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>364</td>
<td>アゼナ</td>
<td>Linderia procumbens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>365</td>
<td>ムラサキサギゴケ</td>
<td>Mazus miquelii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>366</td>
<td>サギゴケ</td>
<td>Mazus miquelii var. albiflorus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>367</td>
<td>トキワハゼ</td>
<td>Mazus pumilus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>368</td>
<td>オオカワヂシャ</td>
<td>Veronica anagallis-aquatica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>369</td>
<td>タイイスノフグリ</td>
<td>Veronica arvensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>370</td>
<td>ムシクサ</td>
<td>Veronica persica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>371</td>
<td>カワチシャ</td>
<td>Veronica undulata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>372</td>
<td>ユニツメ</td>
<td>Hygrophiila salicifolia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>373</td>
<td>キツネノマゴ科</td>
<td>キツネノマゴ</td>
<td>Plantago asiatica</td>
<td></td>
</tr>
<tr>
<td>374</td>
<td>キツネノマゴ</td>
<td>Plantago lanceolata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>375</td>
<td>タゾパコ科</td>
<td>タゾパコ</td>
<td>Plantago lanceolata</td>
<td></td>
</tr>
<tr>
<td>376</td>
<td>スイカズラ科</td>
<td>スイカズラ</td>
<td>Lonicera japonica</td>
<td></td>
</tr>
<tr>
<td>377</td>
<td>オミナエシ科</td>
<td>ノヂシャ</td>
<td>Valerianella olitoria</td>
<td></td>
</tr>
<tr>
<td>378</td>
<td>キキョウ科</td>
<td>キキョウソウ</td>
<td>Lobelia chinenensis</td>
<td></td>
</tr>
<tr>
<td>379</td>
<td>オミナエシ科</td>
<td>ジシャ</td>
<td>Valerianella olitoria</td>
<td></td>
</tr>
<tr>
<td>380</td>
<td>キキョウ科</td>
<td>キキョウソウ</td>
<td>Lobelia chinenensis</td>
<td></td>
</tr>
<tr>
<td>381</td>
<td>キキョウ科</td>
<td>キキョウソウ</td>
<td>Lobelia chinenensis</td>
<td></td>
</tr>
<tr>
<td>382</td>
<td>ヒナキキョウソウ</td>
<td>Specularia biflora</td>
<td></td>
<td></td>
</tr>
<tr>
<td>383</td>
<td>キョウソウ</td>
<td>Specularia perfoliata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>384</td>
<td>ヒナキキョウ</td>
<td>Wahlenbergia marginata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>385</td>
<td>キク科</td>
<td>ブタサ</td>
<td>Ambrosia artemisiifolia</td>
<td></td>
</tr>
<tr>
<td>386</td>
<td>キク科</td>
<td>キク</td>
<td>Ambrosia artemisiifolia</td>
<td></td>
</tr>
<tr>
<td>387</td>
<td>キク科</td>
<td>キク</td>
<td>Ambrosia artemisiifolia</td>
<td></td>
</tr>
<tr>
<td>388</td>
<td>キク科</td>
<td>キク</td>
<td>Ambrosia artemisiifolia</td>
<td></td>
</tr>
<tr>
<td>389</td>
<td>キク科</td>
<td>キク</td>
<td>Ambrosia artemisiifolia</td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>キク科</td>
<td>キク</td>
<td>Ambrosia artemisiifolia</td>
<td></td>
</tr>
<tr>
<td>391</td>
<td>キク科</td>
<td>キク</td>
<td>Ambrosia artemisiifolia</td>
<td></td>
</tr>
<tr>
<td>392</td>
<td>キク科</td>
<td>キク</td>
<td>Ambrosia artemisiifolia</td>
<td></td>
</tr>
<tr>
<td>393</td>
<td>キク科</td>
<td>キク</td>
<td>Ambrosia artemisiifolia</td>
<td></td>
</tr>
<tr>
<td>394</td>
<td>キク科</td>
<td>キク</td>
<td>Ambrosia artemisiifolia</td>
<td></td>
</tr>
<tr>
<td>395</td>
<td>キク科</td>
<td>キク</td>
<td>Ambrosia artemisiifolia</td>
<td></td>
</tr>
<tr>
<td>396</td>
<td>キク科</td>
<td>キク</td>
<td>Ambrosia artemisiifolia</td>
<td></td>
</tr>
<tr>
<td>397</td>
<td>キク科</td>
<td>キク</td>
<td>Ambrosia artemisiifolia</td>
<td></td>
</tr>
<tr>
<td>398</td>
<td>キク科</td>
<td>キク</td>
<td>Ambrosia artemisiifolia</td>
<td></td>
</tr>
<tr>
<td>399</td>
<td>キク科</td>
<td>キク</td>
<td>Ambrosia artemisiifolia</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>キク科</td>
<td>キク</td>
<td>Ambrosia artemisiifolia</td>
<td></td>
</tr>
<tr>
<td>401</td>
<td>キク科</td>
<td>キク</td>
<td>Ambrosia artemisiifolia</td>
<td></td>
</tr>
<tr>
<td>402</td>
<td>キク科</td>
<td>キク</td>
<td>Ambrosia artemisiifolia</td>
<td></td>
</tr>
<tr>
<td>403</td>
<td>キク科</td>
<td>キク</td>
<td>Ambrosia artemisiifolia</td>
<td></td>
</tr>
<tr>
<td>404</td>
<td>キク科</td>
<td>キク</td>
<td>Ambrosia artemisiifolia</td>
<td></td>
</tr>
<tr>
<td>405</td>
<td>キク科</td>
<td>キク</td>
<td>Ambrosia artemisiifolia</td>
<td></td>
</tr>
<tr>
<td>406</td>
<td>キク科</td>
<td>キク</td>
<td>Ambrosia artemisiifolia</td>
<td></td>
</tr>
</tbody>
</table>
表 6.2-6（11） 加古川大堰およびその周辺での植物の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査項目</th>
<th>植物</th>
<th>植物</th>
<th>植物</th>
<th>植物</th>
<th>環境基図</th>
<th>環境基図</th>
</tr>
</thead>
<tbody>
<tr>
<td>407</td>
<td>(キク科)</td>
<td>ベニバナボロギク</td>
<td>Crassocephalum crepidioides</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>408</td>
<td>アメリカタカサブロウ</td>
<td>Eclipta alba</td>
<td>● ●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>409</td>
<td>タカサブロウ</td>
<td>Eclipta prostrata</td>
<td>● ●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>410</td>
<td>Eclipta属</td>
<td>Eclipta sp.</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>411</td>
<td>ハルジオン</td>
<td>Erigeron philadelphicus</td>
<td>● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>412</td>
<td>フジバカマ</td>
<td>Eupatorium japonicum</td>
<td>● ●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>413</td>
<td>ハキスマキ</td>
<td>Galinsoga ciliata</td>
<td>● ●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>414</td>
<td>ハハコグサ</td>
<td>Gaphaliwm affine</td>
<td>●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>415</td>
<td>チチコグサ</td>
<td>Gaphaliwm calviceps</td>
<td>● ●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>416</td>
<td>キク科</td>
<td>Compositae</td>
<td>●●●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>417</td>
<td>ウスベニチチコグサ</td>
<td>Gaphaliwm purpureum</td>
<td>●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>418</td>
<td>キクイモ</td>
<td>Helianthus tuberosus</td>
<td>●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>419</td>
<td>キツネアザミ</td>
<td>Hemistepta lyrata</td>
<td>●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>フタナ</td>
<td>Hypochoeris radicata</td>
<td>●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>421</td>
<td>イネシバリ</td>
<td>Ixeris debilis</td>
<td>●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>422</td>
<td>イネシバリ</td>
<td>Ixeris dentata</td>
<td>●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>423</td>
<td>ノニガナ</td>
<td>Ixeris polypephala</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>424</td>
<td>イワニガナ</td>
<td>Ixeris stolonifera</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>425</td>
<td>よメナ</td>
<td>Kalimeris yomena</td>
<td>●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>426</td>
<td>アキノゲシ</td>
<td>Lactuca indica</td>
<td>●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>427</td>
<td>ホソアキノゲシ</td>
<td>Lactuca indica f. indisa</td>
<td>● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>428</td>
<td>トゲチシャ</td>
<td>Lactuca scariola</td>
<td>●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>429</td>
<td>コナタビラコ</td>
<td>Lapsana apogonoides</td>
<td>●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>430</td>
<td>ヤブタビラコ</td>
<td>Lapsana humilis</td>
<td>●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>431</td>
<td>コウソリナ</td>
<td>Picris hieracioides var. glabrescens</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>432</td>
<td>ノボロギク</td>
<td>Senecio vulgaris</td>
<td>●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433</td>
<td>セイタカアワダチソウ</td>
<td>Solidago altissima</td>
<td>●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>434</td>
<td>ソノノゲシ</td>
<td>Sonchus asper</td>
<td>●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>435</td>
<td>ソノノゲシ</td>
<td>Sonchus oleraceus</td>
<td>●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>436</td>
<td>ヒメジョオン</td>
<td>Stenactis annuus</td>
<td>●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>437</td>
<td>ヤナギバヒメジョオン</td>
<td>Stenactis pseudoannuus</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>438</td>
<td>ヘラヒメジョオン</td>
<td>Stenactis strigosus</td>
<td>●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>439</td>
<td>カンサイタンポポ</td>
<td>Taraxacum japonicum</td>
<td>●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>セイヨウタンポポ</td>
<td>Taraxacum officinale</td>
<td>●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>441</td>
<td>イガノオモミ</td>
<td>Xanthium italicum</td>
<td>●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>442</td>
<td>オオオオモミ</td>
<td>Xanthium orientale</td>
<td>●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>443</td>
<td>オオオタビラコ</td>
<td>Youngia japonica</td>
<td>●●●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ヘラオタビラ科
ヘラオタビラ科 Alisma canaliculatum | ● | | | | | |

オモダカ科
ヘラオモダカ Alisma canaliculatum | ● | | | | | |

オモダカ科 Sasagittaria graminea | ● | | | | | |

オモダカ科 Sagittaria trifolia | ● | | | | | |

ヒルムシロ科 Hydrilla verticillata | ● | | | | | |

ヒルムシロ科 Potamogeton crispus | ● | | | | | |

ヒルムシロ科 Potamogeton maianus | ● | | | | | |

ヒルムシロ科 Potamogeton oxyphyllus | ● | | | | | |

ヒルムシロ科 Potamogeton sp. | ● | | | | | |
表 6.2-6（12） 加古川大堰およびその周辺での植物の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>453</td>
<td>ユリ科</td>
<td>ノビル</td>
<td>Allium grayi</td>
<td>H7</td>
</tr>
<tr>
<td>454</td>
<td>ヤブカンゾウ</td>
<td>ノビル</td>
<td>Hemerocallis fulva var. kwanso</td>
<td>H11-12</td>
</tr>
<tr>
<td>-</td>
<td>ノビル</td>
<td>Hemerocallis sp.</td>
<td></td>
<td>H15</td>
</tr>
<tr>
<td>455</td>
<td>オニユリ</td>
<td>Liliaceae</td>
<td>Lilium lancifolium</td>
<td>H22</td>
</tr>
<tr>
<td>456</td>
<td>コイニユリ</td>
<td>Liliaceae</td>
<td>Lilium leitchlinii var. tigrinum</td>
<td>H26</td>
</tr>
<tr>
<td>457</td>
<td>ヒメヤブラン</td>
<td>Liliaceae</td>
<td>Liriope minor</td>
<td></td>
</tr>
<tr>
<td>458</td>
<td>ヤブラン</td>
<td>Liliaceae</td>
<td>Liriope muscari</td>
<td>●●</td>
</tr>
<tr>
<td>459</td>
<td>ジャノヒゲ</td>
<td>Ophiopogon japonicus</td>
<td>Ophiopogon japonicus</td>
<td>●●</td>
</tr>
<tr>
<td>460</td>
<td>ナガバジャノヒゲ</td>
<td>Ophiopogon</td>
<td>Ophiopogon ohwi</td>
<td></td>
</tr>
<tr>
<td>461</td>
<td>キチショウソウ</td>
<td>Ophiopogon</td>
<td>Keineckea carnea</td>
<td></td>
</tr>
<tr>
<td>462</td>
<td>ツルポ</td>
<td>Smilax china</td>
<td>Smilax chinensis</td>
<td></td>
</tr>
<tr>
<td>463</td>
<td>ヒガンバナ科</td>
<td>ヒガンバナ</td>
<td>Lycoris radiata</td>
<td></td>
</tr>
<tr>
<td>464</td>
<td>ヒガンバナ</td>
<td>Lycoris</td>
<td>Lycoris sanguinea</td>
<td></td>
</tr>
<tr>
<td>465</td>
<td>キツネノカミソリ</td>
<td>Lycoris</td>
<td>Lycoris sp.</td>
<td></td>
</tr>
<tr>
<td>466</td>
<td>タマスダレ</td>
<td>Zephyranthes candida</td>
<td>Zephyranthes candida</td>
<td></td>
</tr>
<tr>
<td>467</td>
<td>ヤマノイモ科</td>
<td>ヤマノイモ</td>
<td>Dioscorea batatas</td>
<td></td>
</tr>
<tr>
<td>468</td>
<td>ヤマノイモ</td>
<td>Dioscorea</td>
<td>Dioscorea bulbifera</td>
<td>● ●</td>
</tr>
<tr>
<td>469</td>
<td>ヤマノイモ</td>
<td>Dioscorea</td>
<td>Dioscorea japonica</td>
<td>● ●</td>
</tr>
<tr>
<td>470</td>
<td>オニドコロ</td>
<td>Dioscorea</td>
<td>Dioscorea tokoro</td>
<td>●</td>
</tr>
<tr>
<td>471</td>
<td>ミズアオイ科</td>
<td>ホタイアオイ</td>
<td>Eichhornia crassipes</td>
<td>●</td>
</tr>
<tr>
<td>472</td>
<td>コナギ</td>
<td>Monochoria</td>
<td>Monochoria vaginalis var. plantaginea</td>
<td></td>
</tr>
<tr>
<td>473</td>
<td>アヤメ科</td>
<td>キショウブ</td>
<td>Iris pseudacorus</td>
<td>●</td>
</tr>
<tr>
<td>474</td>
<td>キショウブ</td>
<td>Iris</td>
<td>Iris sibirica</td>
<td>●</td>
</tr>
<tr>
<td>475</td>
<td>アイロニワキショウ</td>
<td>Sisyrinchium</td>
<td>Sisyrinchium atlanticum</td>
<td>●</td>
</tr>
<tr>
<td>476</td>
<td>オニワキショウ</td>
<td>Sisyrinchium</td>
<td>Sisyrinchium graminoides</td>
<td>●</td>
</tr>
<tr>
<td>477</td>
<td>タイホウオグイセン</td>
<td>Tritonia</td>
<td>Tritonia crocosmaeflora</td>
<td>●</td>
</tr>
<tr>
<td>478</td>
<td>イグサ科</td>
<td>ハナビゼキショウ</td>
<td>Juncus alatus</td>
<td>●</td>
</tr>
<tr>
<td>479</td>
<td>イ</td>
<td>Juncus</td>
<td>Juncus effusus var. decipiens</td>
<td>●</td>
</tr>
<tr>
<td>480</td>
<td>コウガゼキショウ</td>
<td>Juncus</td>
<td>Juncus leschenaultii</td>
<td>●</td>
</tr>
<tr>
<td>481</td>
<td>ホソイ</td>
<td>Juncus</td>
<td>Juncus setchuenensis var. effusoides</td>
<td>●</td>
</tr>
<tr>
<td>482</td>
<td>クサイ</td>
<td>Juncus</td>
<td>Juncus tenuis</td>
<td>●</td>
</tr>
<tr>
<td>483</td>
<td>コゴメイ</td>
<td>Juncus</td>
<td>Juncus sp.</td>
<td>●</td>
</tr>
<tr>
<td>484</td>
<td>スズメノヤリ</td>
<td>Juncus</td>
<td>Juncus capitus</td>
<td>●</td>
</tr>
<tr>
<td>485</td>
<td>ヤマスズメノヒエ</td>
<td>Juncus</td>
<td>Juncus multiflora</td>
<td>●</td>
</tr>
<tr>
<td>486</td>
<td>ソウサ科</td>
<td>ジョウサ</td>
<td>Commelina communis</td>
<td>●</td>
</tr>
<tr>
<td>487</td>
<td>ジョウサ</td>
<td>Commelina</td>
<td>Commelina communis</td>
<td>●</td>
</tr>
<tr>
<td>488</td>
<td>イネ科</td>
<td>タオカモジグサ</td>
<td>Agropyron racemiflorum</td>
<td>●</td>
</tr>
<tr>
<td>489</td>
<td>タオカモジグサ</td>
<td>Agropyron</td>
<td>Agropyron tenui var. tukeyi</td>
<td>●</td>
</tr>
<tr>
<td>490</td>
<td>タオカモジグサ</td>
<td>Agropyron</td>
<td>Agropyron sp.</td>
<td>●</td>
</tr>
<tr>
<td>491</td>
<td>ハナヌカススキ</td>
<td>Aira</td>
<td>Aira elegans</td>
<td>●</td>
</tr>
<tr>
<td>492</td>
<td>エドガヤ</td>
<td>Alopecurus</td>
<td>Alopecurus aequalis var. amurenensis</td>
<td>●</td>
</tr>
<tr>
<td>493</td>
<td>エドガヤ</td>
<td>Alopecurus</td>
<td>Alopecurus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>494</td>
<td>エドガヤ</td>
<td>Andropogon</td>
<td>Andropogon virginicus</td>
<td>●</td>
</tr>
<tr>
<td>495</td>
<td>エドガヤ</td>
<td>Anthoxanthum</td>
<td>Anthoxanthum odoratum</td>
<td>●</td>
</tr>
<tr>
<td>496</td>
<td>エドガヤ</td>
<td>Arthroxon</td>
<td>Arthroxon hispidus</td>
<td>●</td>
</tr>
<tr>
<td>497</td>
<td>サラスギ</td>
<td>Avena</td>
<td>Avena fatua</td>
<td>●</td>
</tr>
<tr>
<td>498</td>
<td>ミノゴメ</td>
<td>Beckmannia</td>
<td>Beckmannia syzigachne</td>
<td>●</td>
</tr>
<tr>
<td>499</td>
<td>コバンソウ</td>
<td>Briza</td>
<td>Briza maxima</td>
<td>●</td>
</tr>
<tr>
<td>500</td>
<td>ヒメコバンソウ</td>
<td>Briza</td>
<td>Briza minor</td>
<td>●</td>
</tr>
</tbody>
</table>

調査項目: H7 H11-12 H15 H22 H26
<table>
<thead>
<tr>
<th>№</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査項目</th>
<th>植物</th>
<th>植物</th>
<th>植物</th>
<th>植物</th>
<th>環境基図</th>
<th>環境基図</th>
</tr>
</thead>
<tbody>
<tr>
<td>501</td>
<td>イヌムギ</td>
<td>Bromus catharticus</td>
<td>● ● ● ●</td>
<td>H7</td>
<td>H11-12</td>
<td>H15</td>
<td>H22</td>
<td>H26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>502</td>
<td>ムクゲチャヒキ</td>
<td>Bromus commutatus</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>503</td>
<td>スズメノチャヒキ</td>
<td>Bromus japonicus</td>
<td>● ● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>504</td>
<td>ヒゲナガスズメノチャヒキ</td>
<td>Bromus rigidus</td>
<td>● ● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>505</td>
<td>ジュズダマ</td>
<td>Coix laurinjai</td>
<td>● ● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>506</td>
<td>ギヨウキシバ</td>
<td>Cyperus daetlyon</td>
<td>● ● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>507</td>
<td>カモガヤ</td>
<td>Dactylis glomerata</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>508</td>
<td>メヒシバ</td>
<td>Digitaria ciliaris</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509</td>
<td>アキメヒシバ</td>
<td>Digitaria violascens</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>ハマガヤ</td>
<td>Diplachne reptatrix</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>511</td>
<td>イヌビエ</td>
<td>Echinochloa crusgalli</td>
<td>● ● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>ケイヌビエ</td>
<td>Echinochloa crusgalli var. echinata</td>
<td>● ● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>513</td>
<td>タイヌビエ</td>
<td>Echinochloa crusgalli var. orzyzicola</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>514</td>
<td>オヒシバ</td>
<td>Euphleum indicum</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>515</td>
<td>シナダレズメガヤ</td>
<td>Eracrostis curvula</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>516</td>
<td>カゼカ</td>
<td>Eracrostis ferruginea</td>
<td>● ● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>517</td>
<td>ミヤコ</td>
<td>Eracrostis multicaulis</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>518</td>
<td>オニウシノケグサ</td>
<td>Festuca arundinacea</td>
<td>● ● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>519</td>
<td>ヒロハノウシノケグサ</td>
<td>Festuca pratensis</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>ケシチガヤ</td>
<td>Imperata cylindrica</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>521</td>
<td>サキガヤ</td>
<td>Imperata cylindrica var. koenigii</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>522</td>
<td>イシガヤ</td>
<td>Isachne globosa</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>523</td>
<td>エゾノササングサ</td>
<td>Leersia oryzoides</td>
<td>● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>524</td>
<td>サザサ</td>
<td>Leersia sayanuka</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>525</td>
<td>アセンガヤ</td>
<td>Leptochloa chinensis</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>526</td>
<td>イトアセンガヤ</td>
<td>Leptochloa panicea</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>527</td>
<td>ネズミホシ</td>
<td>Loliun x hibridum</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>528</td>
<td>ネズミホシ</td>
<td>Loliun multiflorum</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>ホシホシ</td>
<td>Loliun perenne</td>
<td>● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>ミロボ</td>
<td>Lophochloa cristata</td>
<td>● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>531</td>
<td>アシボ</td>
<td>Microstegium vimineum</td>
<td>● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>532</td>
<td>オギ</td>
<td>Miscanthus sacchariflorus</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>533</td>
<td>ススキ</td>
<td>Miscanthus sinensis</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>534</td>
<td>コチチミササ</td>
<td>Oplismenus undulatifolius</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>535</td>
<td>ヌサササ</td>
<td>Pannum bisulcatum</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>536</td>
<td>オウサササ</td>
<td>Pannum pachycentrum</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>537</td>
<td>シマスメノヒエ</td>
<td>Paspalum dilatatum</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>538</td>
<td>キシウズスメノヒエ</td>
<td>Paspalum distichum</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>539</td>
<td>チタスメノヒエ</td>
<td>Paspalum distichum var. indutum</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>540</td>
<td>アスメノヒエ</td>
<td>Paspalum notatum</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>541</td>
<td>スメノヒエ</td>
<td>Paspalum thunbergii</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>542</td>
<td>カシスメノヒエ</td>
<td>Paspalum urvillei</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>543</td>
<td>チカラシバ</td>
<td>Pennisetum alopecuroides</td>
<td>● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>544</td>
<td>サヨシ</td>
<td>Phalaris arundinacea</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>545</td>
<td>シヨ</td>
<td>Phragmites australis</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>546</td>
<td>サルヨ</td>
<td>Phragmites japonica</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>547</td>
<td>サイタヨシ</td>
<td>Phragmites karka</td>
<td>● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 6.2-6（14） 加古川大堰およびその周辺での植物の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>548</td>
<td>イネ科</td>
<td>ホテイチク</td>
<td>Phyllostachys aurea</td>
<td>H7, H11-12, H15, H22, H26</td>
</tr>
<tr>
<td>549</td>
<td>マダケ</td>
<td>Phyllostachys bambusoides</td>
<td>●●●</td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>ハチク</td>
<td>Phyllostachys nigra var. henonis</td>
<td>●</td>
<td>●●●</td>
</tr>
</tbody>
</table>
| 551 | ムオウソウチク | Phyllostachys pubescens | ● | ●
| 552 | ネザサ | Pleioblastus chino var. viridis | ●●● | ●●● |
| 553 | ケネザサ | Pleioblastus shibuyanus f. pubescens | ● | ●
| 554 | メダケ | Pleioblastus simonii | ●●● | ●●● |
| 555 | スズメノカタビラ | Poa annua | ● | ●●
| 556 | イチゴツナギ | Poa sphenoidales | ● | ●
| 557 | オオズズメノカタビラ | Poa trivialis | ●● | ●
| 558 | ヒエガエリ | Polygono fugax | ● | ●
| 559 | アキノエノコロガサ | Setaria faberii | ● | ●●● ●●
| 560 | コツブキンエノコロ | Setaria pallidifusca | ● | ●
| 561 | キンココロガサ | Setaria pumilla | ● | ●
| 562 | オオエノコロガサ | Setaria x pycnoceoma | ● | ●
| 563 | エノコロガサ | Setaria viridis f. misera | ● | ●●●
| 564 | ムラサキエノコロ | Setaria viridis | ● | ●
| 565 | セイバンモロコシ | Sorghum halapense | ● | ●●●●
| 566 | ネズミノオ | Sporobolus fertilis | ● | ●●●●
| 567 | ムラサキネズミミノオ | Sporobolus fertilis var. purpureosuffusus | ● | ●
| 568 | ナギタガヤ | Vulia myuros | ● | ●●
| 569 | マコモ | Zizania latifolia | ● | ●●●●
| 570 | シハ | Zyesia japonica | ● | ●●●●
| 571 | イネ科 | イネ科 | Gramineae | ● | ●●●
| 572 | サトイ科 | サトイ科 | Trachycarpus fortunei | ● | ●●
| 573 | セキショウ | Acorus calamus | ● | ●●●
| 574 | サトイモ | Colocasia esculenta | ● | ●●
| 575 | カラリサッカ | Pinellia ternata | ● | ●
| 576 | ポタンウキササ | Plantia stratiotes | ● | ●
| 577 | オオウキササ | Lemna anubikusa | ● | ●
| 578 | ヒメウキササ | Spirodela oligorhiza | ● | ●
| 579 | スピロテラ | Spirodela polyrhiza | ● | ●●
| 580 | ウキヤガラ | Wolffia arrhiza | ● | ●
| 581 | ミクリ科 | ミクリ | Sparganium erectum ssp. stoloniferum | ● | ●●●
| 582 | ガマ科 | ヒメガマ | Typha angustifolia | ● | ●●
| 583 | ガマ | Typha latifolia | ● | ●●
| 584 | カタリサ科 | ウキヤガラ | Bolboschoenus fluviatilis | ● | ●●●
| 585 | クロカワズスゲ | Carex arenicola | ● | ●
| 586 | アゼナルコ | Carex dimorpholagensis | ● | ●●●
| 587 | カワガマ | Carex dispalata | ● | ●●
| 588 | カンガマ | Carex gibba | ● | ●●
| 589 | ウマガマ | Carex iduroei | ● | ●
| 590 | カワガマ | Carex incisa | ● | ●
| 591 | シュガマ | Carex ischnostachya | ● | ●
| 592 | アオガマ | Carex leucocarpa | ● | ●●
| 593 | ウマガマ | Carex metallica | ● | ●●
| 594 | キンメガマ | Carex persistens | ● | ●
| 595 | シュガマ | Carex scabridifolia | ● | ●
| 596 | シュガマ | Carex transversa | ● | ●●
| 597 | タマガマ | Carex sp. | ● | ●●
| 598 | シュガマ | Carex amuricus | ● | ●
| 599 | シュガマ | Carex brevifolius | ● | ●●

6-76
表 6.2-6 (15) 加古川大堰およびその周辺での植物の確認状況

<table>
<thead>
<tr>
<th>№.</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>599</td>
<td>ヒメクグ</td>
<td>Cyperus brevifolius var. leiolepis</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>イヌクグ</td>
<td>Cyperus cyperoides</td>
<td>H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>601</td>
<td>タマガヤツリ</td>
<td>Cyperus difformis</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>602</td>
<td>ホソミキンガヤツリ</td>
<td>Cyperus engelmannii</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>603</td>
<td>メリケンガヤツリ</td>
<td>Cyperus eragrostis</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>604</td>
<td>ヒメオガヤツリ</td>
<td>Cyperus extremiorientalis</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>605</td>
<td>ヒナガヤツリ</td>
<td>Cyperus flaccidus</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>606</td>
<td>アセガヤツリ</td>
<td>Cyperus globosus</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>607</td>
<td>ヌマガヤツリ</td>
<td>Cyperus glomeratus</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>608</td>
<td>コゴメガヤツリ</td>
<td>Cyperus iria</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>609</td>
<td>カヤツリグサ</td>
<td>Cyperus microiria</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>610</td>
<td>アオガヤツリ</td>
<td>Cyperus nipponicus</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>611</td>
<td>キンガヤツリ</td>
<td>Cyperus odoratus</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>612</td>
<td>イガガヤツリ</td>
<td>Cyperus polystachyos</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>613</td>
<td>ハマスゲ</td>
<td>Cyperus rotundus</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>614</td>
<td>カワラスガナ</td>
<td>Cyperus sanguinolentus</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>615</td>
<td>マツバイ</td>
<td>Eleocharis acicularis var. longiseta</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>616</td>
<td>テンツキ</td>
<td>Fimbristylis dichotoma</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>617</td>
<td>メアゼテンツキ</td>
<td>Fimbristylis milacea</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>618</td>
<td>フトイ</td>
<td>Schoenoplectus tabernaemontani</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>619</td>
<td>カンガレイ</td>
<td>Schoenoplectus triangulatus</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>620</td>
<td>サンカクイ</td>
<td>Schoenoplectus triquetter</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>621</td>
<td>サンカクイ</td>
<td>Schoenoplectus triquetter</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
<tr>
<td>622</td>
<td>ラン科</td>
<td>Spiranthes sinensis</td>
<td>H7、H11-12、H15、H22、H26</td>
<td></td>
</tr>
</tbody>
</table>

合計 111科 622種 622種 388種 446種 375種 98種 130種

※1）分類体系および同定精度は「河川水辺の国勢調査のための生物リスト」（平成26年公表、水情報国土データ管理センター）に準じた。
（5）鳥類
加古川大堰およびその周辺における鳥類の確認状況を表 6.2-7 に示す。
加古川では、平成5年度より鳥類に係る河川水辺の国勢調査が実施されており、最新の
平成24年度で4巡目となる。
平成5年度から平成24年度の調査において、計13目34科104種の鳥類が確認されてい
る。

表 6.2-7 (1) 加古川大堰およびその周辺の鳥類の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>カイツブリ目カイツブリ科</td>
<td>カイツブリ</td>
<td>Tachybaptus ruficollis</td>
<td>● ● ● ●</td>
<td>H5</td>
</tr>
<tr>
<td>2</td>
<td>カイツブリ科 ガンムリノカイツブリ目</td>
<td>ガンムリノカイツブリ</td>
<td>Podiceps cristatus</td>
<td>● ● ● ●</td>
<td>H10</td>
</tr>
<tr>
<td>3</td>
<td>ペリカン目 ウ科</td>
<td>ウ</td>
<td>Phalacrocorax carbo</td>
<td>● ● ● ●</td>
<td>H16</td>
</tr>
<tr>
<td>4</td>
<td>コウノトリ目</td>
<td>サギ科</td>
<td>Nycticorax nycticorax</td>
<td>● ● ● ●</td>
<td>H24</td>
</tr>
<tr>
<td>5</td>
<td>ササゴイ目</td>
<td>ササゴイ</td>
<td>Butorides striatus</td>
<td>● ● ●</td>
<td>H5</td>
</tr>
<tr>
<td>6</td>
<td>アマサギ目</td>
<td>アマサギ</td>
<td>Bulbus ibis</td>
<td>● ● ● ●</td>
<td>H10</td>
</tr>
<tr>
<td>7</td>
<td>ダイサギ目</td>
<td>ダイサギ</td>
<td>Egeretta alba</td>
<td>● ● ● ●</td>
<td>H16</td>
</tr>
<tr>
<td>8</td>
<td>チュウサギ目</td>
<td>チュウサギ</td>
<td>Egeretta intermedia</td>
<td>● ● ●</td>
<td>H24</td>
</tr>
<tr>
<td>9</td>
<td>コサイカイツブリ科</td>
<td>コサイ</td>
<td>Egeretta garzetta</td>
<td>● ● ● ●</td>
<td>H5</td>
</tr>
<tr>
<td>10</td>
<td>アオサギ科</td>
<td>アオサギ</td>
<td>Ardea cinerea</td>
<td>● ● ●</td>
<td>H10</td>
</tr>
<tr>
<td>11</td>
<td>コウノトリ目</td>
<td>コウノトリ</td>
<td>Ciconia boyciana</td>
<td>● ●</td>
<td>H16</td>
</tr>
<tr>
<td>12</td>
<td>カモ目</td>
<td>カモ科</td>
<td>Anas platyrhynchos</td>
<td>● ● ● ●</td>
<td>H24</td>
</tr>
<tr>
<td>13</td>
<td>カモ科</td>
<td>アヒル</td>
<td>Anas platyrhynchos var. domesticus</td>
<td>● ●</td>
<td>H5</td>
</tr>
<tr>
<td>14</td>
<td>カルガモ科</td>
<td>カルガモ</td>
<td>Anas poecilorhyncha</td>
<td>● ● ●</td>
<td>H10</td>
</tr>
<tr>
<td>15</td>
<td>コガモ科</td>
<td>コガモ</td>
<td>Anas crecca</td>
<td>●</td>
<td>H16</td>
</tr>
<tr>
<td>16</td>
<td>トモエガモ科</td>
<td>トモエガモ</td>
<td>Anas formosa</td>
<td>●</td>
<td>H24</td>
</tr>
<tr>
<td>17</td>
<td>オウサギ科</td>
<td>オウサギ</td>
<td>Anas falcata</td>
<td>● ●</td>
<td>H5</td>
</tr>
<tr>
<td>18</td>
<td>オカヨシガモ科</td>
<td>オカヨシガモ</td>
<td>Anas strepera</td>
<td>● ● ●</td>
<td>H10</td>
</tr>
<tr>
<td>19</td>
<td>ヒトリガモ科</td>
<td>ヒトリガモ</td>
<td>Anas penelope</td>
<td>● ● ●</td>
<td>H16</td>
</tr>
<tr>
<td>20</td>
<td>オナガガモ科</td>
<td>オナガガモ</td>
<td>Anas acuta</td>
<td>● ● ●</td>
<td>H24</td>
</tr>
<tr>
<td>21</td>
<td>カモ目</td>
<td>ハンピロガモ科</td>
<td>ハンピロガモ</td>
<td>Anas clypeata</td>
<td>● ●</td>
</tr>
<tr>
<td>22</td>
<td>コウノトリ科</td>
<td>コウノトリ</td>
<td>Mergus albellus</td>
<td>● ●</td>
<td>H10</td>
</tr>
<tr>
<td>23</td>
<td>タカ目</td>
<td>タカ科</td>
<td>Mergus serrator</td>
<td>● ● ●</td>
<td>H16</td>
</tr>
<tr>
<td>24</td>
<td>タカ科</td>
<td>タカ</td>
<td>Mergus merganser</td>
<td>● ● ●</td>
<td>H24</td>
</tr>
<tr>
<td>25</td>
<td>タカ目</td>
<td>タカ</td>
<td>Pandion haliaetus</td>
<td>● ● ● ●</td>
<td>H5</td>
</tr>
<tr>
<td>26</td>
<td>ハチクマ科</td>
<td>ハチクマ</td>
<td>Pernis apivorus</td>
<td>●</td>
<td>H10</td>
</tr>
<tr>
<td>27</td>
<td>ハチクマ科</td>
<td>ハチクマ</td>
<td>Milvus migrans</td>
<td>● ● ●</td>
<td>H16</td>
</tr>
<tr>
<td>28</td>
<td>オオタカ科</td>
<td>オオタカ</td>
<td>Accipiter gentilis</td>
<td>●</td>
<td>H24</td>
</tr>
<tr>
<td>29</td>
<td>オオタカ科</td>
<td>オオタカ</td>
<td>Buteo buteo</td>
<td>● ● ●</td>
<td>H5</td>
</tr>
<tr>
<td>30</td>
<td>オオタカ科</td>
<td>オオタカ</td>
<td>Falco peregrinus</td>
<td>● ● ●</td>
<td>H10</td>
</tr>
<tr>
<td>31</td>
<td>オオタカ科</td>
<td>オオタカ</td>
<td>Falco columbarius</td>
<td>● ● ●</td>
<td>H16</td>
</tr>
<tr>
<td>32</td>
<td>オオタカ科</td>
<td>オオタカ</td>
<td>Falco tinnunculus</td>
<td>● ● ●</td>
<td>H24</td>
</tr>
<tr>
<td>33</td>
<td>キジ科</td>
<td>キジ</td>
<td>Phasianus colchicus</td>
<td>● ● ●</td>
<td>H5</td>
</tr>
<tr>
<td>34</td>
<td>キジ科</td>
<td>キジ</td>
<td>Sambusiaola thoracica</td>
<td>●</td>
<td>H10</td>
</tr>
<tr>
<td>35</td>
<td>タシェイナ科</td>
<td>タシェイナ</td>
<td>Porzana fusca</td>
<td>●</td>
<td>H16</td>
</tr>
<tr>
<td>36</td>
<td>タシェイナ科</td>
<td>タシェイナ</td>
<td>Gallinula chloropus</td>
<td>●</td>
<td>H24</td>
</tr>
<tr>
<td>37</td>
<td>チドリ科</td>
<td>チドリ</td>
<td>Rostratula benghalensis</td>
<td>●</td>
<td>H5</td>
</tr>
<tr>
<td>38</td>
<td>テンブリ科</td>
<td>テンブリ</td>
<td>Charadrius dubius</td>
<td>● ● ●</td>
<td>H10</td>
</tr>
<tr>
<td>39</td>
<td>テンブリ科</td>
<td>テンブリ</td>
<td>Charadrius placidus</td>
<td>● ● ●</td>
<td>H16</td>
</tr>
<tr>
<td>40</td>
<td>テンブリ科</td>
<td>テンブリ</td>
<td>Pluvialis fulva</td>
<td>●</td>
<td>H24</td>
</tr>
<tr>
<td>41</td>
<td>テンブリ科</td>
<td>テンブリ</td>
<td>Vanellus cinereus</td>
<td>● ● ●</td>
<td>H5</td>
</tr>
<tr>
<td>42</td>
<td>テンブリ科</td>
<td>テンブリ</td>
<td>Vanellus vanellus</td>
<td>● ●</td>
<td>H10</td>
</tr>
<tr>
<td>No.</td>
<td>目和名</td>
<td>科和名</td>
<td>種和名</td>
<td>学名</td>
<td>調査年度</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>43</td>
<td>(チドリ目)</td>
<td>シギ科</td>
<td>アオアシシギ</td>
<td>Tringa nebularia</td>
<td>H5 H10 H16 H24</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>シギ科</td>
<td>シギ</td>
<td>Tringa ochropus</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>シギ科</td>
<td>タカブシギ</td>
<td>Tringa glareola</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>46</td>
<td></td>
<td>シギ科</td>
<td>キアシシギ</td>
<td>Heteroscelus brevipes</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>シギ科</td>
<td>イソシギ</td>
<td>Actitis hypoleucos</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>シギ科</td>
<td>タシギ</td>
<td>Galinago gallinago</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>49</td>
<td>カモメ科</td>
<td>ゆりカモメ</td>
<td>Larus ridibundus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>カモメ科</td>
<td>セグロカモメ</td>
<td>Larus argentatus</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>カモメ科</td>
<td>カモメ</td>
<td>Larus canus</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td>ウミネコ</td>
<td>Larus crassirostris</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td>ズグロカモメ</td>
<td>Larus saundersi</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>ハト目</td>
<td>ハト科</td>
<td>ドバト</td>
<td>Columba livia var. domestica</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>キジハト</td>
<td>Streptopelia orientalis</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>カッコウ目</td>
<td>カッコウ科</td>
<td>ホトギス</td>
<td>Cuculus poliocephalus</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>57</td>
<td>ブッポウソウ目</td>
<td>カウセミ科</td>
<td>ヤマセミ</td>
<td>Geryle lugubris</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>カウセミ科</td>
<td>カウセミ</td>
<td>Alcedo atthis</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>59</td>
<td>キツツキ目</td>
<td>キツツキ科</td>
<td>アリスイ</td>
<td>Jynx torquilla</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>キツツキ科</td>
<td>ヨゲラ</td>
<td>Dendrocopos kizuki</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>61</td>
<td>スズメ目</td>
<td>ヒバリ科</td>
<td>ヒバリ</td>
<td>Alauda arvensis</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>ツバメ科</td>
<td>ショウドウツバメ</td>
<td>Riparia riparia</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>ツバメ科</td>
<td>タバメ</td>
<td>Hirundo rustica</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>ツバメ科</td>
<td>コンアツバメ</td>
<td>Hirundo daurica</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>シセキレイ科</td>
<td>イシツバメ</td>
<td>Delichon urbica</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>66</td>
<td>セキレイ科</td>
<td>セキレイ</td>
<td>Motacilla cinerea</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>セキレイ</td>
<td>セキレイ</td>
<td>Motacilla alba</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>セキレイ</td>
<td>セキレイ</td>
<td>Motacilla grandis</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>セキレイ</td>
<td>ビンズイ</td>
<td>Anthus hodgsoni</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>セキレイ</td>
<td>タヒバリ</td>
<td>Anthus spinola</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>71</td>
<td>ヒヨドリ科</td>
<td>ヒヨドリ</td>
<td>Hypsipetes amaurotis</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>モズ科</td>
<td>モズ</td>
<td>Lanius bucephalus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>ツグミ科</td>
<td>ジョウビタキ</td>
<td>Phoenicurus auroreus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>ツグミ科</td>
<td>ブチャタキ</td>
<td>Saxicola torquata</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>ツグミ科</td>
<td>イソヒヨドリ</td>
<td>Monticola solitarius</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>ツグミ科</td>
<td>ショウジラ</td>
<td>Turdus pallidus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>ツグミ科</td>
<td>ツグミ</td>
<td>Turdus naumanni</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>ウグイス科</td>
<td>ユブサメ</td>
<td>Urophena squameiceps</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>ウグイス科</td>
<td>ウグイス</td>
<td>Cettia diphone</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>エソセンニュウ科</td>
<td>エソセンニュウ</td>
<td>Locustella fasciolata</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>オオヨシキリ科</td>
<td>オオヨシキリ</td>
<td>Acrocephalus arundinaceus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>キウタダキ科</td>
<td>キウタダキ</td>
<td>Regulus regulus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>キウタダキ科</td>
<td>キウタダキ</td>
<td>Cisticola juncidis</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>エナガ科</td>
<td>エナガ</td>
<td>Aegithalos caudatus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>シジノカタラ科</td>
<td>シジノカタラ</td>
<td>Remiz pendulinus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>シジウカタラ科</td>
<td>シジウカタラ</td>
<td>Parus ater</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>シジウカタラ科</td>
<td>シジウカタラ</td>
<td>Parus major</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>メジロ科</td>
<td>メジロ</td>
<td>Zosterops japonicus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>ホオジロ科</td>
<td>ホオジロ</td>
<td>Emberiza ciaoids</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>ホオジロ科</td>
<td>カシラダカ</td>
<td>Emberiza rustica</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>ホオジロ科</td>
<td>ノジョ</td>
<td>Emberiza sulphurata</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>ホオジロ科</td>
<td>アオジ</td>
<td>Emberiza spodiops</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>ホオジロ科</td>
<td>オオジュリン</td>
<td>Emberiza schoeniclus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>目和名</td>
<td>科和名</td>
<td>種和名</td>
<td>学名</td>
<td>調査年度</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>94</td>
<td>(スズメ目)</td>
<td>アトリ科</td>
<td>アトリ</td>
<td>Fringilla montifringilla</td>
<td>H5 H10 H16 H24</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td>カワラヒワ科</td>
<td>カワラヒワ</td>
<td>Carduelis sinica</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td>ベニマシコ科</td>
<td>ベニマシコ</td>
<td>Uragus sibiricus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td>シメ科</td>
<td>シメ</td>
<td>Coccothraustes coccothraustes</td>
<td>● ●</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td>カエデチョウ科</td>
<td>ペニスズメ</td>
<td>Amandava amandava</td>
<td>● ●</td>
</tr>
<tr>
<td>99</td>
<td></td>
<td>ハタオリドリ科</td>
<td>スズメ</td>
<td>Passer montanus</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>ムクドリ科</td>
<td>コムクドリ</td>
<td>Sturnus philippensis</td>
<td>●</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td></td>
<td>ムクドリ</td>
<td>Sturnus cineraceus</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>102</td>
<td></td>
<td>ハッカチョウ科</td>
<td>ハッカチョウ</td>
<td>Acridootheres cristatellus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td>カラス科</td>
<td>ハシボソガラス</td>
<td>Corvus corone</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>104</td>
<td></td>
<td></td>
<td>ハシブトガラス</td>
<td>Corvus macrorhynchos</td>
<td>● ● ● ●</td>
</tr>
</tbody>
</table>

合計 13目 34科 104種 104種 65種 79種 75種 74種

※1）分類体系および同定精度は「河川水辺の国勢調査のための生物リスト」（平成24年公表，水情報国土データ管理センター）に準じた。
(6)両生類・爬虫類・哺乳類
加古川大堰およびその周辺における両生類の確認状況を表6.2-8に、爬虫類の確認状況を表6.2-9に、哺乳類の確認状況を表6.2-10に示す。
加古川では、平成7年度より両生類・爬虫類・哺乳類に係る河川水辺の国勢調査が実施されており、最新の平成27年度で4巡目となる。
平成7年度から平成27年度の調査において、両生類は計1目4科6種、爬虫類は計2目8科14種、哺乳類は計5目12科18種が確認されている。

表6.2-8 加古川大堰およびその周辺の両生類の確認状況
<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>無尾目</td>
<td>ヒキガエル科</td>
<td>ニホンヒキガエル</td>
<td>Bufo japonicus japonicus</td>
<td>H7 H12 H17 H27</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>アマガエル科</td>
<td>ニホンアマガエル</td>
<td>Hyla japonica</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>アカガエル科</td>
<td>トノサマガエル</td>
<td>Pelophylax nigromaculatus</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>ウシガエル</td>
<td>Lithobates catesbeianus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>ツチガエル</td>
<td>Glandirana rugosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>ヌマガエル科</td>
<td>ヌマガエル</td>
<td>Fejervarya kawamurai</td>
<td></td>
</tr>
<tr>
<td></td>
<td>合計</td>
<td>6種</td>
<td>4科</td>
<td>6種</td>
<td>6種</td>
</tr>
</tbody>
</table>

※1）分類体系および同定精度は「河川水辺の国勢調査のための生物リスト」（平成27年公表, 水情報国土データ管理センター）に準じた。

表6.2-9 加古川大堰およびその周辺の爬虫類の確認状況
<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>カメ目</td>
<td>イシガメ科</td>
<td>ニホンイシガメ</td>
<td>Mauremys japonica</td>
<td>H7 H12 H17 H27</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>サガメ科</td>
<td>Mauremys reevesii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>ミシシッピアカミミガメ</td>
<td>Trachemys scripta elegans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>スッポン科</td>
<td>Pelodiscus sinensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>ヤモリ科</td>
<td>Gekko japonicus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>ニホントカゲ</td>
<td>Plestiodon japonicus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>スッポン科</td>
<td>Pelodiscus sinensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>ニホンカナヘビ</td>
<td>Takydromus tachydromoides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>ナミヘビ科</td>
<td>シマヘビ</td>
<td>Elaphe quadrivirgata</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>ジムグリ</td>
<td>Euprepiophis conspicillatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>シマグリ</td>
<td>Amphibia vibakari vibakari</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>ヤマガシ</td>
<td>Rhabdophis tigrinus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>クサリヘビ</td>
<td>Gloydius blomhoffii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>クサリヘビ</td>
<td>Gloydius blomhoffii</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>合計</td>
<td>2目</td>
<td>8科</td>
<td>14種</td>
<td>14種</td>
</tr>
</tbody>
</table>

※1）分類体系および同定精度は「河川水辺の国勢調査のための生物リスト」（平成27年公表, 水情報国土データ管理センター）に準じた。
表 6.2-10 加古川大堰およびその周辺の哺乳類の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>モグラ目</td>
<td>トガリネズミ科</td>
<td>ホンシュウジネズミ</td>
<td>Crocidura dsinezumi</td>
<td>H7 H12</td>
</tr>
<tr>
<td>2</td>
<td>モグラ科</td>
<td>コウベモグラ</td>
<td>Mogera wogura</td>
<td>Mogera sp.</td>
<td>H17 H27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mogera属</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>コウモリ目</td>
<td>ヒナコウモリ科</td>
<td>ホンシュウコウモリ</td>
<td>Vespertilionidae</td>
<td>H7 H12</td>
</tr>
<tr>
<td></td>
<td>（翼手目）</td>
<td>ヒナカモリ科</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ネズミ目</td>
<td>ホンダカネズミ科</td>
<td></td>
<td>Apodemus speciosus</td>
<td>H7 H12</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>ホンシュウカヤネズミ</td>
<td>Micromys minutus</td>
<td>hondonis</td>
<td>H17 H27</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>ハツカネズミ科</td>
<td>Mus musculus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Rattus属</td>
<td>Rattus sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>ネズミ科</td>
<td>Muridae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>ヌートリア科</td>
<td>スートリア科</td>
<td>Myocastor coypus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>イヌ科</td>
<td>アライグマ科</td>
<td>Procyn lator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>ホンドキツネ</td>
<td>Vulpes vulpes japonica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>イタチ科</td>
<td>ホンドテン</td>
<td>Martes melampus</td>
<td>melampus</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>チョウセンイタチ</td>
<td>Mustela sibirica</td>
<td>coreana</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>ホンインドイタチ</td>
<td>Mustela itatsi itatsi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>ニホンアナグマ</td>
<td>Meles meles anakuma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>ジャコウネコ科</td>
<td>Paguma larvata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>ウシ目（偶蹄目）</td>
<td>イノシシ科</td>
<td>Sus scrofa leucomystax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>シカ科</td>
<td>ホンシュウジカ</td>
<td>Cervus nippon</td>
<td>centralis</td>
<td></td>
</tr>
</tbody>
</table>

合計 5目 12科 18種

※1) 分類体系および同定精度は「河川水辺の国勢調査のための生物リスト」（平成27年公表、水情報国土デー
タ管理センター）に準じた。
(7) 陸上昆虫類

加古川大堰およびその周辺における陸上昆虫類等の確認状況を表 6.2-11 に示す。
加古川では、平成 4年度より陸上昆虫類等に係る河川水辺の国勢調査が実施されており、
最新の平成 28年度で5巡目となる。
平成4年度から平成28年度の調査において、計15目222科1,490種が確認されている。

表 6.2-11（1） 加古川大堰およびその周辺での陸上昆虫類等の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>クモ目</td>
<td>センショウグモ科</td>
<td>センショウグモ</td>
<td>Ero japonica</td>
<td>●</td>
</tr>
<tr>
<td>2</td>
<td>クモ目</td>
<td>マネキグモ科</td>
<td>マネキグモ</td>
<td>Miagrammopes orientalis</td>
<td>●</td>
</tr>
<tr>
<td>3</td>
<td>ヒメグモ科</td>
<td>アシブトヒメグモ</td>
<td>Anelosimus crassipes</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ヒメグモ科</td>
<td>シロカネイソウロウグモ</td>
<td>Argyrodes bonadea</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ヒメグモ科</td>
<td>ヤホシヒメグモ</td>
<td>Chrysso octomaculata</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ヒメグモ科</td>
<td>ヤマトコノハグモ</td>
<td>Parasteatoda asiatica</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ヒメグモ科</td>
<td>ヒメグモ科</td>
<td>Parasteatoda japonica</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ヒメグモ科</td>
<td>ヒメグモ科</td>
<td>Parasteatoda tepidariorum</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>ヒメグモ科</td>
<td>ヒメグモ科</td>
<td>Parasteatoda sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>河川水辺の国勢調査</td>
<td>サイトウモリヒメグモ</td>
<td>Robertus saitoi</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ヒメグモ科</td>
<td>ヒメグモ科</td>
<td>Theridion pinastri</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Bathyphantes gracilis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Bathyphantes prominens</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Gnathonarium exsiccatum</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Donatia arimaense</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Hyliphantes graminicola</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Meioneta nigra</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Microbathyphantes tatayamensis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Neriene albolimbata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Paikiniana vulgaris</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Ummeliata insecticeps</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Vosmaerinae</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Leucauge biana</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Leucauge subblanda</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Leucaige sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Mophia ciavata</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Pachynagathina quadrimaculata</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Pachynagatha tenella</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Tetragenatha caudicula</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Tetragenatha maxillosa</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Tetragenatha nitens</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Tetragenatha praedonia</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Tetragenatha squamata</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Tetragenatha vermiformis</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Tetragenatha sp.</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Tetragenathinae</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Araneus ventricosus</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Araneus sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Araniella yaginumai</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Araniella sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Argiope amoena</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Argiope bruennichi</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Argiope minuta</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Argiope sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Celycosa octotuberculata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Celycosa oenii</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>サラグモ科</td>
<td>サラグモ科</td>
<td>Celycosa sp.</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>

6-83
表 6.2-11（2） 加川大堰およびその周辺での陸上昆虫類等の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>(クモ目)</td>
<td>(コガネグモ科)</td>
<td>ニホンフシダマン</td>
<td>Cyrtarachne bufo</td>
<td>H4 H6 H12 H18 H28</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td>スズミグモ</td>
<td>Cyrtophora ikomosanensis</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td>クラガデオニグモ</td>
<td>Eriophora sachalinensis</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td>キザハシニグモ</td>
<td>Gribaranea abscessa</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td>ヨツボショウジョウシュウグモ</td>
<td>Hypothesina pygmea</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td>コガネグモダマシ</td>
<td>Larinia argiopiformis</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td>ナウラウラグモ</td>
<td>Larinia sp.</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td>ドヨウオニグモ</td>
<td>Neoscona adianta</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td>コガネオニグモ</td>
<td>Neoscona punctigera</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td>ヤマシロオニグモ</td>
<td>Neoscona scylla</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
<td>サツマノミダマシ</td>
<td>Neoscona scylloides</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td>ヤギコモリグモ</td>
<td>Yaginumia sia</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>コモリグモ科</td>
<td></td>
<td>エビチャコモリグモ</td>
<td>Arctosa ebica</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td>クロココモリグモ</td>
<td>Arctosa subamylacea</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td>シッチコモリグモ</td>
<td>Hygrolycosa umidicola</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td>ハラクロコモリグモ</td>
<td>Lycosa coelestis</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
<td></td>
<td>ウゾウコモリグモ</td>
<td>Pardosa agraria</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td>イタシノハシリグモ</td>
<td>Pardosa isago</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
<td>ハリゲコモリグモ</td>
<td>Pardosa laura</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td>キクリモリグモ</td>
<td>Pardosa pseudomunilata</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
<td>キシベドリモリグモ</td>
<td>Pardosa yaginumai</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td>パドロス</td>
<td>Pardosa sp.</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
<td>パドロス</td>
<td>Pardosa sp.</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td>イワモリコモリグモ</td>
<td>Pirata piratoides</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td>ヒガシモリグモ</td>
<td>Pirata subspiratus</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td>ナパラモリグモ</td>
<td>Pirata yaginumai</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
<td>ヒガシモリグモ</td>
<td>Pirata sp.</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td>アイ литерモリグモ</td>
<td>Tricca japonica</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>キシダグモ科</td>
<td></td>
<td>サオハシリグモ</td>
<td>Dolomedes angustivirgatus</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td>キスハシリグモ</td>
<td>Dolomedes japonicus</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td></td>
<td></td>
<td>スサハシリグモ</td>
<td>Dolomedes saganus</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td>スサハシリグモ</td>
<td>Dolomedes silvicola</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>キアオハシリグモ</td>
<td></td>
<td>Dolomedes sutureus</td>
<td>Dolomedes sp.</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
<td>ハサハシリグモ</td>
<td>Paryneia fascigera</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>キンダマグモ</td>
<td></td>
<td>ピサウラ</td>
<td>Pisaura lama</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>ササグモ科</td>
<td></td>
<td>クリチャササグモ</td>
<td>Oxyopes licenti</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
<td>ササグモ</td>
<td>Oxyopes setatus</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
<td></td>
<td>シボグモ科</td>
<td>Oxyopes sp.</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>タナグモ科</td>
<td></td>
<td>クリタナゲモ</td>
<td>Agelenida sp.</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td>タナゲモ</td>
<td>Allagelena opulent</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>目和名</td>
<td>科和名</td>
<td>種和名</td>
<td>学名</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>（クモ目）</td>
<td>ハタケグモ科</td>
<td>ハタケグモ</td>
<td>Hahnia corticicola</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td></td>
<td>ハグモ科</td>
<td>アシハグモ</td>
<td>Dictyna arundinacea</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td></td>
<td></td>
<td>ハタケグモ</td>
<td>Dictyna telis</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>ガケジグモ科</td>
<td>カモガタヤチグモ</td>
<td>Coelotes yaginumai</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td></td>
<td></td>
<td>シモフリヤチグモ</td>
<td>Itatsina praticoida</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td></td>
<td>ウレフリヤチグモ科</td>
<td>イタチグモ</td>
<td>Phrurolithus coreanus</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td></td>
<td></td>
<td>ウラシマグモ</td>
<td>Phrurolithus nipponicus</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td></td>
<td>フクログモ科</td>
<td>ヤマトコマチグモ</td>
<td>Chiracanthium iassicum</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td>クサラグモ</td>
<td>Chiracanthium sp.</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
<td>マダラフクログモ</td>
<td>Clubiona deletrix</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td></td>
<td></td>
<td>ハマキフクログモ</td>
<td>Clubiona japoniobi</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td>カキフクログモ</td>
<td>Clubiona pseudogermanica</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td></td>
<td></td>
<td>フクログモ</td>
<td>Clubionidae</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td>ワシグモ科</td>
<td>Gnaphosidae</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td>エビグモ科</td>
<td>Philodromus auricomus</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td>シロエビグモ</td>
<td>Philodromus cespitum</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
<td>ハナグモ</td>
<td>Ebrechtella tricuspidata</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td></td>
<td></td>
<td>クロケムリグモ</td>
<td>Zelotes tortuosus</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td>カニグモ科</td>
<td>Xysticus saganus</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
<td></td>
<td>ハエトリグモ科</td>
<td>Xysticus adansoni</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
<td></td>
<td>ハエトリグモ</td>
<td>Heliophanus elongatus</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td></td>
<td></td>
<td>ハエトリグモ</td>
<td>Heliophanus sp.</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td></td>
<td></td>
<td>ハエトリグモ</td>
<td>Heliophanus sp.</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
<td></td>
<td>ハエトリグモ</td>
<td>Heliophanus sp.</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td></td>
<td></td>
<td>ハエトリグモ</td>
<td>Heliophanus sp.</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td></td>
<td></td>
<td>ハエトリグモ</td>
<td>Heliophanus sp.</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td></td>
<td></td>
<td>ハエトリグモ</td>
<td>Heliophanus sp.</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td></td>
<td></td>
<td>ハエトリグモ</td>
<td>Heliophanus sp.</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td>ハエトリグモ</td>
<td>Heliophanus sp.</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td>ハエトリグモ</td>
<td>Heliophanus sp.</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td></td>
<td></td>
<td>ハエトリグモ</td>
<td>Heliophanus sp.</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td></td>
<td></td>
<td>ハエトリグモ</td>
<td>Heliophanus sp.</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td></td>
<td></td>
<td>ハエトリグモ</td>
<td>Heliophanus sp.</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td></td>
<td>ハエトリグモ</td>
<td>Heliophanus sp.</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td></td>
<td></td>
<td>ハエトリグモ</td>
<td>Heliophanus sp.</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td></td>
<td></td>
<td>ハエトリグモ</td>
<td>Heliophanus sp.</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td></td>
<td></td>
<td>ハエトリグモ</td>
<td>Heliophanus sp.</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td></td>
<td></td>
<td>ハエトリグモ</td>
<td>Heliophanus sp.</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td>ハエトリグモ</td>
<td>Heliophanus sp.</td>
<td></td>
</tr>
</tbody>
</table>
表 6.2-11（4） 加古川大堰およびその周辺での陸上昆虫類等の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>クモ目</td>
<td>(ハエトリグモ科)</td>
<td>シラヒゲハエトリ</td>
<td>Monemerus brachygnathus</td>
<td>H4</td>
</tr>
<tr>
<td>122</td>
<td></td>
<td></td>
<td>ヤガタアリグモ</td>
<td>Myrmarachne elongata</td>
<td>H8</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td></td>
<td>タイリクアリグモ</td>
<td>Myrmarachne formicaria</td>
<td>H13</td>
</tr>
<tr>
<td>124</td>
<td></td>
<td></td>
<td>ヤサアリグモ</td>
<td>Myrmarachne kawasaki</td>
<td>H18</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td>クワガタアリグモ</td>
<td>Myrmarachne japonica</td>
<td>H28</td>
</tr>
<tr>
<td>126</td>
<td></td>
<td></td>
<td>Myrmarachne sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td></td>
<td></td>
<td>マガネアサヒハエトリ</td>
<td>Phintella arenicolor</td>
<td>●</td>
</tr>
<tr>
<td>128</td>
<td></td>
<td></td>
<td>キアシハエトリ</td>
<td>Phintella bifurcilinea</td>
<td>●</td>
</tr>
<tr>
<td>129</td>
<td></td>
<td></td>
<td>Phintella sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td>ミスジハエトリ</td>
<td>Flexopus setipes</td>
<td>●</td>
</tr>
<tr>
<td>131</td>
<td></td>
<td></td>
<td>ヤガタハエトリ</td>
<td>Pseudospondylus erratica</td>
<td>●</td>
</tr>
<tr>
<td>132</td>
<td></td>
<td></td>
<td>イナゴハエトリ</td>
<td>Pseudocentrus vulpes</td>
<td>●</td>
</tr>
<tr>
<td>133</td>
<td></td>
<td></td>
<td>カラスハエトリ</td>
<td>Rhene atrata</td>
<td>●</td>
</tr>
<tr>
<td>134</td>
<td></td>
<td></td>
<td>ナカヒラハエトリ</td>
<td>Sibianor kochiensis</td>
<td>●</td>
</tr>
<tr>
<td>135</td>
<td></td>
<td></td>
<td>Sibianor sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>カゲロウ目</td>
<td>(蜉蝣目)</td>
<td>コカゲロウ科</td>
<td>Baetidae</td>
<td>H4</td>
</tr>
<tr>
<td>137</td>
<td></td>
<td></td>
<td>フタバカゲロウ</td>
<td>Baetis japonica</td>
<td>●</td>
</tr>
<tr>
<td>138</td>
<td></td>
<td></td>
<td>ヤマトカゲロウ</td>
<td>Baetis yamamoenis</td>
<td>●</td>
</tr>
<tr>
<td>139</td>
<td></td>
<td></td>
<td>ヒタカゲロウ科</td>
<td>Ecdyonuridae</td>
<td>●</td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
<td>ヒメヒタカゲロウ</td>
<td>Ecdyonurus sp.</td>
<td>●</td>
</tr>
<tr>
<td>141</td>
<td></td>
<td></td>
<td>ハタカゲロウ科</td>
<td>Heptageniidae</td>
<td>●</td>
</tr>
<tr>
<td>142</td>
<td></td>
<td></td>
<td>ハタカゲロウ</td>
<td>Heptagenia sp.</td>
<td>●</td>
</tr>
<tr>
<td>143</td>
<td></td>
<td></td>
<td>ハタカゲロウ科</td>
<td>Heptageniidae</td>
<td>●</td>
</tr>
<tr>
<td>144</td>
<td></td>
<td></td>
<td>ミトキハエトリ</td>
<td>Pseudocentrus subterraneus</td>
<td>●</td>
</tr>
<tr>
<td>145</td>
<td></td>
<td></td>
<td>イガトミハエトリ</td>
<td>Pseudocentrus subterraneus</td>
<td>●</td>
</tr>
<tr>
<td>146</td>
<td></td>
<td></td>
<td>ユッケハエトリ</td>
<td>Pseudocentrus subterraneus</td>
<td>●</td>
</tr>
<tr>
<td>147</td>
<td></td>
<td></td>
<td>ユッケハエトリ</td>
<td>Pseudocentrus subterraneus</td>
<td>●</td>
</tr>
<tr>
<td>148</td>
<td></td>
<td></td>
<td>ユッケハエトリ</td>
<td>Pseudocentrus subterraneus</td>
<td>●</td>
</tr>
<tr>
<td>149</td>
<td></td>
<td></td>
<td>ユッケハエトリ</td>
<td>Pseudocentrus subterraneus</td>
<td>●</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td>ユッケハエトリ</td>
<td>Pseudocentrus subterraneus</td>
<td>●</td>
</tr>
<tr>
<td>151</td>
<td></td>
<td></td>
<td>ユッケハエトリ</td>
<td>Pseudocentrus subterraneus</td>
<td>●</td>
</tr>
<tr>
<td>152</td>
<td></td>
<td></td>
<td>ユッケハエトリ</td>
<td>Pseudocentrus subterraneus</td>
<td>●</td>
</tr>
<tr>
<td>153</td>
<td></td>
<td></td>
<td>ユッケハエトリ</td>
<td>Pseudocentrus subterraneus</td>
<td>●</td>
</tr>
<tr>
<td>154</td>
<td></td>
<td></td>
<td>ユッケハエトリ</td>
<td>Pseudocentrus subterraneus</td>
<td>●</td>
</tr>
<tr>
<td>155</td>
<td></td>
<td></td>
<td>ユッケハエトリ</td>
<td>Pseudocentrus subterraneus</td>
<td>●</td>
</tr>
<tr>
<td>156</td>
<td></td>
<td></td>
<td>ユッケハエトリ</td>
<td>Pseudocentrus subterraneus</td>
<td>●</td>
</tr>
<tr>
<td>157</td>
<td></td>
<td></td>
<td>ユッケハエトリ</td>
<td>Pseudocentrus subterraneus</td>
<td>●</td>
</tr>
<tr>
<td>158</td>
<td></td>
<td></td>
<td>ユッケハエトリ</td>
<td>Pseudocentrus subterraneus</td>
<td>●</td>
</tr>
<tr>
<td>159</td>
<td></td>
<td></td>
<td>ユッケハエトリ</td>
<td>Pseudocentrus subterraneus</td>
<td>●</td>
</tr>
<tr>
<td>160</td>
<td></td>
<td></td>
<td>ユッケハエトリ</td>
<td>Pseudocentrus subterraneus</td>
<td>●</td>
</tr>
<tr>
<td>161</td>
<td></td>
<td></td>
<td>ユッケハエトリ</td>
<td>Pseudocentrus subterraneus</td>
<td>●</td>
</tr>
<tr>
<td>162</td>
<td></td>
<td></td>
<td>ユッケハエトリ</td>
<td>Pseudocentrus subterraneus</td>
<td>●</td>
</tr>
<tr>
<td>163</td>
<td></td>
<td></td>
<td>ユッケハエトリ</td>
<td>Pseudocentrus subterraneus</td>
<td>●</td>
</tr>
</tbody>
</table>

注: 目和名、科和名、種和名、学名、調査年度が記載されている。
表 6.2-11（5） 加古川大堰およびその周辺での陸上昆虫類等の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
</tr>
</thead>
<tbody>
<tr>
<td>164</td>
<td>(カタクリ目)</td>
<td>ウスバキトンボ</td>
<td>Pantaia flavescens</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>コシアキトンボ</td>
<td>Pseuodothems zonata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>コノシメトンボ</td>
<td>Sympertrum baccha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>ナワカナヘ</td>
<td>Sympertrum darwinianum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>マユタテアカネ</td>
<td>Sympertrum eroticum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>アキアカネ</td>
<td>Sympertrum frequens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>ナウンウトンボ</td>
<td>Sympertrum gracile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>ノシメトンボ</td>
<td>Sympertrum infuscatum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>マイコアカネ</td>
<td>Sympertrum kunkeli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>リスアカネ</td>
<td>Sympertrum risi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>(カタクリ目)</td>
<td>チャバネナシキブリ科</td>
<td>Biella nipponica</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>カマキリ目</td>
<td>キタキブリ科</td>
<td>Blattella nipponica</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>ハサミムシ目（亜綱）</td>
<td>ハサミムシ科</td>
<td>Statilia maculata</td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>プラダ目（直翅目）</td>
<td>サズミ科</td>
<td>Anisolabis maritima</td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>キリアシムシ科</td>
<td>Sympetrum darwinianum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>マツマスムシ科</td>
<td>Sympetrum eroticum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>アキアカネ</td>
<td>Sympetrum frequens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>ノシメトンボ</td>
<td>Sympetrum gracie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>マイコアカネ</td>
<td>Sympetrum infuscatum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>リスアカネ</td>
<td>Sympetrum kunkeli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>チャバネナシキブリ科</td>
<td>Biella nipponica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>カマキリ目</td>
<td>キタキブリ科</td>
<td>Blattella nipponica</td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>ハサミムシ目（亜綱）</td>
<td>ハサミムシ科</td>
<td>Statilia maculata</td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>プラダ目（直翅目）</td>
<td>サズミ科</td>
<td>Anisolabis maritima</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>キリアシムシ科</td>
<td>Sympetrum darwinianum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>マツマスムシ科</td>
<td>Sympetrum eroticum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>アキアカネ</td>
<td>Sympetrum frequens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>ノシメトンボ</td>
<td>Sympetrum gracie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>マイコアカネ</td>
<td>Sympetrum infuscatum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>リスアカネ</td>
<td>Sympetrum kunkeli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>(カタクリ目)</td>
<td>チャバネナシキブリ科</td>
<td>Biella nipponica</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>カマキリ目</td>
<td>キタキブリ科</td>
<td>Blattella nipponica</td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>ハサミムシ目（亜綱）</td>
<td>ハサミムシ科</td>
<td>Statilia maculata</td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>プラダ目（直翅目）</td>
<td>サズミ科</td>
<td>Anisolabis maritima</td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>キリアシムシ科</td>
<td>Sympetrum darwinianum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>マツマスムシ科</td>
<td>Sympetrum eroticum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>アキアカネ</td>
<td>Sympetrum frequens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>ノシメトンボ</td>
<td>Sympetrum gracie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>マイコアカネ</td>
<td>Sympetrum infuscatum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>リスアカネ</td>
<td>Sympetrum kunkeli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>(ハス目)</td>
<td>(カゲロウ目)</td>
<td>Xiphosura nipponensis</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>(カゲロウ目)</td>
<td>Loxoblemmus doenitzi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>(カゲロウ目)</td>
<td>Loxoblemmus nipponensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>(カゲロウ目)</td>
<td>Loxoblemmus doonitzi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>(カゲロウ目)</td>
<td>Loxoblemmus nipponensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>(カゲロウ目)</td>
<td>Loxoblemmus doonitzi</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

調査年度： H4 H8 H13 H18 H28
表 6.2-11（6） 加古川大堰およびその周辺での陸上昆虫類等の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>日名</th>
<th>科名</th>
<th>種名</th>
<th>学名</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>パラガオロキ科</td>
<td>ソグレサセコオロキ</td>
<td>Velarifictorus mikado</td>
<td>H4 H5 H6 H7 H8</td>
</tr>
<tr>
<td>211</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Velarifictorus sp.</td>
<td>H8</td>
</tr>
<tr>
<td>212</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Ornebius kanetakei</td>
<td>H8</td>
</tr>
<tr>
<td>213</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Polenomobius flavoantennalis</td>
<td>H13</td>
</tr>
<tr>
<td>214</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Polenomobius mikado</td>
<td>H18</td>
</tr>
<tr>
<td>215</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Pteronomobius omichii</td>
<td>H28</td>
</tr>
<tr>
<td>216</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Pteronomobius yeoensis</td>
<td>H28</td>
</tr>
<tr>
<td>217</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Pteronomobius sp.</td>
<td>H28</td>
</tr>
<tr>
<td>218</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Svistella bifasciata</td>
<td>H28</td>
</tr>
<tr>
<td>219</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Trigonidium japonicum</td>
<td>H28</td>
</tr>
<tr>
<td>220</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Acris cinerea</td>
<td>H28</td>
</tr>
<tr>
<td>221</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Aiolopus thalassinus tamulus</td>
<td>H28</td>
</tr>
<tr>
<td>222</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Locusta migratoria</td>
<td>H28</td>
</tr>
<tr>
<td>223</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Oedaleus infernalis</td>
<td>H28</td>
</tr>
<tr>
<td>224</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Stethophyma magister</td>
<td>H28</td>
</tr>
<tr>
<td>225</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Trilophidia japonica</td>
<td>H28</td>
</tr>
<tr>
<td>226</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Oxya japonica</td>
<td>H28</td>
</tr>
<tr>
<td>227</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Oxya yezoensis</td>
<td>H28</td>
</tr>
<tr>
<td>228</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Patanga japonica</td>
<td>H28</td>
</tr>
<tr>
<td>229</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Shirakiacris shirakii</td>
<td>H28</td>
</tr>
<tr>
<td>230</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Ramulus mikado</td>
<td>H28</td>
</tr>
<tr>
<td>231</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Euparatettix insularis</td>
<td>H28</td>
</tr>
<tr>
<td>232</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Euparatettix sp.</td>
<td>H28</td>
</tr>
<tr>
<td>233</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Formosatettix larvatus</td>
<td>H28</td>
</tr>
<tr>
<td>234</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Tetrix japonica</td>
<td>H28</td>
</tr>
<tr>
<td>235</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Tetrix maculenta</td>
<td>H28</td>
</tr>
<tr>
<td>236</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Tetrix sp.</td>
<td>H28</td>
</tr>
<tr>
<td>237</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Ramulus mikado</td>
<td>H28</td>
</tr>
<tr>
<td>238</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Gomphidae</td>
<td>H28</td>
</tr>
<tr>
<td>239</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Cixiidae</td>
<td>H28</td>
</tr>
<tr>
<td>240</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Euphyas sapporae</td>
<td>H28</td>
</tr>
<tr>
<td>241</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Harmalia sirokata</td>
<td>H28</td>
</tr>
<tr>
<td>242</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Katocteillus spinifrons</td>
<td>H28</td>
</tr>
<tr>
<td>243</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Nilaparvata lugens</td>
<td>H28</td>
</tr>
<tr>
<td>244</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Nilaparvata muiri</td>
<td>H28</td>
</tr>
<tr>
<td>245</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Paradelphacodes paludosa</td>
<td>H28</td>
</tr>
<tr>
<td>246</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Oebis spinulosa</td>
<td>H28</td>
</tr>
<tr>
<td>247</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Paradepagana furcifera</td>
<td>H28</td>
</tr>
<tr>
<td>248</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Tropidocephala brunneipennis</td>
<td>H28</td>
</tr>
<tr>
<td>249</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Delphacidae</td>
<td>H28</td>
</tr>
<tr>
<td>250</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Distantbus politus</td>
<td>H28</td>
</tr>
<tr>
<td>251</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Dictyophora patroiella</td>
<td>H28</td>
</tr>
<tr>
<td>252</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Geisha distinctissima</td>
<td>H28</td>
</tr>
<tr>
<td>253</td>
<td>サラコオロキ科</td>
<td>サラコオロキ</td>
<td>Mimophantia maritima</td>
<td>H28</td>
</tr>
</tbody>
</table>
表 6.2-11（7） 加古川大堰およびその周辺での陸上昆虫類等の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>254</td>
<td>ハゴロモ科</td>
<td>ハゴロモ目</td>
<td>ベッコウハゴロモ</td>
<td>Orosona japonicus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>255</td>
<td>ハゴロモ科</td>
<td>ハゴロモ目</td>
<td>ヒメベッコウハゴロモ</td>
<td>Riciania taeniata</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>256</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Kallitaxila sinica</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>257</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Cryptotympana facialis</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>258</td>
<td>アブラゼミ目</td>
<td>クロアザミ科</td>
<td>クロアザミ</td>
<td>Graupelius nigrofuscata</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>259</td>
<td>サミカブソウ科</td>
<td>ツクツクボウシ目</td>
<td>ツクツクボウシ</td>
<td>Melanops oculiferá</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>260</td>
<td>サミカブソウ科</td>
<td>ツクツクボウシ目</td>
<td>ツクツクボウシ</td>
<td>Platypiera kaempferi</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>261</td>
<td>アワクムシ科</td>
<td>インダウブキ目</td>
<td>インダウブキ</td>
<td>Aphrochera ishidae</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>262</td>
<td>アワクムシ科</td>
<td>インダウブキ目</td>
<td>インダウブキ</td>
<td>Aphrochera major</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>263</td>
<td>サミカブソウ科</td>
<td>ハマベアワフキ目</td>
<td>ハマベアワフキ</td>
<td>Aphrochera maritima</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>264</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Oscarta assimilis</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>265</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Apheliona ferruginea</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>266</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Arboridia apicalis</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>267</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Asthenosoma vittata</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>268</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes diminutus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>269</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>270</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>271</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>272</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>273</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>274</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>275</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>276</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>277</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>278</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>279</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>280</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>281</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>282</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>283</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>284</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>285</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>286</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>287</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>288</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>289</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>290</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>291</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>292</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>293</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>294</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>295</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>296</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>297</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>298</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>299</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>300</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>301</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
<tr>
<td>302</td>
<td>サミカブソウ科</td>
<td>サミカブソウ目</td>
<td>サミカブソウ</td>
<td>Batracoscorpodes mundus</td>
<td>H4 H8 H13 H15 H28</td>
</tr>
</tbody>
</table>

カメムシ目（半翅目）
表 6.2-11 (8) 加古川大堰およびその周辺での陸上昆虫類等の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(カメムシ目(半翅目))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>303</td>
<td>(ヨコバイ科)</td>
<td>霊ショヨコバイ</td>
<td>Xestocephalus japonicus</td>
<td>● ● ●</td>
<td>H4 H8 H13 H18 H28</td>
</tr>
<tr>
<td>304</td>
<td></td>
<td>ヤマトヨコバイ</td>
<td>Yamatomotettix flavovittatus</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>305</td>
<td></td>
<td>ヤノトガリヨコバイ</td>
<td>Yanoccephalus yanonis</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>306</td>
<td></td>
<td>ヨコバイ科</td>
<td>Aphididae sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>307</td>
<td>サシガメ科</td>
<td>サシガメ科</td>
<td>Peirates breviscutum</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>308</td>
<td></td>
<td>ヤノトガリヨコバイ</td>
<td>Yanocephalus yanonis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>309</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates cinctiventris</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates turpis</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>311</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates armatissimus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>312</td>
<td>サシガメ科</td>
<td>ポロソトビイロサシガメ</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>313</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>314</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>315</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>316</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>317</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>318</td>
<td>サシガメ科</td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>319</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>320</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>321</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>322</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>323</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>324</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>325</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>326</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>327</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>328</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>329</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>331</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>332</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>333</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>334</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>335</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>336</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>337</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>338</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>339</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>341</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>342</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>343</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>344</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>345</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>346</td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>サシガメ科</td>
<td>Peirates simplus</td>
<td>● ● ●</td>
<td></td>
</tr>
</tbody>
</table>

（カメムシ目(半翅目)) 調査年度No. 目和名 科和名 種和名 学名
<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
</tr>
</thead>
<tbody>
<tr>
<td>347</td>
<td>ホソヘリカメムシ科</td>
<td>ヒメヨキガマスミカメ</td>
<td>Plagiognathus yomogii</td>
<td>●●</td>
</tr>
<tr>
<td>348</td>
<td>ホソヘリカメムシ科</td>
<td>フタトゲムギカスミカメ</td>
<td>Polyommatus pekinensis</td>
<td>● ●</td>
</tr>
<tr>
<td>349</td>
<td>ホソヘリカメムシ科</td>
<td>アカンタコゲウシュカスミカメ</td>
<td>Stenochus japonicus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>350</td>
<td>ホソヘリカメムシ科</td>
<td>ウスモノコトリミガスミカメ</td>
<td>Tyloriiyus apiculis</td>
<td>● ●</td>
</tr>
<tr>
<td>351</td>
<td>ホソヘリカメムシ科</td>
<td>イネホソミドリカスミカメ</td>
<td>Trigonotylus caelestialium</td>
<td>● ●</td>
</tr>
<tr>
<td>352</td>
<td>ホソヘリカメムシ科</td>
<td>フタトゲムギカスミカメ</td>
<td>Stenochus japonicus</td>
<td>●●</td>
</tr>
<tr>
<td>353</td>
<td>ホソヘリカメムシ科</td>
<td>カスミカメムシ科</td>
<td>Miridae</td>
<td>● ●</td>
</tr>
<tr>
<td>354</td>
<td>マキバサシガメ科</td>
<td>マキバサシガメ科</td>
<td>Nabis kinbergii</td>
<td>● ●</td>
</tr>
<tr>
<td>355</td>
<td>マキバサシガメ科</td>
<td>ハネナガマキバサシガメ</td>
<td>Nabis stenoferus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>356</td>
<td>マキバサシガメ科</td>
<td>ヒソホシカメムシ科</td>
<td>Physopelta parviceps</td>
<td>● ● ●</td>
</tr>
<tr>
<td>357</td>
<td>マキバサシガメ科</td>
<td>オオホシカメムシ</td>
<td>Physopelta apicalis</td>
<td>● ● ●</td>
</tr>
<tr>
<td>358</td>
<td>マキバサシガメ科</td>
<td>イネホソミドリカスミカメ</td>
<td>Trigonotylus tenus</td>
<td>● ●</td>
</tr>
<tr>
<td>359</td>
<td>マキバサシガメ科</td>
<td>ヒソカメムシ科</td>
<td>Stethoconus japonicus</td>
<td>● ●</td>
</tr>
<tr>
<td>360</td>
<td>マキバサシガメ科</td>
<td>オオツマキヘリカメムシ</td>
<td>Hygia lativentris</td>
<td>● ● ●</td>
</tr>
<tr>
<td>361</td>
<td>マキバサシガメ科</td>
<td>ヒメヘリカメムシ科</td>
<td>Liorhyssus hyalinus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>362</td>
<td>マキバサシガメ科</td>
<td>イトカメムシ科</td>
<td>Yemma exilis</td>
<td>● ● ●</td>
</tr>
<tr>
<td>363</td>
<td>マキバサシガメ科</td>
<td>ボコヘリカメムシ</td>
<td>Bactrocera inequitans</td>
<td>● ● ●</td>
</tr>
<tr>
<td>364</td>
<td>マキバサシガメ科</td>
<td>オオツマキヘリカメムシ</td>
<td>Hyria lativentris</td>
<td>● ● ●</td>
</tr>
<tr>
<td>365</td>
<td>マキバサシガメ科</td>
<td>ミヤコヘリカメムシ</td>
<td>Miridae</td>
<td>● ● ●</td>
</tr>
<tr>
<td>366</td>
<td>マキバサシガメ科</td>
<td>フタトゲムギカスミカメ</td>
<td>Stenochus japonicus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>367</td>
<td>マキバサシガメ科</td>
<td>カスミカメムシ科</td>
<td>Miridae</td>
<td>● ● ●</td>
</tr>
<tr>
<td>368</td>
<td>マキバサシガメ科</td>
<td>マキバサシガメ科</td>
<td>Nabis kinbergii</td>
<td>● ● ●</td>
</tr>
<tr>
<td>369</td>
<td>マキバサシガメ科</td>
<td>ハネナガマキバサシガメ</td>
<td>Nabis stenoferus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>370</td>
<td>マキバサシガメ科</td>
<td>ヒソホシカメムシ科</td>
<td>Physopelta parviceps</td>
<td>● ● ●</td>
</tr>
<tr>
<td>371</td>
<td>マキバサシガメ科</td>
<td>オオホシカメムシ</td>
<td>Physopelta apicalis</td>
<td>● ● ●</td>
</tr>
<tr>
<td>372</td>
<td>マキバサシガメ科</td>
<td>マキバサシガメ科</td>
<td>Nabis kinbergii</td>
<td>● ● ●</td>
</tr>
<tr>
<td>373</td>
<td>マキバサシガメ科</td>
<td>マキバサシガメ科</td>
<td>Nabis stenoferus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>374</td>
<td>マキバサシガメ科</td>
<td>ハネナガマキバサシガメ</td>
<td>Nabis stenoferus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>375</td>
<td>マキバサシガメ科</td>
<td>パソヘリカメムシ</td>
<td>Physopelta parviceps</td>
<td>● ● ●</td>
</tr>
<tr>
<td>376</td>
<td>マキバサシガメ科</td>
<td>パソヘリカメムシ</td>
<td>Physopelta parviceps</td>
<td>● ● ●</td>
</tr>
<tr>
<td>377</td>
<td>マキバサシガメ科</td>
<td>マキバサシガメ科</td>
<td>Nabis kinbergii</td>
<td>● ● ●</td>
</tr>
<tr>
<td>378</td>
<td>マキバサシガメ科</td>
<td>ハネナガマキバサシガメ</td>
<td>Nabis stenoferus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>379</td>
<td>マキバサシガメ科</td>
<td>マキバサシガメ科</td>
<td>Nabis kinbergii</td>
<td>● ● ●</td>
</tr>
<tr>
<td>380</td>
<td>マキバサシガメ科</td>
<td>マキバサシガメ科</td>
<td>Nabis stenoferus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>381</td>
<td>マキバサシガメ科</td>
<td>マキバサシガメ科</td>
<td>Nabis kinbergii</td>
<td>● ● ●</td>
</tr>
<tr>
<td>382</td>
<td>マキバサシガメ科</td>
<td>マキバサシガメ科</td>
<td>Nabis stenoferus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>383</td>
<td>マキバサシガメ科</td>
<td>マキバサシガメ科</td>
<td>Nabis kinbergii</td>
<td>● ● ●</td>
</tr>
<tr>
<td>384</td>
<td>マキバサシガメ科</td>
<td>マキバサシガメ科</td>
<td>Nabis stenoferus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>385</td>
<td>マキバサシガメ科</td>
<td>マキバサシガメ科</td>
<td>Nabis kinbergii</td>
<td>● ● ●</td>
</tr>
<tr>
<td>386</td>
<td>マキバサシガメ科</td>
<td>マキバサシガメ科</td>
<td>Nabis stenoferus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>387</td>
<td>マキバサシガメ科</td>
<td>マキバサシガメ科</td>
<td>Nabis kinbergii</td>
<td>● ● ●</td>
</tr>
<tr>
<td>388</td>
<td>マキバサシガメ科</td>
<td>マキバサシガメ科</td>
<td>Nabis stenoferus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>389</td>
<td>マキバサシガメ科</td>
<td>マキバサシガメ科</td>
<td>Nabis kinbergii</td>
<td>● ● ●</td>
</tr>
<tr>
<td>390</td>
<td>マキバサシガメ科</td>
<td>マキバサシガメ科</td>
<td>Nabis stenoferus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>391</td>
<td>マキバサシガメ科</td>
<td>マキバサシガメ科</td>
<td>Nabis kinbergii</td>
<td>● ● ●</td>
</tr>
<tr>
<td>392</td>
<td>マキバサシガメ科</td>
<td>マキバサシガメ科</td>
<td>Nabis stenoferus</td>
<td>● ● ●</td>
</tr>
</tbody>
</table>

調査年度：H4, H8, H13, H18, H28
表 6.2-11（10） 加古川大堰およびその周辺での陸上昆虫類等の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>392</td>
<td>（カメムシ科）</td>
<td>シロヘリナガカメムシ</td>
<td>Panoraurus japonicus</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>393</td>
<td></td>
<td>アカヒョウタンナガカメムシ</td>
<td>Psammotrichus japonicus</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>394</td>
<td></td>
<td>イチゴヒョウタンナガカメムシ</td>
<td>Psammotrichus japonicus</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>395</td>
<td></td>
<td>コバネヒョウタンナガカメムシ</td>
<td>Psammotrichus japonicus</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>396</td>
<td></td>
<td>ジュウツチカメムシ</td>
<td>Stigmatothorax cruciger</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>397</td>
<td></td>
<td>ヒメヒョウタンナガカメムシ</td>
<td>Stigmatothorax sinensis</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>398</td>
<td></td>
<td>ショウヘリナガカメムシ</td>
<td>Stigmatothorax sinensis</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>399</td>
<td></td>
<td>メダカナガカメムシ</td>
<td>Chauliops fallax</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
<td>ツノヒョウタンナガカメムシ</td>
<td>Elasmostethus pubilis</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>401</td>
<td></td>
<td>カナヤシカメムシ</td>
<td>Lygaeidae</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>402</td>
<td></td>
<td>メダカナガカメムシ</td>
<td>Chauliops fallax</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>403</td>
<td></td>
<td>アカヒョウタンナガカメムシ</td>
<td>Psammotrichus japonicus</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>404</td>
<td></td>
<td>シロヘリナガカメムシ</td>
<td>Panoraurus japonicus</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>405</td>
<td></td>
<td>アカヒョウタンナガカメムシ</td>
<td>Psammotrichus japonicus</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>406</td>
<td></td>
<td>タツナガカメムシ</td>
<td>Dysticus baccarum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>407</td>
<td></td>
<td>ヤマヒョウタンナガカメムシ</td>
<td>Psammotrichus japonicus</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>408</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>409</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>410</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>411</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>412</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>413</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>414</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>415</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>416</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>417</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>418</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>419</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>420</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>421</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>422</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>423</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>424</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>425</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>426</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>427</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>428</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>429</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>430</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>431</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>432</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>433</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>434</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>435</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>436</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>437</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>438</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>439</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
<tr>
<td>440</td>
<td></td>
<td>カマガメムシ</td>
<td>Graphosoma rubrolineatum</td>
<td>H8</td>
<td></td>
</tr>
</tbody>
</table>

調査年度はH4、H8、H13、H18、H28からなる。
表 6.2-11 (11) 加古川大堰およびその周辺での陸上昆虫類等の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
</tr>
</thead>
<tbody>
<tr>
<td>441</td>
<td>(カメムシ</td>
<td>(カタピロアメンボ</td>
<td>ナガレカタピロアメンボ</td>
<td>Pseudovelia tibialis</td>
</tr>
<tr>
<td>442</td>
<td>(半翅目</td>
<td>ミズギワカメムシ</td>
<td>コミツガメムシ</td>
<td>Pseudovelia sp.</td>
</tr>
<tr>
<td>443</td>
<td>)</td>
<td>(ウスイロミズギワカメムシ</td>
<td>サギダ目</td>
<td>Salidula saltatoria</td>
</tr>
<tr>
<td>444</td>
<td></td>
<td>(ミズギワカメムシ</td>
<td>ミクロチョウ</td>
<td>Microdonella sp.</td>
</tr>
<tr>
<td>445</td>
<td></td>
<td>(ミズギワカメムシ</td>
<td>コヒバミズムシ</td>
<td>Microdonella sp.</td>
</tr>
<tr>
<td>446</td>
<td></td>
<td>(ミズギワカメムシ</td>
<td>クロヒバミズムシ</td>
<td>Microdonella sp.</td>
</tr>
<tr>
<td>447</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Microdonella sp.</td>
</tr>
<tr>
<td>448</td>
<td></td>
<td>(ミズギワカメムシ</td>
<td>サギダ目</td>
<td>Sigara substriata</td>
</tr>
<tr>
<td>449</td>
<td></td>
<td>(ミズギワカメムシ</td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>450</td>
<td></td>
<td></td>
<td>サギダ目</td>
<td>Laccotrephes japonensis</td>
</tr>
<tr>
<td>451</td>
<td></td>
<td>(ミズギワカメムシ</td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>452</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>453</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>454</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>455</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>456</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>457</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>458</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>459</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>460</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>461</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>462</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>463</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>464</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>465</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>466</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>467</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>468</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>469</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>470</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>471</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>472</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>473</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>474</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>475</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>476</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>477</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>478</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>479</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>480</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>481</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
<tr>
<td>482</td>
<td></td>
<td></td>
<td>コヒバミズムシ</td>
<td>Anisoptera japonica</td>
</tr>
</tbody>
</table>

調査年度：H4 H8 H13 H18 H28
表 6.2-11 (12) 加古川大堰およびその周辺での陸上昆虫類等の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>種和名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>483</td>
<td>セセリチョウ科</td>
<td>Parnara guttata guttata</td>
<td>H4 H8 H13 H18 H28</td>
</tr>
<tr>
<td>484</td>
<td>チャバネセセリ</td>
<td>Pelopidas mathias obterhueri</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>485</td>
<td>オオチャバネセセリ</td>
<td>Polytremis pellicuda pellicuda</td>
<td>●</td>
</tr>
<tr>
<td>486</td>
<td>キサマラセセリ</td>
<td>Polyanthus flavus flavus</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>487</td>
<td>コチャバネセセリ</td>
<td>Thoressa varia</td>
<td>●</td>
</tr>
<tr>
<td>488</td>
<td>スジグロチャバネセセリ</td>
<td>Thyreus leoninus leoninus</td>
<td>●</td>
</tr>
<tr>
<td>489</td>
<td>シジミチョウ科</td>
<td>Glastrina argiolus ludonides</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>490</td>
<td>ウラギンシジミ</td>
<td>Curetis acuta paracuta</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>491</td>
<td>ツバメシジミ</td>
<td>Everes argiades argiades</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>492</td>
<td>ユラノシジミ</td>
<td>Lampros boeticus</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>493</td>
<td>ベニシジミ</td>
<td>Lycaena philas chinensis</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>494</td>
<td>プラジジミ</td>
<td>Agatha arata</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>495</td>
<td>タテハチョウ科</td>
<td>Apatura metis substituta</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>496</td>
<td>ヒガチョウ</td>
<td>Celastrina argiolus ladonides</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>497</td>
<td>ミドリヒョウモン</td>
<td>Argynnis paphia tsushima</td>
<td>●</td>
</tr>
<tr>
<td>498</td>
<td>ツマグロヒョウモン</td>
<td>Argyreus hyperbius hyperbius</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>499</td>
<td>ゴマダラチョウ本土亜種</td>
<td>Hestina persimilis japonica</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>500</td>
<td>ルリタテハ本土亜種</td>
<td>Kaniska canace nojaponicum</td>
<td>●</td>
</tr>
<tr>
<td>501</td>
<td>コガチョウ</td>
<td>Catha sizelis</td>
<td>●</td>
</tr>
<tr>
<td>502</td>
<td>ヒガシマチチョウ</td>
<td>Colias erate poliographa</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>503</td>
<td>クロコノマチョウ</td>
<td>Melanitis ochreoschroedias</td>
<td>●</td>
</tr>
<tr>
<td>504</td>
<td>コジヤメチョウ</td>
<td>Mycalesis franciscus perdiciocas</td>
<td>●</td>
</tr>
<tr>
<td>505</td>
<td>ヒメジャノメ</td>
<td>Mycalesis gotama fulgina</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>506</td>
<td>サトキマダラヒカゲ</td>
<td>Neope goschkevitschi</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>507</td>
<td>キタキチョウ</td>
<td>Eurema mandarina</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>508</td>
<td>コミスジ</td>
<td>Neautis sappho intermedia</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>509</td>
<td>モンキアゲハ</td>
<td>Graphium sarpedon nipponum</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>510</td>
<td>アサギマダラ</td>
<td>Parantica sita niphonica</td>
<td>●</td>
</tr>
<tr>
<td>511</td>
<td>キタテハ</td>
<td>Polygonia c-aureum c-aureum</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>512</td>
<td>ヒメカタナチュラ</td>
<td>Vanessa cardui</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>513</td>
<td>アカナチュラ</td>
<td>Vanessa indica indica</td>
<td>●</td>
</tr>
<tr>
<td>514</td>
<td>ハワナラチョウ</td>
<td>Ypthima argus argus</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>515</td>
<td>ジャコウアガハ本土亜種</td>
<td>Atrophaneura alcinaus alcinaus</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>516</td>
<td>アオスジアガハ</td>
<td>Graphium sarpedon nipponum</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>517</td>
<td>モンキアガハ</td>
<td>Papilio helena nicconicolens</td>
<td>●</td>
</tr>
<tr>
<td>518</td>
<td>キアガハ</td>
<td>Papilio machaon bipacaratocenis</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>519</td>
<td>クロアガハ本土亜種</td>
<td>Papilio prosemor demetrius</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>520</td>
<td>アガハ</td>
<td>Papilio xuthus</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>521</td>
<td>ツマキチョウ本土亜種</td>
<td>Anthocaris scolytus scolytus</td>
<td>● ●</td>
</tr>
<tr>
<td>522</td>
<td>モンキチョウ</td>
<td>Colias erate poliographa</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>523</td>
<td>キタキチョウ</td>
<td>Eurema mandarina</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>524</td>
<td>スジクロクロチョウ</td>
<td>Pieris maieae</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>525</td>
<td>モンシシクロチョウ</td>
<td>Pieris rapae crucivora</td>
<td>● ● ● ● ●</td>
</tr>
</tbody>
</table>

6-94
<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>526</td>
<td>ヒメガリノメイガ</td>
<td>Anania verbascalis</td>
<td></td>
<td>H8</td>
<td>-</td>
</tr>
<tr>
<td>527</td>
<td>ヒメガリノメイガ</td>
<td>Chilo varia</td>
<td></td>
<td>H13</td>
<td>-</td>
</tr>
<tr>
<td>528</td>
<td>ヒメガリノメイガ</td>
<td>Chilo itizeus</td>
<td></td>
<td>H18</td>
<td>-</td>
</tr>
<tr>
<td>529</td>
<td>ヒメガリノメイガ</td>
<td>Chilo nipponella</td>
<td></td>
<td>H28</td>
<td>-</td>
</tr>
<tr>
<td>530</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sauciformis</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>531</td>
<td>ヒメガリノメイガ</td>
<td>Chilo suppressalis</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>532</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>533</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>534</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>535</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>536</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>537</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>538</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>539</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>540</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>541</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>542</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>543</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>544</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>545</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>546</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>547</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>548</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>549</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>550</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>551</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>552</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>553</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>554</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>555</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>556</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>557</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>558</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>559</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>560</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>561</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>562</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>563</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>564</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>565</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>566</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>567</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>568</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>569</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>570</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>571</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>572</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>573</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>574</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>575</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>576</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>577</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>578</td>
<td>ヒメガリノメイガ</td>
<td>Chilo sp.</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>No.</td>
<td>目和名</td>
<td>科和名</td>
<td>種和名</td>
<td>学名</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>579</td>
<td>鳳蝶目</td>
<td>Chiasmia</td>
<td>hebesata</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>580</td>
<td>蝶目</td>
<td>Chlorissa</td>
<td>obliterata</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>581</td>
<td>ノビルス目</td>
<td>Eileia</td>
<td>repugnaria</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>582</td>
<td>コロス目</td>
<td>Comista</td>
<td>procumbaria</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>583</td>
<td>コリトメオオシキツマシキ</td>
<td>Gomostola</td>
<td>subtiliararia</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>584</td>
<td>エンゼルツシマシキ</td>
<td>Heterocotylus</td>
<td>cespitaria</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>585</td>
<td>シロリオオシキツマシキ</td>
<td>Euclides</td>
<td>difficlia</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>586</td>
<td>コロスホシオオシキツマシキ</td>
<td>Hemiostola</td>
<td>veneta</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>587</td>
<td>ユタヒメオオシ</td>
<td>Heterochroa</td>
<td>aristonaria</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>588</td>
<td>ミニシシキ</td>
<td>Idaea</td>
<td>muricata minor</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>589</td>
<td>ミニシシキ</td>
<td>Idaea</td>
<td>trisetata</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>ヤモリシキ</td>
<td>Idiochola</td>
<td>ussuriaria</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>591</td>
<td>ロウヒメオオシキツマシキ</td>
<td>Idia</td>
<td>putata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>592</td>
<td>コリアシキツマシキ</td>
<td>Microtia</td>
<td>characterization</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>593</td>
<td>エンツシマシキ</td>
<td>Odontopera</td>
<td>arida arida</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>594</td>
<td>ノビルス目</td>
<td>Orthosia</td>
<td>obliterata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>595</td>
<td>ミシノキオオシキツマシキ</td>
<td>Plasmorpha</td>
<td>flavicans</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>596</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scoopula</td>
<td>cineraria</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>597</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scoopula</td>
<td>apiongotho</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>598</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scoopula</td>
<td>ignobilis</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>599</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scoopula</td>
<td>nigropunctata</td>
<td>Ilbels</td>
<td>● ●</td>
</tr>
<tr>
<td>600</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scoopula</td>
<td>persona</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>601</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scoopula</td>
<td>superciliata</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>602</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scoopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>603</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>604</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>605</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>606</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>607</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>608</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>609</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>610</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>611</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>612</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>613</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>614</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>615</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>616</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>617</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>618</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>619</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>620</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>621</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>622</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>623</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>624</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>625</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>626</td>
<td>ミシノキオオシキツマシキ</td>
<td>Scopula</td>
<td>sp.</td>
<td>● ●</td>
<td></td>
</tr>
</tbody>
</table>
表 6.2-11 (15) 加古川大堰およびその周辺での陸上昆虫類等の確認様況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
</tr>
</thead>
<tbody>
<tr>
<td>627</td>
<td>(チョウ目)</td>
<td>ドクガ科</td>
<td>モンシロドクガ</td>
<td>Sphrageidus similis ●</td>
</tr>
<tr>
<td>628</td>
<td></td>
<td>キマダラ科</td>
<td>キマダラコヤガ</td>
<td>Acronicta rumicis ●</td>
</tr>
<tr>
<td>629</td>
<td></td>
<td>アカモクメ科</td>
<td>アカモクメヨトウ</td>
<td>Apamea aquila discrepans ●</td>
</tr>
<tr>
<td>630</td>
<td></td>
<td>ハジマ科</td>
<td>ハジマヨトウ</td>
<td>Bambusiphila vulgaris ●●</td>
</tr>
<tr>
<td>631</td>
<td></td>
<td>クララモクメ科</td>
<td>クララモクメヤガ</td>
<td>Axylia putris ●</td>
</tr>
<tr>
<td>632</td>
<td></td>
<td>クリセイム科</td>
<td>クリセイムヨトウ</td>
<td>Athetis albisignata ●</td>
</tr>
<tr>
<td>633</td>
<td></td>
<td>クリセイム科</td>
<td>クリセイムヨトウ</td>
<td>Athetis dissimilis ●</td>
</tr>
<tr>
<td>634</td>
<td></td>
<td>クリセイム科</td>
<td>クリセイムヨトウ</td>
<td>Athetis stellata ● ● ●</td>
</tr>
<tr>
<td>635</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>636</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>637</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>638</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>639</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>640</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>641</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>642</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>643</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>644</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>645</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>646</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>647</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>648</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>649</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>650</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>651</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>652</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>653</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>654</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>655</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>656</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>657</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>658</td>
<td></td>
<td>キタノモモ科</td>
<td>キタノモモハナオイアツバ</td>
<td>Cidariplura signata ●</td>
</tr>
<tr>
<td>659</td>
<td></td>
<td>タバコ科</td>
<td>タバコガ</td>
<td>Helioconia assulta assulta ●</td>
</tr>
<tr>
<td>660</td>
<td></td>
<td>タバコ科</td>
<td>タバコガ</td>
<td>Helioconia assulta assulta ●</td>
</tr>
<tr>
<td>661</td>
<td></td>
<td>タバコ科</td>
<td>タバコガ</td>
<td>Helioconia assulta assulta ●</td>
</tr>
<tr>
<td>662</td>
<td></td>
<td>タバコ科</td>
<td>タバコガ</td>
<td>Helioconia assulta assulta ●</td>
</tr>
<tr>
<td>663</td>
<td></td>
<td>タバコ科</td>
<td>タバコガ</td>
<td>Helioconia assulta assulta ●</td>
</tr>
<tr>
<td>664</td>
<td></td>
<td>タバコ科</td>
<td>タバコガ</td>
<td>Helioconia assulta assulta ●</td>
</tr>
<tr>
<td>665</td>
<td></td>
<td>タバコ科</td>
<td>タバコガ</td>
<td>Helioconia assulta assulta ●</td>
</tr>
<tr>
<td>666</td>
<td></td>
<td>タバコ科</td>
<td>タバコガ</td>
<td>Helioconia assulta assulta ●</td>
</tr>
<tr>
<td>667</td>
<td></td>
<td>タバコ科</td>
<td>タバコガ</td>
<td>Helioconia assulta assulta ●</td>
</tr>
<tr>
<td>668</td>
<td></td>
<td>タバコ科</td>
<td>タバコガ</td>
<td>Helioconia assulta assulta ●</td>
</tr>
<tr>
<td>669</td>
<td></td>
<td>タバコ科</td>
<td>タバコガ</td>
<td>Helioconia assulta assulta ●</td>
</tr>
<tr>
<td>670</td>
<td></td>
<td>タバコ科</td>
<td>タバコガ</td>
<td>Helioconia assulta assulta ●</td>
</tr>
<tr>
<td>671</td>
<td></td>
<td>タバコ科</td>
<td>タバコガ</td>
<td>Helioconia assulta assulta ●</td>
</tr>
<tr>
<td>672</td>
<td></td>
<td>タバコ科</td>
<td>タバコガ</td>
<td>Helioconia assulta assulta ●</td>
</tr>
<tr>
<td>673</td>
<td></td>
<td>タバコ科</td>
<td>タバコガ</td>
<td>Helioconia assulta assulta ●</td>
</tr>
<tr>
<td>674</td>
<td></td>
<td>タバコ科</td>
<td>タバコガ</td>
<td>Helioconia assulta assulta ●</td>
</tr>
<tr>
<td>675</td>
<td></td>
<td>タバコ科</td>
<td>タバコガ</td>
<td>Helioconia assulta assulta ●</td>
</tr>
</tbody>
</table>

調査年度

H4 H8 H13 H18 H28
表 6.2-11（16）加古川大堰およびその周辺での陸上昆虫類等の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
</tr>
</thead>
<tbody>
<tr>
<td>676</td>
<td>（チョウ目）</td>
<td>ヤガ科</td>
<td>ノトラキヨトウ</td>
<td>Mythimna obsoleta</td>
</tr>
<tr>
<td>677</td>
<td></td>
<td></td>
<td>クロシタキヨトウ</td>
<td>Mythimna placidia</td>
</tr>
<tr>
<td>678</td>
<td></td>
<td></td>
<td>マメチャイロキヨトウ</td>
<td>Mythimna stolida</td>
</tr>
<tr>
<td>679</td>
<td></td>
<td></td>
<td>ヤガ科</td>
<td>Mythimna sp.</td>
</tr>
<tr>
<td>680</td>
<td>フタオビコヤガ</td>
<td>Naranga aenescens</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>681</td>
<td>チャオビヨトウ</td>
<td>Niphonyx segregata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>682</td>
<td>ベニモンヨトウ</td>
<td>Oligonyx vulnerata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>683</td>
<td>ヒメエグリバ</td>
<td>Oraesia amargiata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>684</td>
<td>アカエグリバ</td>
<td>Oraesia excavata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>685</td>
<td>モンシロウルマコヤガ</td>
<td>Uruza glaucoptera</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>686</td>
<td>ホシヤガ</td>
<td>Ozarba punctigera</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>687</td>
<td>リサキツマキリアツバ</td>
<td>Pangraptia curtalis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>688</td>
<td>ハツオビコヤガ</td>
<td>Paralleia arctotaenia</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>689</td>
<td>イレシガヤガ</td>
<td>Phyllophila obliterata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>690</td>
<td>サッポロチャイロヨトウ</td>
<td>Sapporia festucae</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>691</td>
<td>クロシタキヨトウ</td>
<td>Sarcopodia illoa</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>692</td>
<td>クロシヒメアツバ</td>
<td>Schrankia costaestrigalis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>693</td>
<td>ミョウヨウフサクビヨトウ</td>
<td>Sideridia mandarina</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>694</td>
<td>オオアカマエアツバ</td>
<td>Simplicia niphona</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>695</td>
<td>ハツオビコヤガ</td>
<td>Sinemus gratiana</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>696</td>
<td>オオカバスシヤガ</td>
<td>Sineugraphe exusta</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>697</td>
<td>スジキリヨトウ</td>
<td>Spodoptera degrawata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>698</td>
<td>ハツオビコヤガ</td>
<td>Spodoptera euryata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>699</td>
<td>ウシショコヤガ</td>
<td>Suga stygia</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>シラフクチバ</td>
<td>Synopodes picta</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>701</td>
<td>キクシンウワバ</td>
<td>Physanopius intermista</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>702</td>
<td>イラクサギンウワバ</td>
<td>Trichopius ni</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>703</td>
<td>ホンドコプリガギヒガ</td>
<td>Zanclognatha curvilinea</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>704</td>
<td>コブガ科</td>
<td>アカマエアオリンガ</td>
<td>Earias pudiciana</td>
<td>●</td>
</tr>
<tr>
<td>705</td>
<td>クロスジョウガ</td>
<td>Megacorypha fumosa</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>706</td>
<td>クロスジョウガ</td>
<td>Melaena tajia</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>707</td>
<td>ガガンボ科</td>
<td>セガカガンボ</td>
<td>Conisia irrorata</td>
<td>●</td>
</tr>
<tr>
<td>708</td>
<td>ガガンボ科</td>
<td>エゾホソガカンボ</td>
<td>Neoprotoma cornicina</td>
<td>●</td>
</tr>
<tr>
<td>709</td>
<td>ガガンボ科</td>
<td>キイマホソガカンボ</td>
<td>Nephrotoma virgata</td>
<td>●</td>
</tr>
<tr>
<td>710</td>
<td>ガガンボ科</td>
<td>タウガガカンボ</td>
<td>Tipula aina</td>
<td>●</td>
</tr>
<tr>
<td>711</td>
<td>ガガンボ科</td>
<td>タウガガカンボ</td>
<td>Tipula nova</td>
<td>●</td>
</tr>
<tr>
<td>712</td>
<td>ガガンボ科</td>
<td>タウガガカンボ</td>
<td>Tipula sp.</td>
<td>●</td>
</tr>
<tr>
<td>713</td>
<td>ガガンボ科</td>
<td>タウガガカンボ</td>
<td>Tipula sp.</td>
<td>●</td>
</tr>
<tr>
<td>714</td>
<td>ガガンボ科</td>
<td>タウガガカンボ</td>
<td>Tipula sp.</td>
<td>●</td>
</tr>
<tr>
<td>715</td>
<td>ガガンボ科</td>
<td>タウガガカンボ</td>
<td>Tipula sp.</td>
<td>●</td>
</tr>
<tr>
<td>716</td>
<td>ガガンボ科</td>
<td>ガガンボ科</td>
<td>Tipula sp.</td>
<td>●</td>
</tr>
<tr>
<td>717</td>
<td>ガガンボ科</td>
<td>ガガンボ科</td>
<td>Tipula sp.</td>
<td>●</td>
</tr>
</tbody>
</table>

調査年度:
H4, H8, H13, H18, H28
<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>218</td>
<td>ミズアブ科</td>
<td>エゾホソルリミズアブ</td>
<td>Actina jezoensis</td>
<td>●</td>
<td>H4 H8</td>
</tr>
<tr>
<td>219</td>
<td></td>
<td>Actina属</td>
<td>Actina sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td></td>
<td>トゲナシミズアブ</td>
<td>Allognosta vagans</td>
<td>●</td>
<td>H13</td>
</tr>
<tr>
<td>221</td>
<td></td>
<td>アメルミズアブ</td>
<td>Hermetia illucens</td>
<td>●</td>
<td>H18</td>
</tr>
<tr>
<td>222</td>
<td></td>
<td>ハラキンミズアブ</td>
<td>Microphorina flaviventris</td>
<td>●</td>
<td>H28</td>
</tr>
<tr>
<td>223</td>
<td></td>
<td>オホタミズアブ</td>
<td>Odontomia kawamurae</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td></td>
<td>ミズアブ</td>
<td>Pecticus matsumurae</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td></td>
<td>コガタミズアブ</td>
<td>Pecticus tenerebrif</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>226</td>
<td></td>
<td>ミズアブ</td>
<td>Stratiomyus japonica</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>227</td>
<td></td>
<td>マルガタアブ</td>
<td>Stonemycia jezoensis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>228</td>
<td></td>
<td>アカウシアブ</td>
<td>Tabanus chrysurus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>229</td>
<td></td>
<td>アブ科</td>
<td>Tabanidae</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td></td>
<td>ムシヒキアブ科</td>
<td>Astochia virgatipes</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>231</td>
<td></td>
<td>カラホゲボソミズヒキ</td>
<td>Caraturus komakadoe</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>232</td>
<td></td>
<td>アオミズヒキ</td>
<td>Gaphipoda chinensis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td></td>
<td>ウズグロムシヒキ</td>
<td>Eutolmus rufibarbis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>234</td>
<td></td>
<td>ナミガタケツリヒキ</td>
<td>Laphria mitsukurii</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>235</td>
<td></td>
<td>シラズヒメミズヒキ</td>
<td>Philineus albiceps</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>236</td>
<td></td>
<td>シラズヒメミズヒキ</td>
<td>Philineus sugatai</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>237</td>
<td></td>
<td>シオヤアブ</td>
<td>Promachus yesonius</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>238</td>
<td></td>
<td>ミシヒキアブ科</td>
<td>Tolmerus hisamatsui</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>239</td>
<td></td>
<td>タカヒラタアブ</td>
<td>Asilidae</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td></td>
<td>ツリアブ科</td>
<td>Ligyra tantalus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>241</td>
<td></td>
<td>スキバツリアブ</td>
<td>Villa limbata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>242</td>
<td></td>
<td>ハナアブ科</td>
<td>Betasyrphus serarius</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>243</td>
<td></td>
<td>サソロヒナガハナアブ</td>
<td>Chrysotoxum sapporense</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>244</td>
<td></td>
<td>ホジタナアブ</td>
<td>Episyrphus balteatus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>245</td>
<td></td>
<td>ドウガネホシメハナアブ</td>
<td>Eristalis aeneus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>246</td>
<td></td>
<td>キシハナアブ</td>
<td>Eristalis guingestriatus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>247</td>
<td></td>
<td>シマハナアブ</td>
<td>Eristalis cerealis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>248</td>
<td></td>
<td>キシウマルハナアブ</td>
<td>Eristalis kyokoeae</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>249</td>
<td></td>
<td>ナタハナアブ</td>
<td>Eristalis tenax</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
<td>マニヒラタアブ</td>
<td>Eumerus japonicus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>251</td>
<td></td>
<td>サッポロヒナガハナアブ</td>
<td>Eumerus sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>252</td>
<td></td>
<td>タイワンオオヒラタアブ</td>
<td>Exepodes confrecter</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>253</td>
<td></td>
<td>アシントハナアブ</td>
<td>Helophilus aristoloides</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>254</td>
<td></td>
<td>カクモノハラフトハナアブ</td>
<td>Malota abdominalis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td></td>
<td>プラヤヒトハナアブ</td>
<td>Malangyna sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td></td>
<td>ホシヤラタアブ</td>
<td>Melanostoma scalare</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>257</td>
<td></td>
<td>メロニカハナアブ</td>
<td>Melanostoma sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>258</td>
<td></td>
<td>シスハナガタハナアブ</td>
<td>Mesembrinus peregrinus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>259</td>
<td></td>
<td>シガクラハナアブ</td>
<td>Paragus fasciatus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td></td>
<td>キアシマゼタハナアブ</td>
<td>Paragus haemorrhous</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>261</td>
<td></td>
<td>サタツハナアブ</td>
<td>Paragus sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>262</td>
<td></td>
<td>オハナアブ</td>
<td>Phytomyza zonata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>263</td>
<td></td>
<td>ハウタナバタモフトハナアブ</td>
<td>Rhinotrogidia rostrata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>264</td>
<td></td>
<td>ミズヒメヒラタアブ</td>
<td>Sphaerophoria indiana</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>265</td>
<td></td>
<td>ホソヒメヒラタアブ</td>
<td>Sphaerophoria macquari</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>266</td>
<td></td>
<td>ツヒメヒラタアブ</td>
<td>Sphaerophoria sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>目和名</td>
<td>科和名</td>
<td>種和名</td>
<td>学名</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>361</td>
<td>サビツギ目</td>
<td>Syrphidae</td>
<td>Syrphus dubius</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>362</td>
<td>サビツギ目</td>
<td>Syrphidae</td>
<td>Syrphus vitripennis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>363</td>
<td>サビツギ目</td>
<td>Xanthandrus coetus</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>364</td>
<td>サビツギ目</td>
<td>Xylota sp.</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>365</td>
<td>サビツギ目</td>
<td>Syrphidae</td>
<td>Syrphus dubius</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>366</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Drosophila annulipes</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>367</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Drosophila busckii</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>368</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Drosophila immigrans</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>369</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Drosophila melanogaster</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>370</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Drosophila rufa</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>371</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Drosophila sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>372</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Liodrosophila aerea</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>373</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Scaptodrosophila coracina</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>374</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Scaptomyza pallida</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>375</td>
<td>サビツギ目</td>
<td>Stegana sp.</td>
<td>Stegana sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>376</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Brachydeutera longipes</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>377</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Ochthera japonica</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>378</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Scatella paludum</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>379</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Setacera breviventris</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>380</td>
<td>サビツギ目</td>
<td>Ephydridae</td>
<td>Ephydridae</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>381</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Sepsis sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>382</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Sepsis monostigma</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>383</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Sepsis sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>384</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Sepsis sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>385</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Sepsis sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>386</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Sepsis sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>387</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Sepsis sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>388</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Sepsis sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>389</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Sepsis sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Sepsis sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>391</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Sepsis sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>392</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Sepsis sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>393</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Sepsis sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>394</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Sepsis sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>395</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Sepsis sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>396</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Sepsis sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>397</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Sepsis sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>398</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Sepsis sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>399</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Sepsis sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Sepsis sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>401</td>
<td>サビツギ目</td>
<td>Drosophilidae</td>
<td>Sepsis sp.</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>

調査年度

H4 H8 H13 H18 H28
表 6.2-11（19） 加古川大堰およびその周辺での陸上昆虫類等の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
</tr>
</thead>
<tbody>
<tr>
<td>802</td>
<td>(イエバエ科)</td>
<td>(イエバエ科)</td>
<td>シリモチハナレメイエバエ</td>
<td>Pygophora confusa</td>
</tr>
<tr>
<td>803</td>
<td>(ニクバエ科)</td>
<td>(ニクバエ科)</td>
<td>シリモチハナレメイエバエ</td>
<td>Pygophora confusa</td>
</tr>
<tr>
<td>804</td>
<td>(ニクバエ科)</td>
<td>(ニクバエ科)</td>
<td>シリモチハナレメイエバエ</td>
<td>Pygophora confusa</td>
</tr>
<tr>
<td>805</td>
<td>(ニクバエ科)</td>
<td>(ニクバエ科)</td>
<td>シリモチハナレメイエバエ</td>
<td>Pygophora confusa</td>
</tr>
<tr>
<td>806</td>
<td>(ニクバエ科)</td>
<td>(ニクバエ科)</td>
<td>シリモチハナレメイエバエ</td>
<td>Pygophora confusa</td>
</tr>
<tr>
<td>807</td>
<td>(ニクバエ科)</td>
<td>(ニクバエ科)</td>
<td>シリモチハナレメイエバエ</td>
<td>Pygophora confusa</td>
</tr>
<tr>
<td>808</td>
<td>(ニクバエ科)</td>
<td>(ニクバエ科)</td>
<td>シリモチハナレメイエバエ</td>
<td>Pygophora confusa</td>
</tr>
<tr>
<td>809</td>
<td>(ニクバエ科)</td>
<td>(ニクバエ科)</td>
<td>シリモチハナレメイエバエ</td>
<td>Pygophora confusa</td>
</tr>
<tr>
<td>810</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>811</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>812</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>813</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>814</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>815</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>816</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>817</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>818</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>819</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>820</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>821</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>822</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>823</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>824</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>825</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>826</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>827</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>828</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>829</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>830</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>831</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>832</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>833</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>834</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>835</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>836</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>837</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>838</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>839</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>840</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>841</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>842</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>843</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>844</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>845</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
<tr>
<td>846</td>
<td>(ホソクビゴミムシ科)</td>
<td>(ホソクビゴミムシ科)</td>
<td>アオバネホソクビゴミムシ</td>
<td>Brachinus aeneicostis</td>
</tr>
</tbody>
</table>
表 6.2-11（20） 加古川大堰およびその周辺での陸上昆虫類等の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
</tr>
</thead>
<tbody>
<tr>
<td>847</td>
<td>(コウチュウ目（鞘翅目）)</td>
<td>ヤコンオサムシ</td>
<td>Carabus yaconinus</td>
<td>H4 H8 H13 H18 H28</td>
</tr>
<tr>
<td>848</td>
<td></td>
<td>アカネアオゴミムシ</td>
<td>Chlaenius absterus</td>
<td></td>
</tr>
<tr>
<td>849</td>
<td></td>
<td>キベリアオゴミムシ</td>
<td>Chlaenius circumductus</td>
<td></td>
</tr>
<tr>
<td>850</td>
<td></td>
<td>ヒメキベリアオゴミムシ</td>
<td>Chlaenius inops</td>
<td></td>
</tr>
<tr>
<td>851</td>
<td></td>
<td>ニセコガシラアオゴミムシ</td>
<td>Chlaenius kurosawai</td>
<td></td>
</tr>
<tr>
<td>852</td>
<td></td>
<td>オオアトボシアオゴミムシ</td>
<td>Chlaenius micans</td>
<td></td>
</tr>
<tr>
<td>853</td>
<td></td>
<td>アトボシアオゴミムシ</td>
<td>Chlaenius naeviger</td>
<td></td>
</tr>
<tr>
<td>854</td>
<td></td>
<td>クロヒゲアオゴミムシ</td>
<td>Chlaenius ocreatus</td>
<td></td>
</tr>
<tr>
<td>855</td>
<td></td>
<td>アオゴミムシ</td>
<td>Chlaenius pallipes</td>
<td></td>
</tr>
<tr>
<td>856</td>
<td></td>
<td>キボシアオゴミムシ</td>
<td>Chlaenius posticalis</td>
<td></td>
</tr>
<tr>
<td>857</td>
<td></td>
<td>ムグリアオゴミムシ</td>
<td>Chlaenius sericiticus</td>
<td></td>
</tr>
<tr>
<td>858</td>
<td></td>
<td>カゴシラアオゴミムシ</td>
<td>Chlaenius virgidens</td>
<td></td>
</tr>
<tr>
<td>859</td>
<td></td>
<td>アトワアオゴミムシ</td>
<td>Chlaenius virgulifer</td>
<td></td>
</tr>
<tr>
<td>860</td>
<td></td>
<td>ホンビミジカゴミムシ</td>
<td>Chlaenius vulgivaga</td>
<td></td>
</tr>
<tr>
<td>861</td>
<td></td>
<td>キベリチビゴモクムシ</td>
<td>Dicheirotrichus tenuimanus</td>
<td></td>
</tr>
<tr>
<td>862</td>
<td></td>
<td>オオスカハラゴミムシ</td>
<td>Diplacodes zealandica</td>
<td></td>
</tr>
<tr>
<td>863</td>
<td></td>
<td>カオチゴムシ</td>
<td>Diplopus caligatus</td>
<td></td>
</tr>
<tr>
<td>864</td>
<td></td>
<td>セキガハラタゴミムシ</td>
<td>Dolichus hatereis</td>
<td></td>
</tr>
<tr>
<td>865</td>
<td></td>
<td>アオハリホソゴミムシ</td>
<td>Drapetia japonica</td>
<td></td>
</tr>
<tr>
<td>866</td>
<td></td>
<td>タケヒメショウタンゴミムシ</td>
<td>Drychius ordinatus</td>
<td></td>
</tr>
<tr>
<td>867</td>
<td></td>
<td>キイロマールゴミムシ</td>
<td>Elaphropus latissimus</td>
<td></td>
</tr>
<tr>
<td>868</td>
<td></td>
<td>オオキベリアオゴミムシ</td>
<td>Epomis nigricans</td>
<td></td>
</tr>
<tr>
<td>869</td>
<td></td>
<td>ウスアカクロゴミムシ</td>
<td>Galerita orientalis</td>
<td></td>
</tr>
<tr>
<td>870</td>
<td></td>
<td>オオゴモクムシ</td>
<td>Harpalus capito</td>
<td></td>
</tr>
<tr>
<td>871</td>
<td></td>
<td>オオオズケゴモクムシ</td>
<td>Harpalus eous</td>
<td></td>
</tr>
<tr>
<td>872</td>
<td></td>
<td>ケガゴモクムシ</td>
<td>Harpalus griseus</td>
<td></td>
</tr>
<tr>
<td>873</td>
<td></td>
<td>ケガゴモクムシ</td>
<td>Harpalus jurecki</td>
<td></td>
</tr>
<tr>
<td>874</td>
<td></td>
<td>クロゴモクムシ</td>
<td>Harpalus nigritans</td>
<td></td>
</tr>
<tr>
<td>875</td>
<td></td>
<td>ニセゴモクムシ</td>
<td>Harpalus pseudophonoideis</td>
<td></td>
</tr>
<tr>
<td>876</td>
<td></td>
<td>ウスネリゴモクムシ</td>
<td>Harpalus simicus</td>
<td></td>
</tr>
<tr>
<td>877</td>
<td></td>
<td>アカヒレガタタツモクムシ</td>
<td>Harpalus tinctulus</td>
<td></td>
</tr>
<tr>
<td>878</td>
<td></td>
<td>コゴモクムシ</td>
<td>Harpalus tridens</td>
<td></td>
</tr>
<tr>
<td>879</td>
<td></td>
<td>ケゴモクムシ</td>
<td>Harpalus vicarius</td>
<td></td>
</tr>
<tr>
<td>880</td>
<td></td>
<td>トクウリゴモクムシ</td>
<td>Heteracris praeco</td>
<td></td>
</tr>
<tr>
<td>881</td>
<td></td>
<td>キソガタアトキリゴミムシ</td>
<td>Lachnolebia cribricollis</td>
<td></td>
</tr>
<tr>
<td>882</td>
<td></td>
<td>カリアアトキリゴミムシ</td>
<td>Lebia viridis</td>
<td></td>
</tr>
<tr>
<td>883</td>
<td></td>
<td>アカアエラゴモクムシ</td>
<td>Leptinus magnus</td>
<td></td>
</tr>
<tr>
<td>884</td>
<td></td>
<td>ルグチアオゴモクムシ</td>
<td>Lithochlaenius nouchii</td>
<td></td>
</tr>
<tr>
<td>885</td>
<td></td>
<td>カワタルタゴミムシ</td>
<td>Madria lxxisi</td>
<td></td>
</tr>
<tr>
<td>886</td>
<td></td>
<td>チャンサクタガゴモクムシ</td>
<td>Oedacantha agrota</td>
<td></td>
</tr>
<tr>
<td>887</td>
<td></td>
<td>クガガタモクムシ</td>
<td>Oxycentrus argutoroides</td>
<td></td>
</tr>
<tr>
<td>888</td>
<td></td>
<td>クロオビコミズギワゴミムシ</td>
<td>Paratachys fasciatus uenoi</td>
<td></td>
</tr>
<tr>
<td>889</td>
<td></td>
<td>ウコースオビコミズギワゴミムシ</td>
<td>Paratachys sericans</td>
<td></td>
</tr>
<tr>
<td>890</td>
<td></td>
<td>ウネノオゴミムシ</td>
<td>Paratachys sannoana</td>
<td></td>
</tr>
<tr>
<td>891</td>
<td></td>
<td>Paratachys submarginalis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>892</td>
<td></td>
<td>クロタカアトキリゴミムシ</td>
<td>Parama cavipes</td>
<td></td>
</tr>
<tr>
<td>893</td>
<td></td>
<td>クロナシヒヨウタンゴミムシ</td>
<td>Perigona nigriceps</td>
<td></td>
</tr>
<tr>
<td>894</td>
<td></td>
<td>ホソヒヨウタンゴミムシ</td>
<td>Perigona japonica</td>
<td></td>
</tr>
<tr>
<td>895</td>
<td></td>
<td>イグチケブカゴミムシ</td>
<td>Phanopiera auripilis</td>
<td></td>
</tr>
<tr>
<td>896</td>
<td></td>
<td>フタホシスジバネゴミムシ</td>
<td>Planetes puncticeps</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>目和名</td>
<td>科和名</td>
<td>種和名</td>
<td>学名</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>896</td>
<td>コウチュウ目（鞘翅目）</td>
<td>オオヒラタゴミムシ</td>
<td>Platynus magnus</td>
<td>●</td>
</tr>
<tr>
<td>897</td>
<td>オオヒラタゴミムシ</td>
<td>Pterostichus fortis</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>898</td>
<td>トックリナガゴミムシ</td>
<td>Pterostichus hastatoroides</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>899</td>
<td>オオクロナガゴミムシ</td>
<td>Pterostichus japonicus</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>900</td>
<td>クロオオナガゴミムシ</td>
<td>Pterostichus longipenis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>901</td>
<td>コホソナガゴミムシ</td>
<td>Pterostichus microphalus</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>902</td>
<td>ノダチナガゴミムシ</td>
<td>Pterostichus noguchii</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>903</td>
<td>キンナガゴミムシ</td>
<td>Pterostichus planicollis</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>904</td>
<td>オオキナガゴミムシ</td>
<td>Pterostichus samurai</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>905</td>
<td>オオヒラタゴミムシ</td>
<td>Pterostichus sphenodirens</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>906</td>
<td>ヒョウゴナガゴミムシ</td>
<td>Pterostichus sphodriformis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>907</td>
<td>アンソソナガゴミムシ</td>
<td>Pterostichus sulcitaris</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>908</td>
<td>ホソヒョウタンゴミムシ</td>
<td>Scarites acutidentis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>909</td>
<td>ナガマメゴモクムシ</td>
<td>Stenolophus agonoides</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>910</td>
<td>ミドリマメゴモクムシ</td>
<td>Stenolophus difficilis</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>911</td>
<td>マメゴモクムシ</td>
<td>Stenolophus fulvifrons</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>912</td>
<td>ツマメゴモクムシ</td>
<td>Stenolophus iridicolor</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>913</td>
<td>ムネマメゴモクムシ</td>
<td>Stenolophus proripinque</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>914</td>
<td>マルガタツヤヒラタゴミムシ</td>
<td>Synuchus arcuaticollis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>915</td>
<td>キアシツヤヒラタゴミムシ</td>
<td>Synuchus callithoraxes</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>916</td>
<td>ヒメツヤヒラタゴミムシ</td>
<td>Synuchus congruus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>917</td>
<td>ヒメツヤヒラタゴミムシ</td>
<td>Synuchus dulcidanus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>918</td>
<td>オオクタモヒラタゴミムシ</td>
<td>Synuchus nitidus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>919</td>
<td>ヒラタゴミズギワゴミムシ</td>
<td>Tachyura exarata</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>920</td>
<td>ウズモノズギワゴミムシ</td>
<td>Tachyura fuscicapua</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>921</td>
<td>ヨツモノズギワゴミムシ</td>
<td>Tachyura laetifica</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>922</td>
<td>ヒラタキイロチビゴミムシ</td>
<td>Trechus aequiparti</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>923</td>
<td>ルイスオオゴミムシ</td>
<td>Trigonotoma lewisi</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>924</td>
<td>ハンミョウ科</td>
<td>Myriochile specularis</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>925</td>
<td>ハンミョウ科</td>
<td>Myriochile specularis</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>926</td>
<td>コヒヤロウゴロロウ</td>
<td>Hydaticus gramineus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>927</td>
<td>ハンミョウ科</td>
<td>Hydroglyphus japonicus</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>928</td>
<td>ハンミョウ科</td>
<td>Peltostylus intermedius</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>929</td>
<td>ガンゴツムスジガムシ科</td>
<td>Berosus lewisi</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>930</td>
<td>ガンゴツムスジガムシ科</td>
<td>Berosus punctipennis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>931</td>
<td>ガンゴツムスジガムシ科</td>
<td>Gercyon laminatus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>932</td>
<td>ガンゴツムスジガムシ科</td>
<td>Gercyon olibrus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>933</td>
<td>ガンゴツムスジガムシ科</td>
<td>Gercyon olibrus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>934</td>
<td>ガンゴツムスジガムシ科</td>
<td>Gercyon olibrus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>935</td>
<td>ガンゴツムスジガムシ科</td>
<td>Gercyon olibrus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>936</td>
<td>ガンゴツムスジガムシ科</td>
<td>Gercyon olibrus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>937</td>
<td>ガンゴツムスジガムシ科</td>
<td>Gercyon olibrus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>938</td>
<td>ガンゴツムスジガムシ科</td>
<td>Gercyon olibrus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>939</td>
<td>ガンゴツムスジガムシ科</td>
<td>Gercyon olibrus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>940</td>
<td>Laccobius属</td>
<td>Laccobius bedeli</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>941</td>
<td>Laccobius属</td>
<td>Laccobius brevitarsis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>942</td>
<td>Laccobius属</td>
<td>Laccobius fragilis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>943</td>
<td>マゲゴムシ</td>
<td>Megamomis fuscus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>944</td>
<td>ヒゲゴムシ</td>
<td>Sternolophus rotipes</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

6-103
<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
</tr>
</thead>
<tbody>
<tr>
<td>945</td>
<td>エンマムシ科</td>
<td>エンマムシ</td>
<td>Merobister jekeli</td>
<td></td>
</tr>
<tr>
<td>946</td>
<td>タマキノコムシ科</td>
<td>Agathidiun属</td>
<td>Agathidiun sp.</td>
<td></td>
</tr>
<tr>
<td>947</td>
<td>コケムシ科</td>
<td>Euconnus属</td>
<td>Euconnus sp.</td>
<td></td>
</tr>
<tr>
<td>948</td>
<td>シデムシ科</td>
<td>Eusilpha jakowlewii similator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>949</td>
<td>シデムシ科</td>
<td>Eusilpha jakowlewii similator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>950</td>
<td>オオモモブトシデムシ属</td>
<td>Necrodes asiaticus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>951</td>
<td>オオヒラタシデムシ属</td>
<td>Necrodes nigricornis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>952</td>
<td>ハネカクシ科</td>
<td>Aleochara属</td>
<td>Aleochara sp.</td>
<td></td>
</tr>
<tr>
<td>953</td>
<td>メリセデムシ科</td>
<td>Aigion grandicollis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>954</td>
<td>古ハネカクシ科</td>
<td>Anotylus amicus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>955</td>
<td>セスジハネカクシ科</td>
<td>Anotylus cognatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>956</td>
<td>カナガシメハネカクシ科</td>
<td>Anotylus laticornis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>957</td>
<td>ウィキョウガシメハネカクシ科</td>
<td>Anotylus lewisius</td>
<td></td>
<td></td>
</tr>
<tr>
<td>958</td>
<td>カンイオシモハネカクシ科</td>
<td>Anotylus sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>959</td>
<td>アヘミカワベハネカクシ科</td>
<td>Astenus brevipes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>960</td>
<td>ハケスネアリヅカムシ科</td>
<td>Astenus sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>961</td>
<td>シデムシ科</td>
<td>Batrisoplisus属</td>
<td>Batrisoplisus sp.</td>
<td></td>
</tr>
<tr>
<td>962</td>
<td>キアシナガハネカクシ科</td>
<td>Bledius curvicornis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>963</td>
<td>キアシナガハネカクシ科</td>
<td>Bledius pallipes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>964</td>
<td>テピオセミノハネカクシ科</td>
<td>Bledius pallipes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>965</td>
<td>カンイオシモハネカクシ科</td>
<td>Carpelimus exiguis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>966</td>
<td>カンイオシモハネカクシ科</td>
<td>Carpelimus siamensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>967</td>
<td>カンイオシモハネカクシ科</td>
<td>Carpelimus vagus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>968</td>
<td>キアシナガハネカクシ科</td>
<td>Gabrouthrus属</td>
<td>Gabrouthrus sp.</td>
<td></td>
</tr>
<tr>
<td>969</td>
<td>キアシナガハネカクシ科</td>
<td>Gyrophaena nipponensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>970</td>
<td>キアシナガハネカクシ科</td>
<td>Lathrobium kobense</td>
<td></td>
<td></td>
</tr>
<tr>
<td>971</td>
<td>キアシナガハネカクシ科</td>
<td>Lathrobium monilicornis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>972</td>
<td>キアシナガハネカクシ科</td>
<td>Lathrobium pallipes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>973</td>
<td>キアシナガハネカクシ科</td>
<td>Leptusa sharpi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>974</td>
<td>カンイオシモハネカクシ科</td>
<td>Lithochoris nigriceps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>975</td>
<td>カンイオシモハネカクシ科</td>
<td>Labirhamoth partitum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>976</td>
<td>カンイオシモハネカクシ科</td>
<td>Megarthrus japonicus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>977</td>
<td>カンイオシモハネカクシ科</td>
<td>Melanebium pumilus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>978</td>
<td>カンイオシモハネカクシ科</td>
<td>Ochthephilum densipenne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>979</td>
<td>カンイオシモハネカクシ科</td>
<td>Ochthephilum kurosai</td>
<td></td>
<td></td>
</tr>
<tr>
<td>980</td>
<td>カンイオシモハネカクシ科</td>
<td>Ochthephilum pectorale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>981</td>
<td>カンイオシモハネカクシ科</td>
<td>Ocyopus gloriosus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>982</td>
<td>カンイオシモハネカクシ科</td>
<td>Ocyopus weissi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>983</td>
<td>カンイオシモハネカクシ科</td>
<td>Oxytelus incisus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>984</td>
<td>カンイオシモハネカクシ科</td>
<td>Oxytelus incisus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>985</td>
<td>カンイオシモハネカクシ科</td>
<td>Oxytelus incisus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>986</td>
<td>カンイオシモハネカクシ科</td>
<td>Oxytelus incisus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>987</td>
<td>カンイオシモハネカクシ科</td>
<td>Oxytelus incisus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>988</td>
<td>カンイオシモハネカクシ科</td>
<td>Oxytelus incisus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>989</td>
<td>カンイオシモハネカクシ科</td>
<td>Oxytelus incisus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 6.2-11(23) 加古川大堰およびその周辺での陸上昆虫類等の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
</tr>
</thead>
<tbody>
<tr>
<td>990</td>
<td>(コンヒム科)</td>
<td>アオバリガタハネカクシ</td>
<td>Paederus fuscipes</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>991</td>
<td>パイナリガタハネカクシ</td>
<td>Paederus sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>992</td>
<td>ダルカクシ科</td>
<td>フィリオニスdiscoideus</td>
<td>Philionthus discoideus</td>
<td>●</td>
</tr>
<tr>
<td>993</td>
<td>オオダウガネラガタハネカクシ</td>
<td>Philionthus lewisius</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>994</td>
<td>テチガレハネカクシ</td>
<td>Philionthus micanticolius</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>995</td>
<td>キアシチビコガシラハネカクシ</td>
<td>Philionthus numata</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>996</td>
<td>カクシコガシラハネカクシ</td>
<td>Philionthus rectangulus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>997</td>
<td>ハネカクシ科</td>
<td>Philionthus wuesthoffii</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>998</td>
<td>アカバクビハネカクシ</td>
<td>Pinophilus rufipennis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>フロカネハネカクシ</td>
<td>Platydracus inornatus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>フロカネハネカクシ</td>
<td>Platydracus operaegus</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>フロカネハネカクシ</td>
<td>Rhabicus tenuis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1002</td>
<td>クヒョウクビハネカクシ</td>
<td>Rugilus rufescens</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>1003</td>
<td>クヒョウクビハネカクシ</td>
<td>Scopaeus virilis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1004</td>
<td>クヒョウクビハネカクシ</td>
<td>Scopaeus sp.</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>1005</td>
<td>クヒョウクビハネカクシ</td>
<td>Scopaeus sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1006</td>
<td>クヒョウクビハネカクシ</td>
<td>Sepedophilus armatus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1007</td>
<td>クヒョウクビハネカクシ</td>
<td>Sepedophilus varicornis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1008</td>
<td>クヒョウクビハネカクシ</td>
<td>Sepedophilus sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>1009</td>
<td>クヒョウクビハネカクシ</td>
<td>Stenus alienus</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>クヒョウクビハネカクシ</td>
<td>Stenus cicidiolepis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1011</td>
<td>クヒョウクビハネカクシ</td>
<td>Thiodromus deceptor</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>1012</td>
<td>クヒョウクビハネカクシ</td>
<td>Thiodromus japonicus</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>1013</td>
<td>クヒョウクビハネカクシ</td>
<td>Xantholinus cunctator</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1014</td>
<td>マルハナノミマシシ</td>
<td>Eucinetus hemorrhostalis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1015</td>
<td>マルハナノミ科</td>
<td>Consothyon consobrinus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1016</td>
<td>マルハナノミ科</td>
<td>Consothyon sp.</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>1017</td>
<td>マルハナノミ科</td>
<td>Scirtes japonicus</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>1018</td>
<td>マルハナノミ科</td>
<td>Scirtes sobrinus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1019</td>
<td>センチョセミ科</td>
<td>Phleotriptus levistriatus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1020</td>
<td>センチョセミ科</td>
<td>Dorcus rectus rectus</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>1021</td>
<td>センチョセミ科</td>
<td>Dorcus titan us pilifer</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>1022</td>
<td>センチョセミ科</td>
<td>Adoretus teniamaquinus</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>1023</td>
<td>センチョセミ科</td>
<td>Anomala albopilosa albopilosa</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>1024</td>
<td>センチョセミ科</td>
<td>Anomala cruciata</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>1025</td>
<td>センチョセミ科</td>
<td>Anomala cruciata</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>1026</td>
<td>センチョセミ科</td>
<td>Anomala cruciata</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>1027</td>
<td>センチョセミ科</td>
<td>Anomala cruciata</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>1028</td>
<td>センチョセミ科</td>
<td>Anomala cruciata</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>1029</td>
<td>センチョセミ科</td>
<td>Anomala cruciata</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>1030</td>
<td>センチョセミ科</td>
<td>Anomala cruciata</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>1031</td>
<td>センチョセミ科</td>
<td>Phalina cruciata</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>1032</td>
<td>センチョセミ科</td>
<td>Blitopertha conspursata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>目和名</td>
<td>科和名</td>
<td>種和名</td>
<td>学名</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>1033</td>
<td>(コガネムシ科)</td>
<td>セマダラコガネ</td>
<td>Blitopertha orientalis</td>
<td>●</td>
</tr>
<tr>
<td>1034</td>
<td>カブトムシ科</td>
<td>ヒメサビキコリ</td>
<td>Agrypnus scrofa scrofa</td>
<td>●</td>
</tr>
<tr>
<td>1035</td>
<td>オオクロコガネ</td>
<td>Maladera castanea</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>1036</td>
<td>マンガフトガレムシ科</td>
<td>カラシマガフトガレムシ</td>
<td>Grouvellinus marginatus</td>
<td>●</td>
</tr>
<tr>
<td>1037</td>
<td>カタクリガゼンマグソウ</td>
<td>Maladera renardi</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>1038</td>
<td>ヒメドロムシ科</td>
<td>キリチドロムシ</td>
<td>Ectopria opaca opaca</td>
<td>●</td>
</tr>
<tr>
<td>1039</td>
<td>タマムシ科</td>
<td>クツツガフトガレムシ</td>
<td>Maladera sp.</td>
<td>●</td>
</tr>
<tr>
<td>1040</td>
<td>サザンカハラガセ</td>
<td>Paracylindromorphus japonensis</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>1041</td>
<td>サツマガフトガレムシ科</td>
<td>サツマガフトガレムシ</td>
<td>Maladera sp.</td>
<td>●</td>
</tr>
<tr>
<td>1042</td>
<td>シロテンハナムグリ</td>
<td>Protaetia orientalis submarmorea</td>
<td>●</td>
<td>●● ●● ● ●</td>
</tr>
<tr>
<td>1043</td>
<td>ミシマガフトガレムシ</td>
<td>Psammodius convexus</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>1044</td>
<td>シロテンハナムグリ科</td>
<td>マツタマガフトガレムシ</td>
<td>Maladera japonica</td>
<td>●</td>
</tr>
<tr>
<td>1045</td>
<td>シロテンハナムグリ科</td>
<td>シロテンハナムグリ</td>
<td>Protaetia orientalis submarmorea</td>
<td>●</td>
</tr>
<tr>
<td>1046</td>
<td>チドロムシ科</td>
<td>タケヒガフトガレムシ</td>
<td>Maladera renardi</td>
<td>●</td>
</tr>
<tr>
<td>1047</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1048</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1049</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1050</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1051</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1052</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1053</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1054</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1055</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1056</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1057</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1058</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1059</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1060</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1061</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1062</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1063</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1064</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1065</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1066</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1067</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1068</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1069</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1070</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1071</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1072</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1073</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1074</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1075</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1076</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1077</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1078</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1079</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1080</td>
<td>チドロムシ科</td>
<td>チドロムシ</td>
<td>Limnichus lewisi</td>
<td>●</td>
</tr>
</tbody>
</table>

表 6.2-11(24) 加古川大堰およびその周辺での陸上昆虫類等の確認状況
表 6.2-11(25) 加古川大堰およびその周辺での陸上昆虫等の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1081</td>
<td>(コメツキムシ科)</td>
<td>Agrypnus属</td>
<td>Agrypnus sp.</td>
<td></td>
<td>H4 H8 H13 H18 H28</td>
</tr>
<tr>
<td>1082</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1083</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1084</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1085</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1086</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1087</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1088</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1089</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1090</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1091</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1092</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1093</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1094</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1095</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1096</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1097</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1098</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1099</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1100</td>
<td>(コウチュウ目(鞘翅目))</td>
<td>Asioptera属</td>
<td>Asioptera sp.</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1113</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1116</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>● ● ●</td>
</tr>
</tbody>
</table>

(コメツキムシ科)
<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
</tr>
</thead>
<tbody>
<tr>
<td>1124</td>
<td>(コウチュウ目 (鞘翅目))</td>
<td>ナミテントウ</td>
<td></td>
<td>Harmonia axyridis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ジュウサンホシテントウ</td>
<td></td>
<td>Tredecimpunctata timberlakei</td>
</tr>
<tr>
<td>1126</td>
<td></td>
<td>キヨトンネテントウ</td>
<td></td>
<td>Ileis koebelai</td>
</tr>
<tr>
<td>1127</td>
<td></td>
<td>セスジヒメテントウ</td>
<td></td>
<td>Mephus patagiatus</td>
</tr>
<tr>
<td>1128</td>
<td></td>
<td>アトホシヒメテントウ</td>
<td></td>
<td>Mephus phosphorus</td>
</tr>
<tr>
<td>1129</td>
<td></td>
<td>シコフタホシヒメテントウ</td>
<td></td>
<td>Mephus shikokensis</td>
</tr>
<tr>
<td>1130</td>
<td></td>
<td>ヨツボシテントウ</td>
<td></td>
<td>Phymastomus lewisi</td>
</tr>
<tr>
<td>1131</td>
<td></td>
<td>ヒメカメノコテントウ</td>
<td></td>
<td>Propylea japonica</td>
</tr>
<tr>
<td>1132</td>
<td></td>
<td>ハレヤヒメテントウ</td>
<td></td>
<td>Pseudoscyrnus hareja</td>
</tr>
<tr>
<td>1133</td>
<td></td>
<td>ナガサキヒメテントウ</td>
<td></td>
<td>Pseudoscyrnus nagasakakensis</td>
</tr>
<tr>
<td>1134</td>
<td></td>
<td>クモガタテントウ</td>
<td></td>
<td>Psyllobora vigintimaculata</td>
</tr>
<tr>
<td>1135</td>
<td></td>
<td>ベニモンツヤミジンムシ</td>
<td></td>
<td>Alloparmulus rugosus</td>
</tr>
<tr>
<td>1136</td>
<td></td>
<td>ムクゲミジンムシ</td>
<td></td>
<td>Sericoderus lateralis</td>
</tr>
<tr>
<td>1137</td>
<td></td>
<td>ケンガツヒメマキムシ</td>
<td></td>
<td>Atomaria lewisi</td>
</tr>
<tr>
<td>1138</td>
<td></td>
<td>ミジンムシ科</td>
<td></td>
<td>Ancylopus pictus</td>
</tr>
<tr>
<td>1139</td>
<td></td>
<td>イカリモンテントウダマシ</td>
<td></td>
<td>Mycetina ancoriger</td>
</tr>
<tr>
<td>1140</td>
<td></td>
<td>サモキモドキ</td>
<td></td>
<td>Anadastus atriceps</td>
</tr>
<tr>
<td>1141</td>
<td></td>
<td>ケシキスイ</td>
<td></td>
<td>Carpophilus chalybeus</td>
</tr>
<tr>
<td>1142</td>
<td></td>
<td>ウスチャケシマキムシ</td>
<td></td>
<td>Cortinarius gibbosus</td>
</tr>
<tr>
<td>1143</td>
<td></td>
<td>フタヒメオオキノコ</td>
<td></td>
<td>Dienerella ruficollis</td>
</tr>
<tr>
<td>1144</td>
<td></td>
<td>ヤマトケシマキムシ</td>
<td></td>
<td>Melanophthalma japonica</td>
</tr>
<tr>
<td>1145</td>
<td></td>
<td>スネイムシ科</td>
<td></td>
<td>Monotoma picipes</td>
</tr>
<tr>
<td>1146</td>
<td></td>
<td>ヒラタムシ</td>
<td></td>
<td>Cryptophillus propinquus</td>
</tr>
<tr>
<td>1147</td>
<td></td>
<td>カシタテントウダマシ</td>
<td></td>
<td>Ancylopus pictus</td>
</tr>
<tr>
<td>1148</td>
<td></td>
<td>キサイキスイ</td>
<td></td>
<td>Carpophilus chalybeus</td>
</tr>
<tr>
<td>1149</td>
<td></td>
<td>ユスツツウマキスイ</td>
<td></td>
<td>Cyrtocarphus ferrugineus</td>
</tr>
<tr>
<td>1150</td>
<td></td>
<td>ケシキスイ</td>
<td></td>
<td>Carpophilus chalybeus</td>
</tr>
<tr>
<td>1151</td>
<td></td>
<td>サンギクガタキスイ</td>
<td></td>
<td>Cryptophillus propinquus</td>
</tr>
<tr>
<td>1152</td>
<td></td>
<td>ケンガツヒメマキムシ</td>
<td></td>
<td>Cortinarius gibbosus</td>
</tr>
<tr>
<td>1153</td>
<td></td>
<td>ムネアカヒメマキムシ</td>
<td></td>
<td>Dienerella ruficollis</td>
</tr>
<tr>
<td>1154</td>
<td></td>
<td>ヤマドキ</td>
<td></td>
<td>Monotoma picipes</td>
</tr>
<tr>
<td>1155</td>
<td></td>
<td>ケンガツヒメマキムシ</td>
<td></td>
<td>Cortinarius gibbosus</td>
</tr>
<tr>
<td>1156</td>
<td></td>
<td>ユスツツウマキスイ</td>
<td></td>
<td>Cyrtocarphus ferrugineus</td>
</tr>
<tr>
<td>1157</td>
<td></td>
<td>ケンガツヒメマキスイ</td>
<td></td>
<td>Cortinarius gibbosus</td>
</tr>
<tr>
<td>1158</td>
<td></td>
<td>ノコヒメマキスイ</td>
<td></td>
<td>Monotoma picipes</td>
</tr>
<tr>
<td>1159</td>
<td></td>
<td>ユスツツウマキスイ</td>
<td></td>
<td>Cyrtocarphus ferrugineus</td>
</tr>
<tr>
<td>1160</td>
<td></td>
<td>ヤマドキ</td>
<td></td>
<td>Monotoma picipes</td>
</tr>
<tr>
<td>1161</td>
<td></td>
<td>ヒメムクゲオオキノコ</td>
<td></td>
<td>Dienerella ruficollis</td>
</tr>
<tr>
<td>1162</td>
<td></td>
<td>ネスイムシ科</td>
<td></td>
<td>Monotoma picipes</td>
</tr>
<tr>
<td>1163</td>
<td></td>
<td>ケンガツヒメマキスイ</td>
<td></td>
<td>Cortinarius gibbosus</td>
</tr>
<tr>
<td>1164</td>
<td></td>
<td>ヒメヒメマキスイ</td>
<td></td>
<td>Monotoma picipes</td>
</tr>
<tr>
<td>1165</td>
<td></td>
<td>ノコヒメマキスイ</td>
<td></td>
<td>Monotoma picipes</td>
</tr>
<tr>
<td>1166</td>
<td></td>
<td>ユスツツウマキスイ</td>
<td></td>
<td>Cyrtocarphus ferrugineus</td>
</tr>
<tr>
<td>1167</td>
<td></td>
<td>ヤマドキ</td>
<td></td>
<td>Monotoma picipes</td>
</tr>
<tr>
<td>1168</td>
<td></td>
<td>ヨシヒメンミジテントウ</td>
<td></td>
<td>Cryptophillus propinquus</td>
</tr>
<tr>
<td>1169</td>
<td></td>
<td>ヒメヒメマキスイ</td>
<td></td>
<td>Monotoma picipes</td>
</tr>
<tr>
<td>1170</td>
<td></td>
<td>ネスイムシ科</td>
<td></td>
<td>Monotoma picipes</td>
</tr>
<tr>
<td>1171</td>
<td></td>
<td>ケンガツヒメマキスイ</td>
<td></td>
<td>Cortinarius gibbosus</td>
</tr>
<tr>
<td>No.</td>
<td>目和名</td>
<td>科和名</td>
<td>種和名</td>
<td>学名</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>1172</td>
<td>(コウチュウ目 (鞘翅目))</td>
<td>(ケシキスイ科)</td>
<td>クリイロデオキスイ</td>
<td>Carpophilus marginellus</td>
</tr>
<tr>
<td>1173</td>
<td></td>
<td></td>
<td>ツマチビヒラタケシキスイ</td>
<td>Hyatorpus concolor</td>
</tr>
<tr>
<td>1174</td>
<td></td>
<td></td>
<td>モンシンヒラタケシキスイ</td>
<td>Hyatorpus ocularis</td>
</tr>
<tr>
<td>1175</td>
<td></td>
<td>ハンチビヒラタケシキスイ</td>
<td>Hyatorpus</td>
<td>●</td>
</tr>
<tr>
<td>1176</td>
<td></td>
<td>ヨツボシケシキスイ</td>
<td>Libroderus japonicus</td>
<td>●</td>
</tr>
<tr>
<td>1177</td>
<td></td>
<td>オオドリコウテビケシキスイ</td>
<td>Meligethes morosus</td>
<td>●</td>
</tr>
<tr>
<td>1178</td>
<td></td>
<td>キボシヒラタケシキスイ</td>
<td>Omosita colon</td>
<td>●</td>
</tr>
<tr>
<td>1179</td>
<td></td>
<td>ヘリグロヒラタケシキスイ</td>
<td>Omosita discoides</td>
<td>●</td>
</tr>
<tr>
<td>1180</td>
<td></td>
<td>オオキマダラケシキスイ</td>
<td>Soronia fracta</td>
<td>●</td>
</tr>
<tr>
<td>1181</td>
<td></td>
<td>マルキマダラケシキスイ</td>
<td>Steiridota multiguttata</td>
<td>● ● ●</td>
</tr>
<tr>
<td>1182</td>
<td></td>
<td>ケシキスイ科</td>
<td>Nitidulidae</td>
<td></td>
</tr>
<tr>
<td>1183</td>
<td></td>
<td>エムモンチビヒメハナムシ</td>
<td>Acyonymus polygramma</td>
<td>● ●</td>
</tr>
<tr>
<td>1184</td>
<td></td>
<td>キイロアシナガヒメハナムシ</td>
<td>Augamus nipponicus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>1185</td>
<td></td>
<td>アカマダラケシキスイ</td>
<td>Lasiodactylus pictus</td>
<td></td>
</tr>
<tr>
<td>1186</td>
<td></td>
<td>ヨツボシケシキスイ</td>
<td>Librodor japonicus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>1187</td>
<td></td>
<td>オドリコソウチビケシキスイ</td>
<td>Meligethes morosus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>1188</td>
<td></td>
<td>キボシヒラタケシキスイ</td>
<td>Omosita colon</td>
<td>● ●</td>
</tr>
<tr>
<td>1189</td>
<td></td>
<td>ヘリグロヒラタケシキスイ</td>
<td>Omosita discoides</td>
<td>●</td>
</tr>
<tr>
<td>1190</td>
<td></td>
<td>オオキマダラケシキスイ</td>
<td>Soronia fracta</td>
<td>●</td>
</tr>
<tr>
<td>1191</td>
<td></td>
<td>マルキマダラケシキスイ</td>
<td>Steiridota multiguttata</td>
<td>● ● ●</td>
</tr>
<tr>
<td>1192</td>
<td></td>
<td>ケシキスイ科</td>
<td>Nitidulidae</td>
<td></td>
</tr>
<tr>
<td>1193</td>
<td></td>
<td>ケシキスイ科</td>
<td>Nitidulidae</td>
<td></td>
</tr>
<tr>
<td>1194</td>
<td></td>
<td>キイロアシナガヒメハナムシ</td>
<td>Augamus nipponicus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>1195</td>
<td></td>
<td>アカマダラケシキスイ</td>
<td>Lasiodactylus pictus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>1196</td>
<td></td>
<td>ヨツボシケシキスイ</td>
<td>Librodor japonicus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>1197</td>
<td></td>
<td>ケシキスイ科</td>
<td>Nitidulidae</td>
<td></td>
</tr>
<tr>
<td>1198</td>
<td></td>
<td>ケシキスイ科</td>
<td>Nitidulidae</td>
<td></td>
</tr>
<tr>
<td>1199</td>
<td></td>
<td>ケシキスイ科</td>
<td>Nitidulidae</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td></td>
<td>ケシキスイ科</td>
<td>Nitidulidae</td>
<td></td>
</tr>
<tr>
<td>1201</td>
<td></td>
<td>ケシキスイ科</td>
<td>Nitidulidae</td>
<td></td>
</tr>
<tr>
<td>1202</td>
<td></td>
<td>ケシキスイ科</td>
<td>Nitidulidae</td>
<td></td>
</tr>
<tr>
<td>1203</td>
<td></td>
<td>ケシキスイ科</td>
<td>Nitidulidae</td>
<td></td>
</tr>
<tr>
<td>1204</td>
<td></td>
<td>ケシキスイ科</td>
<td>Nitidulidae</td>
<td></td>
</tr>
<tr>
<td>1205</td>
<td></td>
<td>ケシキスイ科</td>
<td>Nitidulidae</td>
<td></td>
</tr>
<tr>
<td>1206</td>
<td></td>
<td>ケシキスイ科</td>
<td>Nitidulidae</td>
<td></td>
</tr>
<tr>
<td>1207</td>
<td></td>
<td>ケシキスイ科</td>
<td>Nitidulidae</td>
<td></td>
</tr>
<tr>
<td>1208</td>
<td></td>
<td>ケシキスイ科</td>
<td>Nitidulidae</td>
<td></td>
</tr>
<tr>
<td>1209</td>
<td></td>
<td>ケシキスイ科</td>
<td>Nitidulidae</td>
<td></td>
</tr>
<tr>
<td>1210</td>
<td></td>
<td>ケシキスイ科</td>
<td>Nitidulidae</td>
<td></td>
</tr>
<tr>
<td>1211</td>
<td></td>
<td>ケシキスイ科</td>
<td>Nitidulidae</td>
<td></td>
</tr>
<tr>
<td>1212</td>
<td></td>
<td>ケシキスイ科</td>
<td>Nitidulidae</td>
<td></td>
</tr>
<tr>
<td>1213</td>
<td></td>
<td>ケシキスイ科</td>
<td>Nitidulidae</td>
<td></td>
</tr>
<tr>
<td>1214</td>
<td></td>
<td>ケシキスイ科</td>
<td>Nitidulidae</td>
<td></td>
</tr>
<tr>
<td>1215</td>
<td></td>
<td>ケシキスイ科</td>
<td>Nitidulidae</td>
<td></td>
</tr>
</tbody>
</table>

表 6.2-11(27) 加古川大堰およびその周辺での陸上昆虫類等の確認状況
表 6.2-11（28） 加古川大堰およびその周辺での陸上昆虫類等の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
</tr>
</thead>
<tbody>
<tr>
<td>1216</td>
<td>(ゴミムシダマシ科)</td>
<td>(ゴミムシダマシ科)</td>
<td>Gonocephalum terminale</td>
<td>H4</td>
</tr>
<tr>
<td>1217</td>
<td></td>
<td>Gonocephalum sp.</td>
<td>●</td>
<td>H8</td>
</tr>
<tr>
<td>1218</td>
<td>スジゴミシラゴミムシダマシ</td>
<td>Heterotarsus carinula</td>
<td>●</td>
<td>H13</td>
</tr>
<tr>
<td>1219</td>
<td>ベニモンキノコゴミムシダマシ</td>
<td>Platydema subfuscans</td>
<td>●</td>
<td>H18</td>
</tr>
<tr>
<td>1220</td>
<td>キマワリ</td>
<td>Piesiophthalmus nigrocyaneus</td>
<td>●</td>
<td>H28</td>
</tr>
<tr>
<td>1221</td>
<td>コミアゴゴミムシダマシ</td>
<td>Promethis virgipes</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1222</td>
<td>ニガゴミシラゴミシマ</td>
<td>Tetraphyllus lunuliger</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1223</td>
<td>モトヨツゴゴミムシダマシ</td>
<td>Uloma bonica</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1224</td>
<td>オオエグリゴミムシダマシ</td>
<td>Uloma lewisi</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1225</td>
<td>エグリゴミシダマシ</td>
<td>Uloma marseuli</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1226</td>
<td>カミキリムシ科</td>
<td>Uloma bonzica</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1227</td>
<td>ウスバカミキリ</td>
<td>Aegosoma sinicum</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1228</td>
<td>ヤツボシハナカミキリ</td>
<td>Leptura annularis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1229</td>
<td>ヒシカミキリ</td>
<td>Microlera ptinoides</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>ベリギョシゴゴミシラゴミシマ</td>
<td>Nupserha margeritella</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1231</td>
<td>ラマーカミキリ</td>
<td>Paraglenea fortunei</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1232</td>
<td>キクスイカミキリ</td>
<td>Phytoecia rufiventris</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1233</td>
<td>キボシカミキリ</td>
<td>Psacothea hilaris</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1234</td>
<td>ハムシ科</td>
<td>Pterotheca hilaris</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1235</td>
<td>ワモンサビカミキリ</td>
<td>Pterotheca annulata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1236</td>
<td>ペニカミキリ</td>
<td>P. rufiventris</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1237</td>
<td>ヒトオピアラケカミキリ</td>
<td>Rhopaloscelis unifasciatus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1238</td>
<td>クロカミキリ</td>
<td>Spondylis buprestoides</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1239</td>
<td>アカハナカミキリ</td>
<td>Stictoleptura succedanea</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1241</td>
<td>ヒメカズラカミキリ</td>
<td>Altica caerulescens</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1242</td>
<td>アザミカミナリハムシ</td>
<td>Altica cirsicola</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1243</td>
<td>カミキリハムシ</td>
<td>Altica cyanea</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1244</td>
<td>スジカミナリハムシ</td>
<td>Altica latericosta</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1245</td>
<td>アカバナカミナリハムシ</td>
<td>Altica oleracea</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1246</td>
<td>カミナリハムシ</td>
<td>Altica viridicosta</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1247</td>
<td>アリカミナリハムシ</td>
<td>Altica sp.</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1248</td>
<td>サメムシカミナリハムシ</td>
<td>Aspidomorpha indica</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1249</td>
<td>スキバジンガサハムシ</td>
<td>Aspidomorpha transparipennis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1250</td>
<td>ウラカミキリ</td>
<td>Aspidomorpha transparipennis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1251</td>
<td>ウラカミキリ</td>
<td>Basilepta fulvipes</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1252</td>
<td>カズラカミオモムシ</td>
<td>Ceratitis carnea</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1253</td>
<td>クロウリハムシ</td>
<td>C. acuminata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1254</td>
<td>アオバネサルハムシ</td>
<td>Callosobruchus chinensis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1255</td>
<td>ハラカコメヘムシ</td>
<td>Calomoeus cyanus</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1256</td>
<td>ヒメシガハムシ</td>
<td>Cassida fuscata</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1257</td>
<td>カマメハムシ</td>
<td>Cassida nebulosa</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1258</td>
<td>オカボトビハムシ</td>
<td>Ochotocnema basalis</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1259</td>
<td>オオタンポハムシ</td>
<td>Ochotocnema bicolorata</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>

注: 目と科は（）内に示す。
表 6.2-11（29） 加古川大堰およびその周辺での陸上昆虫類等の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1263</td>
<td>（コウチュウ目（鞘翅目））</td>
<td>ウキオウダガネトビハムシ</td>
<td>Chaetocnema concinnicollis</td>
<td>H4 H8 H13 H18 H28</td>
<td></td>
</tr>
<tr>
<td>1264</td>
<td></td>
<td>キシゴトビハムシ</td>
<td>Chaetocnema discreta</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1265</td>
<td></td>
<td>ヒガサゴトビハムシ</td>
<td>Chaetocnema ingenua</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>1266</td>
<td></td>
<td>テンサイヒトビハムシ</td>
<td>Chaetocnema picipes</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>1267</td>
<td></td>
<td>ムクソヒトビハムシ</td>
<td>Chlamisus spilotes</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1268</td>
<td></td>
<td>ヨモギハムシ</td>
<td>Chrysoma aurichelaea</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1269</td>
<td></td>
<td>ヤナギハムシ</td>
<td>Chrysonea sigintipunctata</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1270</td>
<td></td>
<td>ヒトミヒメサルハムシ</td>
<td>Chlopaeus variabilis</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>1271</td>
<td></td>
<td>イソサルハムシ</td>
<td>Chlasoma deuricum</td>
<td>● ●</td>
<td></td>
</tr>
<tr>
<td>1272</td>
<td></td>
<td>スズキモドリトビハムシ</td>
<td>Cryptocnema sahalinesis</td>
<td>● ● ●</td>
<td></td>
</tr>
<tr>
<td>1273</td>
<td></td>
<td>バラリツトビハムシ</td>
<td>Cryptocnema approximatus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1274</td>
<td></td>
<td>タテジギツツハムシ</td>
<td>Cryptocnema microfissus</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1275</td>
<td></td>
<td>クロポミツツハムシ</td>
<td>Cryptocnema signaticaps</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1276</td>
<td></td>
<td>ジュウシホシツツハムシ</td>
<td>Cryptocephalus approximatus</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1277</td>
<td></td>
<td>ジュンサイハムシ</td>
<td>Galerucella nipponensis</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1278</td>
<td></td>
<td>アンプルシハムシ</td>
<td>Galerucella nigrofasciatus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1279</td>
<td></td>
<td>クイナガトビハムシ</td>
<td>Galerucella signaticeps</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1280</td>
<td></td>
<td>ジュウシホシツツハムシ</td>
<td>Galerucella tetradecaspilotus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1281</td>
<td></td>
<td>タテカイツツハムシ</td>
<td>Galerucella vigintipunctata</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1282</td>
<td></td>
<td>タメカイツツハムシ</td>
<td>Galerucella vittata</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1283</td>
<td></td>
<td>クイナガトビハムシ</td>
<td>Galerucella vittata</td>
<td>● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1284</td>
<td></td>
<td>ヒゲカイツツハムシ</td>
<td>Hemipria nigrobilineata</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1285</td>
<td></td>
<td>ホタルハムシ</td>
<td>Hemipyxis plagioderoides</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1286</td>
<td></td>
<td>フタハガイツツハムシ</td>
<td>Heteropterus intermittens</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1287</td>
<td></td>
<td>ヨカラミカイツツハムシ</td>
<td>Heteropterus variabilis</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1288</td>
<td></td>
<td>ヤマハガネサルハムシ</td>
<td>Holcocephalus parvulus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1289</td>
<td></td>
<td>エノキハムシ</td>
<td>Holcocephalus signatus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1290</td>
<td></td>
<td>ヨウシトビハムシ</td>
<td>Holcocephalus tibialis</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1291</td>
<td></td>
<td>ナタハハムシ</td>
<td>Holcocephalus ussuriensis</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1292</td>
<td></td>
<td>パラハハムシ</td>
<td>Holcocephalus xanthocephalus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1293</td>
<td></td>
<td>ピホウサルハムシ</td>
<td>Holcocephalus yamae</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1294</td>
<td></td>
<td>フタハガイツツハムシ</td>
<td>Holcocephalus yamae</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1295</td>
<td></td>
<td>ミナミハムシ</td>
<td>Holcocephalus yamae</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1296</td>
<td></td>
<td>パラハハムシ</td>
<td>Holcocephalus xanthocephalus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1297</td>
<td></td>
<td>ヨウシトビハムシ</td>
<td>Holcocephalus yamae</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1298</td>
<td></td>
<td>ヨウシトビハムシ</td>
<td>Holcocephalus yamae</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1299</td>
<td></td>
<td>ヨウシトビハムシ</td>
<td>Holcocephalus yamae</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td></td>
<td>チャタナガトビハムシ</td>
<td>Longitarsus holsticus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1301</td>
<td></td>
<td>ヨウシトビハムシ</td>
<td>Longitarsus oligotarsus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1302</td>
<td></td>
<td>ヨウシトビハムシ</td>
<td>Longitarsus signatus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1303</td>
<td></td>
<td>ヨウシトビハムシ</td>
<td>Longitarsus ussuriensis</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1304</td>
<td></td>
<td>ヨウシトビハムシ</td>
<td>Longitarsus xanthocephalus</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1305</td>
<td></td>
<td>ヨウシトビハムシ</td>
<td>Longitarsus yamae</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1306</td>
<td></td>
<td>ヨウシトビハムシ</td>
<td>Longitarsus yamae</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1307</td>
<td></td>
<td>ヨウシトビハムシ</td>
<td>Longitarsus yamae</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1308</td>
<td></td>
<td>ヨウシトビハムシ</td>
<td>Longitarsus yamae</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1309</td>
<td></td>
<td>ヨウシトビハムシ</td>
<td>Longitarsus yamae</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>1310</td>
<td></td>
<td>ヨウシトビハムシ</td>
<td>Longitarsus yamae</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>目和名</td>
<td>科和名</td>
<td>種和名</td>
<td>学名</td>
<td>調査年度</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>1311</td>
<td>(ハムシ科)</td>
<td>ムナキリハムシ</td>
<td>Searagdina semiaurantiaca</td>
<td></td>
<td>H4 H8 H13 H18 H28</td>
</tr>
<tr>
<td>1312</td>
<td>(ハムシ科)</td>
<td>イクビマメゾウムシ</td>
<td>Spermophagus rufiventris</td>
<td></td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1313</td>
<td>(ハムシ科)</td>
<td>キロハタノミハムシ</td>
<td>Schaerderibia unicolor</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1314</td>
<td></td>
<td>アラハタノミハムシ</td>
<td>Trachyphthona lewisi</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1315</td>
<td>(ハムシ科)</td>
<td>トピサルハムシ</td>
<td>Trichochrysea japana</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1316</td>
<td>ヒガシガソウムシ科</td>
<td>タキヒガシガソウムシ</td>
<td>Ararecerus coffeae</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1317</td>
<td></td>
<td>ササセマルヒガシガソウムシ</td>
<td>Phloeobius stenus</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1318</td>
<td></td>
<td>ケブカヒガシガソウムシ</td>
<td>Sphobeia risoephuscens</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1319</td>
<td>ホソクチゾウムシ科</td>
<td>オトンブミ科</td>
<td>Auletobius uniformis</td>
<td></td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1320</td>
<td></td>
<td>カシルリチョッキリ</td>
<td>Rhodocyrtus assimilis</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1321</td>
<td></td>
<td>ササセマルヒガシガソウムシ</td>
<td>Phloeobius stenus</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1322</td>
<td></td>
<td>オトンブミ科</td>
<td>Auletobius uniformis</td>
<td></td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1323</td>
<td></td>
<td>キョウセイフルミゾウムシ</td>
<td>Auletobius albofasciatus</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1324</td>
<td></td>
<td>オトンブミ科</td>
<td>Auletobius uniformis</td>
<td></td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1325</td>
<td></td>
<td>キョウセイフルミゾウムシ</td>
<td>Auletobius uniformis</td>
<td></td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1326</td>
<td></td>
<td>タツアマリハムシ</td>
<td>Anthonomus bisignifer</td>
<td></td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1327</td>
<td></td>
<td>エゾヒメゾウムシ</td>
<td>Baris ezoana</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1328</td>
<td></td>
<td>カタミメゾウムシ</td>
<td>Baris orientalis</td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1329</td>
<td></td>
<td>カタミメゾウムシ</td>
<td>Baris orientalis</td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1330</td>
<td></td>
<td>エゾヒメゾウムシ</td>
<td>Baris ezoana</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1331</td>
<td></td>
<td>カタミメゾウムシ</td>
<td>Baris orientalis</td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1332</td>
<td></td>
<td>カタミメゾウムシ</td>
<td>Baris orientalis</td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1333</td>
<td></td>
<td>カタミメゾウムシ</td>
<td>Baris orientalis</td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1334</td>
<td></td>
<td>カタミメゾウムシ</td>
<td>Baris orientalis</td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1335</td>
<td></td>
<td>カタミメゾウムシ</td>
<td>Baris orientalis</td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1336</td>
<td></td>
<td>カタミメゾウムシ</td>
<td>Baris orientalis</td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1337</td>
<td></td>
<td>カタミメゾウムシ</td>
<td>Baris orientalis</td>
<td></td>
<td>● ● ●</td>
</tr>
<tr>
<td>1338</td>
<td></td>
<td>スグリゾウムシ</td>
<td>Pseudocneorhinus bifasciatus</td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1339</td>
<td></td>
<td>ササセマルヒガシガソウムシ</td>
<td>Phloeobius stenus</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>1340</td>
<td></td>
<td>タゾウムシ科</td>
<td>Metiaima cordata</td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1341</td>
<td></td>
<td>タゾウムシ科</td>
<td>Metiaima cordata</td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1342</td>
<td></td>
<td>タゾウムシ科</td>
<td>Metiaima cordata</td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1343</td>
<td></td>
<td>タゾウムシ科</td>
<td>Metiaima cordata</td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1344</td>
<td></td>
<td>タゾウムシ科</td>
<td>Metiaima cordata</td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1345</td>
<td></td>
<td>タゾウムシ科</td>
<td>Metiaima cordata</td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1346</td>
<td></td>
<td>タゾウムシ科</td>
<td>Metiaima cordata</td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1347</td>
<td></td>
<td>タゾウムシ科</td>
<td>Metiaima cordata</td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1348</td>
<td></td>
<td>タゾウムシ科</td>
<td>Metiaima cordata</td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1349</td>
<td></td>
<td>タゾウムシ科</td>
<td>Metiaima cordata</td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1350</td>
<td></td>
<td>タゾウムシ科</td>
<td>Metiaima cordata</td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1351</td>
<td></td>
<td>タゾウムシ科</td>
<td>Metiaima cordata</td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1352</td>
<td></td>
<td>タゾウムシ科</td>
<td>Metiaima cordata</td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1353</td>
<td></td>
<td>タゾウムシ科</td>
<td>Metiaima cordata</td>
<td></td>
<td>● ●</td>
</tr>
<tr>
<td>1354</td>
<td></td>
<td>タゾウムシ科</td>
<td>Metiaima cordata</td>
<td></td>
<td>●●</td>
</tr>
<tr>
<td>1355</td>
<td></td>
<td>タゾウムシ科</td>
<td>Metiaima cordata</td>
<td></td>
<td>●●</td>
</tr>
<tr>
<td>1356</td>
<td></td>
<td>タゾウムシ科</td>
<td>Metiaima cordata</td>
<td></td>
<td>●●</td>
</tr>
<tr>
<td>1357</td>
<td></td>
<td>タゾウムシ科</td>
<td>Metiaima cordata</td>
<td></td>
<td>●●</td>
</tr>
</tbody>
</table>

表 6.2-11(30) 加古川大堰およびその周辺での陸上昆虫類等の確認状況
<table>
<thead>
<tr>
<th>品目</th>
<th>種類</th>
<th>学名</th>
<th>备考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1356</td>
<td>（コウチュウ目）</td>
<td>ギシギシクチブトサルゾウムシ</td>
<td>Rhinoncus jakovlevi</td>
</tr>
<tr>
<td>1357</td>
<td>コテナクチブトサルゾウムシ</td>
<td>Rhinoncus nigrotibialis</td>
<td></td>
</tr>
<tr>
<td>1358</td>
<td>タデノクチブトサルゾウムシ</td>
<td>Rhinoncus sibiricus</td>
<td></td>
</tr>
<tr>
<td>1359</td>
<td>ホソクチブトサルゾウムシ</td>
<td>Rhinoncus sp.</td>
<td></td>
</tr>
<tr>
<td>1360</td>
<td>ニホンヒメアリ</td>
<td>Monomorium chinense</td>
<td></td>
</tr>
<tr>
<td>1361</td>
<td>オオハリアリ</td>
<td>Brachyponera chinensis</td>
<td></td>
</tr>
<tr>
<td>1362</td>
<td>オニアシブトコバチ</td>
<td>Dirhinus hesperidum</td>
<td></td>
</tr>
<tr>
<td>1363</td>
<td>サイボウ科</td>
<td>クロバネセイボウ本土亜種</td>
<td>Chrysis angolensis murasaki</td>
</tr>
<tr>
<td>1364</td>
<td>セイボウ科</td>
<td>クロバネセイボウ本土亜種</td>
<td>Chrysis angolensis murasaki</td>
</tr>
<tr>
<td>1365</td>
<td>キウイムシ科</td>
<td>クロバネセイボウ本土亜種</td>
<td>Chrysis angolensis murasaki</td>
</tr>
<tr>
<td>1366</td>
<td>シベリアカタアリ</td>
<td>Dolichoderus sibiricus</td>
<td></td>
</tr>
<tr>
<td>1367</td>
<td>タデノクチブトサルゾウムシ</td>
<td>Rhinoncus jakovlevi</td>
<td></td>
</tr>
<tr>
<td>1368</td>
<td>コテナクチブトサルゾウムシ</td>
<td>Rhinoncus nigrotibialis</td>
<td></td>
</tr>
<tr>
<td>1369</td>
<td>タデノクチブトサルゾウムシ</td>
<td>Rhinoncus sibiricus</td>
<td></td>
</tr>
<tr>
<td>1370</td>
<td>ホソクチブトサルゾウムシ</td>
<td>Rhinoncus sp.</td>
<td></td>
</tr>
<tr>
<td>1371</td>
<td>ニホンヒメアリ</td>
<td>Monomorium chinense</td>
<td></td>
</tr>
<tr>
<td>1372</td>
<td>オニアシブトコバチ</td>
<td>Dirhinus hesperidum</td>
<td></td>
</tr>
<tr>
<td>1373</td>
<td>サイボウ科</td>
<td>クロバネセイボウ本土亜種</td>
<td>Chrysis angolensis murasaki</td>
</tr>
<tr>
<td>1374</td>
<td>セイボウ科</td>
<td>クロバネセイボウ本土亜種</td>
<td>Chrysis angolensis murasaki</td>
</tr>
<tr>
<td>1375</td>
<td>キウイムシ科</td>
<td>クロバネセイボウ本土亜種</td>
<td>Chrysis angolensis murasaki</td>
</tr>
<tr>
<td>1376</td>
<td>シベリアカタアリ</td>
<td>Dolichoderus sibiricus</td>
<td></td>
</tr>
<tr>
<td>1377</td>
<td>タデノクチブトサルゾウムシ</td>
<td>Rhinoncus jakovlevi</td>
<td></td>
</tr>
<tr>
<td>1378</td>
<td>コテナクチブトサルゾウムシ</td>
<td>Rhinoncus nigrotibialis</td>
<td></td>
</tr>
<tr>
<td>1379</td>
<td>タデノクチブトサルゾウムシ</td>
<td>Rhinoncus sibiricus</td>
<td></td>
</tr>
<tr>
<td>1380</td>
<td>ホソクチブトサルゾウムシ</td>
<td>Rhinoncus sp.</td>
<td></td>
</tr>
<tr>
<td>1381</td>
<td>ニホンヒメアリ</td>
<td>Monomorium chinense</td>
<td></td>
</tr>
<tr>
<td>1382</td>
<td>オニアシブトコバチ</td>
<td>Dirhinus hesperidum</td>
<td></td>
</tr>
<tr>
<td>1383</td>
<td>サイボウ科</td>
<td>クロバネセイボウ本土亜種</td>
<td>Chrysis angolensis murasaki</td>
</tr>
<tr>
<td>1384</td>
<td>セイボウ科</td>
<td>クロバネセイボウ本土亜種</td>
<td>Chrysis angolensis murasaki</td>
</tr>
<tr>
<td>1385</td>
<td>キウイムシ科</td>
<td>クロバネセイボウ本土亜種</td>
<td>Chrysis angolensis murasaki</td>
</tr>
<tr>
<td>1386</td>
<td>シベリアカタアリ</td>
<td>Dolichoderus sibiricus</td>
<td></td>
</tr>
<tr>
<td>1387</td>
<td>サイボウ科</td>
<td>クロバネセイボウ本土亜種</td>
<td>Chrysis angolensis murasaki</td>
</tr>
<tr>
<td>1388</td>
<td>シベリアカタアリ</td>
<td>Dolichoderus sibiricus</td>
<td></td>
</tr>
<tr>
<td>1389</td>
<td>グリーンカタアリ</td>
<td>Grematogaster matsumurai</td>
<td></td>
</tr>
<tr>
<td>1390</td>
<td>クイシテシリアガアリ</td>
<td>Grematogaster nawi</td>
<td></td>
</tr>
<tr>
<td>1391</td>
<td>キシャラアリ</td>
<td>Grematogaster osakensis</td>
<td></td>
</tr>
<tr>
<td>1392</td>
<td>タンシリアガアリ</td>
<td>Grematogaster teranishi</td>
<td></td>
</tr>
<tr>
<td>1393</td>
<td>シベリアカタアリ</td>
<td>Dolichoderus sibiricus</td>
<td></td>
</tr>
<tr>
<td>1394</td>
<td>タンシリアガアリ</td>
<td>Grematogaster osakensis</td>
<td></td>
</tr>
<tr>
<td>1395</td>
<td>シベリアカタアリ</td>
<td>Dolichoderus sibiricus</td>
<td></td>
</tr>
<tr>
<td>1396</td>
<td>クイシテシリアガアリ</td>
<td>Grematogaster teranishi</td>
<td></td>
</tr>
<tr>
<td>1397</td>
<td>エラボウガアリ</td>
<td>Formica hayashi</td>
<td></td>
</tr>
<tr>
<td>1398</td>
<td>エラボウガアリ</td>
<td>Formica japonica</td>
<td></td>
</tr>
<tr>
<td>1399</td>
<td>エラボウガアリ</td>
<td>Formica japonica</td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td>エラボウガアリ</td>
<td>Formica japonica</td>
<td></td>
</tr>
</tbody>
</table>
表 6.2-11（32） 加古川大堰およびその周辺での陸上昆虫類等の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>学名</th>
</tr>
</thead>
<tbody>
<tr>
<td>1402</td>
<td>(アリ科)</td>
<td>ヒメアリ</td>
<td>Monomorium intrudens</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1403</td>
<td>(アリ科)</td>
<td>キヨロヒメアリ</td>
<td>Monomorium triviale</td>
<td>●</td>
</tr>
<tr>
<td>1404</td>
<td>(アリ科)</td>
<td>カドフシアリ</td>
<td>Myrmecestus nipponicus</td>
<td>●</td>
</tr>
<tr>
<td>1405</td>
<td>(アリ科)</td>
<td>アメイロアリ</td>
<td>Nylanderia flavipes</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1406</td>
<td>(アリ科)</td>
<td>ヒルアリ</td>
<td>Duhetellus sieberi</td>
<td>●</td>
</tr>
<tr>
<td>1407</td>
<td>(アリ科)</td>
<td>サラアリ</td>
<td>Paraparatrechina sakurae</td>
<td>● ● ●</td>
</tr>
<tr>
<td>1408</td>
<td>(アリ科)</td>
<td>オオウシアリ</td>
<td>Pheidole nodae</td>
<td>●</td>
</tr>
<tr>
<td>1409</td>
<td>(アリ科)</td>
<td>サトウアリ</td>
<td>Polyrhachus samurai</td>
<td>●</td>
</tr>
<tr>
<td>1410</td>
<td>(アリ科)</td>
<td>シロアリ</td>
<td>Pheidole minutula</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1411</td>
<td>(アリ科)</td>
<td>トシウアリ</td>
<td>Solenopsis japonica</td>
<td>● ●</td>
</tr>
<tr>
<td>1412</td>
<td>(アリ科)</td>
<td>ウロコアリ</td>
<td>Strumigenys lewisi</td>
<td>●</td>
</tr>
<tr>
<td>1413</td>
<td>(アリ科)</td>
<td>サネアアリ</td>
<td>Technomyrmex gibbosus</td>
<td>●</td>
</tr>
<tr>
<td>1414</td>
<td>(アリ科)</td>
<td>ムネボソアリ</td>
<td>Temnothorax conspersus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>1415</td>
<td>(アリ科)</td>
<td>ハリガシムネボソアリ</td>
<td>Temnothorax spinosor</td>
<td>●</td>
</tr>
<tr>
<td>1416</td>
<td>(アリ科)</td>
<td>トピヨシワアリ</td>
<td>Tetramorium tsushimae</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1417</td>
<td>(ドロハチ科)</td>
<td>アオフカガリドロハチ本土亜種</td>
<td>Antherhynchium flavomarginatum micado</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1418</td>
<td>(ドロハチ科)</td>
<td>ドラスビオロハチ</td>
<td>Discocerus zonalis</td>
<td>●</td>
</tr>
<tr>
<td>1419</td>
<td>(ドロハチ科)</td>
<td>ヨモトウアリドロハチ</td>
<td>Eumenes fraternulus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>1420</td>
<td>(ドロハチ科)</td>
<td>ミダドロハチドロハチ</td>
<td>Eumenes miciado</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1421</td>
<td>(ドロハチ科)</td>
<td>ムハドロハチドロハチ本土亜種</td>
<td>Eumenes rubronotatus rubronotatus</td>
<td>● ●</td>
</tr>
<tr>
<td>1422</td>
<td>(ドロハチ科)</td>
<td>アオナガドロハチ本土亜種</td>
<td>Euodynerus nicanicus niponicus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>1423</td>
<td>(ドロハチ科)</td>
<td>スズバチ</td>
<td>Dreames decoratus</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1424</td>
<td>(ドロハチ科)</td>
<td>カタクロハチドロハチ</td>
<td>Stenodynerus chinensis kalimowksi</td>
<td>●</td>
</tr>
<tr>
<td>1425</td>
<td>(ドロハチ科)</td>
<td>フトカタハチドロハチ</td>
<td>Stenodynerus hypoglocticus</td>
<td>●</td>
</tr>
<tr>
<td>1426</td>
<td>(ドロハチ科)</td>
<td>キオペドロハチ</td>
<td>Stenodynerus fragaeufeldi</td>
<td>●</td>
</tr>
<tr>
<td>1427</td>
<td>(ドロハチ科)</td>
<td>ムナオハチドロハチ本土亜種</td>
<td>Stenodynerus tokyanus tokyanus</td>
<td>●</td>
</tr>
<tr>
<td>1428</td>
<td>(スズメバチ科)</td>
<td>スネモンアシナガバチ本土亜種</td>
<td>Polistes chinensis antennalis</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1429</td>
<td>(スズメバチ科)</td>
<td>ヤマトレアシナガバチ</td>
<td>Polistes japonicus</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1430</td>
<td>(スズメバチ科)</td>
<td>セアシナガバチ東亜種</td>
<td>Polistes jokahamae jokahamae</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1431</td>
<td>(スズメバチ科)</td>
<td>キアシナガバチ</td>
<td>Polistes nipponesis</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1432</td>
<td>(スズメバチ科)</td>
<td>ヨモアシナガバチ本土亜種</td>
<td>Polistes rothneyi mawsi</td>
<td>●</td>
</tr>
<tr>
<td>1433</td>
<td>(スズメバチ科)</td>
<td>コアシナガバチ</td>
<td>Polistes amelleni</td>
<td>●</td>
</tr>
<tr>
<td>1434</td>
<td>(スズメバチ科)</td>
<td>コガタスズメバチ</td>
<td>Vespa analis</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>1435</td>
<td>(スズメバチ科)</td>
<td>モンスズメバチ</td>
<td>Vespa crabo</td>
<td>●</td>
</tr>
<tr>
<td>1436</td>
<td>(スズメバチ科)</td>
<td>ヒメスズメバチ</td>
<td>Vespa ducaulis</td>
<td>● ● ●</td>
</tr>
<tr>
<td>1437</td>
<td>(スズメバチ科)</td>
<td>オオスズメバチ</td>
<td>Vespa mandarinia</td>
<td>● ● ●</td>
</tr>
<tr>
<td>1438</td>
<td>(スズメバチ科)</td>
<td>キオロスズメバチ</td>
<td>Vespa similis</td>
<td>● ● ●</td>
</tr>
<tr>
<td>1439</td>
<td>(クモバチ科)</td>
<td>オオモンクロクモバチ</td>
<td>Anoplus sammarsiensis</td>
<td>● ● ●</td>
</tr>
<tr>
<td>1440</td>
<td>(クモバチ科)</td>
<td>ヒラカタクモバチ</td>
<td>Aporops japonicus</td>
<td>●</td>
</tr>
<tr>
<td>1441</td>
<td>(クモバチ科)</td>
<td>アオトウクモバチ</td>
<td>Auplopus sp.</td>
<td>●</td>
</tr>
<tr>
<td>1442</td>
<td>(クモバチ科)</td>
<td>モンクモバチ</td>
<td>Metazonellus maculifrons</td>
<td>●</td>
</tr>
<tr>
<td>1443</td>
<td>(クモバチ科)</td>
<td>ベヒョウクモバチ</td>
<td>Gyphononyx fulvognathus</td>
<td>● ● ●</td>
</tr>
<tr>
<td>1444</td>
<td>(クモバチ科)</td>
<td>オオシロクモバチ</td>
<td>Epistyron argenens</td>
<td>● ● ●</td>
</tr>
<tr>
<td>1445</td>
<td>(クモバチ科)</td>
<td>アオトシクモバチ</td>
<td>Paracyphononyx alienus</td>
<td>●</td>
</tr>
<tr>
<td>1446</td>
<td>(クモバチ科)</td>
<td>クモバチ科</td>
<td>Pompilidae</td>
<td>●</td>
</tr>
<tr>
<td>1447</td>
<td>(クモバチ科)</td>
<td>コツツバチ科</td>
<td>Tiphia sp.</td>
<td>● ●</td>
</tr>
<tr>
<td>1448</td>
<td>(クモバチ科)</td>
<td>コツツバチ科</td>
<td>Tiphidae</td>
<td>● ●</td>
</tr>
</tbody>
</table>

調査年度：H4 H6 H13 H18 H28
表 6.2-11 (33) 加古川大堰およびその周辺での陸上昆虫類等の確認状況

1447	(ハチ目)	(腹翅目)	ツシバチ科	ヒメハラナガツシバチ本土亜種	Campsomeriella annulata annulata	●	●	●	●	●
1448	コモンツシバチ	Scolia decorata ventralis	●							
1449	アカスジツシバチ本土亜種	Scolia fascinata fascinata	●							
1450	オオモンツシバチ	Scolia histrionica japonica	●	○	●	●				
1451	キオビツシバチ	Scolia oculata	●	○	●	●				
1452	ギングチバチ科	イワタギングチ本土奄美亜種	Ectemnius schlettereri japonicus	●						
1453	ヒメハヤバチ	Tachytes fruticis	●							
1454	オオハヤバチ本土亜種	Tachytes sinensis sinensis	●							
1455	ナミジガバチモドキ	Trypoxylon petiolatum	●	○	●					
1456	ミツバチモドキ科	ニッポンツツガチナチ	Alysson cameroni	●						
1457	フシダカバチ科	アカアシツチスガリ	Cerceris albofasciata	●						
1458	マルモノツシバチ	Cerceris japonica	●							
1459	アナバチ科	ヤモハヤバチ	Andrena hebes	●						
1460	ミツバチ科	ニホンミツバチ	Aris cerana japonica	●	●	●	●			
1461	セイヨウハナバチ	Apis cerana japonica	●	●	●					
1462	コマルハナバチ本土亜種	Bombus ardens ardens	●							
1463	コバルトハナバチ	Bombus ignitus	●	●						
1464	ニオヒメハナバチ	Andrenahebes	●							
1465	ニオヒメハナバチ科	Andrenidae	●							
1466	ミツバチ科	ミツシバチ	Andrena esakii	●						
1467	ショウヨウハバチ	Apis mellifera	●	●	●					
1468	コハナバチ科	Halictus aerarius	●	●	●	●				
1469	ニオヒメハナバチ	Andrena hebes	●							
1470	ミツバチ科	ミツシバチ	Apis mellifera	●	●	●				
1471	セイヨウハナバチ	Apis cerana japonica	●							
1472	タワリカバチ	Ceratina flavipes	●							
1473	ハミガキバチ	Cerceris japonica	●							
1474	タワリカバチ	Cerceris sp.	●							
1475	ニオヒメハナバチ	Andrena hebes	●							
1476	ニオヒメハナバチ科	Andrenidae	●							
1477	ミツバチ科	ニオヒメハナバチ	Andrena hebes	●						
1478	シオハヤバチ	Aris cerana japonica	●	●	●	●				
1479	ニオヒメハナバチ	Andrena hebes	●							
1480	ミツバチ科	ミツシバチ	Apis mellifera	●	●					
1481	セイヨウハナバチ	Apis cerana japonica	●							
1482	ハミガキバチ	Cerceris japonica	●							
1483	ハミガキバチ	Cerceris sp.	●							
1484	ハミガキバチ	Cerceris sp.	●							
1485	ミツバチ科	ミツバチ	Apis mellifera	●	●					
1486	コハナバチ科	Halictus aerarius	●	●	●	●				
1487	ハミガキバチ	Cerceris japonica	●							
1488	ミツバチ科	ミツバチ	Apis mellifera	●	●					
1489	コハナバチ科	Halictus aerarius	●	●						
1490	オオハナバチ科	Dornia sp.	●							
1491	ヤマトハナバチ	Osmia japonica	●							
1492	フタモンカタコハナバチ	Lasioglossum scitulum	●	●	●					
1493	ハキリバチ科	Lasioglossum sp.	●							
1494	ハキリバチ科	Lasioglossum sp.	●							
1495	ハキリバチ科	Lasioglossum sp.	●							
1496	ハキリバチ科	Lasioglossum sp.	●							
1497	ハキリバチ科	Lasioglossum sp.	●							
1498	ハキリバチ科	Lasioglossum sp.	●							
1499	ハキリバチ科	Lasioglossum sp.	●							

合計 15目 222科 1490種 1490種 431種 736種 662種 782種 714種

※1) 分類体系および同定精度は「河川水辺の国勢調査のための生物リスト」(平成28年公表水情報国土データ管理センター)に準じた。
6.2.4 重要種の概況
加古川大堰およびその周辺において確認された重要種について整理した。なお、重要種の選定基準とカテゴリーは、下記のとおりである。

●文化財保護法
・「文化財保護法」(昭和25年法律第214号)
 「天然記念物」、「特別天然記念物」
・「兵庫県指定文化財」の掲載種
 「天然記念物」

●種の保存法
・「絶滅のおそれのある野生生物の種の保存に関する法律」(平成4年法律第75号)
 「国内希少野生動植物種」：その個体が本邦に生息し又は生育する絶滅のおそれのある野生動植物の種であって、政令で定めるもの
 「緊急指定種」：種の保存を特に緊急に図る必要があると認められた国内希少野生動植物種以外の野生動植物

●環境省 RL
・「環境省レッドリスト2017」(環境省 平成29年3月)
 「絶滅危惧ⅠA類」：ごく近い将来における野生での絶滅の危険性が極めて高いもの
 「絶滅危惧ⅠB類」：ⅠA類ほどではないが、近い将来における野生での絶滅の危険性が高いもの
 「絶滅危惧Ⅱ類」：絶滅の危険が増大している種
 「準絶滅危惧」：存続基盤が脆弱な種
 「情報不足」：評価するだけの情報が不足している種
 「絶滅の恐れのある地域個体群」：地域的に孤立している個体群で、絶滅のおそれが高いもの

●兵庫県 RL
・「兵庫県レッドデータブック2003」(兵庫県 平成15年3月)
・「兵庫県レッドデータブック2010(植物・植物群落)」(兵庫県 平成22年3月)
・「兵庫県レッドデータブック2012(昆虫類)」(兵庫県 平成24年3月)
・「兵庫県レッドデータブック2014(両生類・その他無脊椎動物)」(兵庫県 平成26年3月)
・「兵庫県レッドデータブック2017(哺乳類・爬虫類・両生類・魚類・クモ類)」(兵庫県 平成29年9月)
 「Aランク」：兵庫県内において絶滅の危機に瀕している種など、緊急の保全対策、嚴重な保全対策の必要な種
 「Bランク」：兵庫県内において絶滅の危険が増大している種など、極力生息環境、自生地などの保全が必要な種
 「Cランク」：兵庫県内において存続基盤が脆弱な種
「要注目種」: 最近減少の著しい種、優れた自然環境の指標となる種などの貴重種に準ずる種
「地域限定貴重種」: 兵庫県全域で見ると貴重とはいえないが、兵庫県内の特定の地域においては A、B、C、要注目のいずれかのランクに該当する程度の貴重性を有する種
「要調査種」: 本県での生息・生育の実態がほとんどわからないことなどにより、現在の知見では貴重性の評価ができないが、今後の調査によっては貴重種となる可能性のある種
(1) 魚類
加古川大堰およびその周辺における魚類の重要種の確認状況を表 6.2-12に示す。
加古川大堰およびその周辺において確認された重要種は、平成2年度から平成24年度の調査において、ヤリタナゴ、アカザ、オオヨシノボリ等の計6目7科16種であった。
選定基準別にみると、環境省RLでは、絶滅危惧IA類がイチモンジタナゴの1種、絶滅危惧IB類がニホンウナギの1種、絶滅危惧II類がゼゼラ等の4種、準絶滅危惧がヤリタナゴ等の5種、情報不足がドジョウ1種の計12種であった。兵庫県RLでは、Bランクがヤリタナゴ等の2種、Cランクがニホンウナギ等の6種、要注目種がドジョウ等の2種、地域限定貴重種がアカザの1種、要調査種がイチモンジタナゴ等の4種の計15種であった。

ニホンウナギ
H24年6月撮影 St.1
（加古川橋）

ドジョウ
24年8月撮影 St.1
（加古川橋）

カワヒガイ
24年10月撮影 St.5
（美嚢川合流）

アブラハヤ
H24年8月撮影 St.5
（美嚢川合流）

アブラボテ
H24年10月撮影 St.7
（栗田橋）

スジシマドジョウ中型種
H24年6月撮影 St.7
（栗田橋）

アカザ
H24年6月撮影 St.7
（栗田橋）

メダカ南日本集団
H24年6月撮影 St.7
（栗田橋）
表 6.2-12 加古川大堰およびその周辺での魚類の重要種の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>重要種の選定基準</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 2 3 4 H2 H4 H9-10 H14 H19 H24</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ウナギ目</td>
<td>ウナギ科</td>
<td>ニホンウナギ</td>
<td>EN C ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>コイ目</td>
<td>コイ科</td>
<td>ヤリタナゴ</td>
<td>NT B ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>アブラボテ</td>
<td>アブラボテ</td>
<td>アブラボテ</td>
<td>NT C ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>カネヒラ</td>
<td>カネヒラ</td>
<td>カネヒラ</td>
<td>B ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>イチモンジタナゴ</td>
<td>イチモンジタナゴ</td>
<td>イチモンジタナゴ</td>
<td>CR 調 ●</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>アブラハヤ</td>
<td>アブラハヤ</td>
<td>アブラハヤ</td>
<td>C ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>カワヒガイ</td>
<td>カワヒガイ</td>
<td>カワヒガイ</td>
<td>NT C ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ゼゼラ</td>
<td>ゼゼラ</td>
<td>ゼゼラ</td>
<td>VU 調 ● ●</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>ドジョウ科</td>
<td>ドジョウ科</td>
<td>ドジョウ科</td>
<td>DD 注 ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>スジマドジョウ中型種</td>
<td>スジマドジョウ中型種</td>
<td>スジマドジョウ中型種</td>
<td>VU ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ナマズ目</td>
<td>アカザ科</td>
<td>アカザ</td>
<td>VU 地 ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>サケ目</td>
<td>サケ科</td>
<td>サツキマス</td>
<td>NT 調 ● ●</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>ダツ目</td>
<td>メダカ科</td>
<td>メダカ南日本集団</td>
<td>VU 注 ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>スズキ目</td>
<td>ハゼ科</td>
<td>ウキゴリ</td>
<td>C ● ● ●</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>オオヨシノボリ</td>
<td>オオヨシノボリ</td>
<td>オオヨシノボリ</td>
<td>C ● ●</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>シマヒレヨシノボリ</td>
<td>シマヒレヨシノボリ</td>
<td>シマヒレヨシノボリ</td>
<td>NT 調 ● ● ● ●</td>
<td></td>
</tr>
</tbody>
</table>

合計 6目 7科 16種 0種 0種 12種 15種 5種 10種 15種 14種 12種

注1: 種名、学名および種の配列は「河川水辺の国勢調査のための生物リスト 平成24年度版」に準拠。
注2: ゲンゴロウブナ、ハス、スゴモロコは、本来の生息域とは異なるため、国内移入種であり、重要種の対象外。

【重要種の選定基準】
*1: 文化財保護法
*2: 種の保存法
*3: 環境省レッドリスト2017
CR: 絶滅危惧IＡ類、EN: 絶滅危惧IＢ類、VU: 絶滅危惧Ⅱ類、NT: 準絶滅危惧、DD: 情報不足
*4: 兵庫県レッドデータブック2013
B:Bランク、C:Cランク、注: 要注目種、地: 地域限定貴重種、調: 要調査種
(2) 底生動物
加古川大堰およびその周辺における底生動物の重要種の確認状況を表 6.2-13に示す。
加古川大堰およびその周辺において確認された重要種は、平成 4年度から平成 25年度の調査の調査において、マルタニシ、オオタニシ、クロダカワニナ等の計 10目 12科 19種であった。
選定基準別にみると、環境省 RLでは、絶滅危惧 II 類がマルタニシ等の 2種、準絶滅危惧がオオタニシ、クロダカワニナ、モノアラガイ、ヒラマキガイモドキ、トンガリササノハガイ、ヤマトシンジミ、キイロサナエ、コオイムシの 8種、情報不足がコンダカヒメモノアラガイ、ヒラマキミズマイマイ、ミドビル、コガムシ等の 4種であった。兵庫県 RLでは、A ランクがトンガリササノハガイの 1 種、B ランクがミゾレヌマエビ、キイロサナエの 2種、C ランクがマルタニシ、クロダカワニナ、イシガイ、ヤマトシンジミの 4種、要注目種がミズカマキリ、ヘイケボタル等の 3種であった。
なお、確認種のコシダカヒメモノアラガイは、「外来種ハンドブック」（日本生態学会 平成 14年 9月）では、外来種となっている。
表 6.2-13 加古川大堰およびその周辺の底生動物の重要種の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>門名</th>
<th>綱名</th>
<th>目名</th>
<th>科名</th>
<th>和名</th>
<th>重要種の選定基準</th>
<th>調整年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>軟体動物門</td>
<td>腹足類</td>
<td>原始紐舌目</td>
<td>タンシ科</td>
<td>マルタニシ</td>
<td>VU C ●</td>
<td>●</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>盤足目</td>
<td>カワニナ科</td>
<td>クロダカワニナ</td>
<td>NT C H4 H9 H14 H20 H25</td>
<td>● ● ●</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>基眼目</td>
<td>モノアラガイ科</td>
<td>コシダカヒメモノアラガイ</td>
<td>DD ●</td>
<td>● ● ●</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>モノアラガイ</td>
<td>モノアラガイ</td>
<td>NT C H4 H9 H14 H20 H25</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>ヒラマキガイ科</td>
<td>ヒラマキガイ</td>
<td>DD ●</td>
<td>● ● ●</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>ヒラマキガイ</td>
<td>ヒラマキガイ</td>
<td>NT C H4 H9 H14 H20 H25</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>イシガイ</td>
<td>NT A</td>
<td>● ●</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>イシガイ</td>
<td>NT C</td>
<td>● ●</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>イシガイ</td>
<td>NT C</td>
<td>● ●</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>イシガイ</td>
<td>NT C</td>
<td>● ●</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>イシガイ</td>
<td>NT C</td>
<td>● ●</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>イシガイ</td>
<td>NT C</td>
<td>● ●</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>イシガイ</td>
<td>NT C</td>
<td>● ●</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>イシガイ</td>
<td>NT C</td>
<td>● ●</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>イシガイ</td>
<td>NT C</td>
<td>● ●</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>イシガイ</td>
<td>NT C</td>
<td>● ●</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>イシガイ</td>
<td>NT C</td>
<td>● ●</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>イシガイ</td>
<td>NT C</td>
<td>● ●</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>イシガイ</td>
<td>NT C</td>
<td>● ●</td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※種名、学名および種の配列は「河川水辺の国勢調査のための生物リスト 平成25年度版」に準拠。
【重要種を選定基準】
1. 文化財保護法
2. 種の保存法
3. 環境省レッドリスト2017
 VU: 絶滅危惧Ⅱ類、NT: 準絶滅危惧、DD: 情報不足
4. 兵庫県レッドデータブック2013
 A: Aランク、B: Bランク、C: Cランク、注: 要注目種
(3) 動植物プランクトン
動植物プランクトンには、重要種の指定はない。

(4) 植物
加古川大堰およびその周辺における植物の重要種の確認状況を表 6.2-14 に示す。
加古川大堰およびその周辺において確認された重要種は、平成 7 年度から平成 26 年度の調査において、ミズワラビ、サデクサ、ハンゲショウ等の計 16 科 21 種であった。
選定基準別にみると、環境省 RL では、絶滅危惧Ⅱ類がイヌハギの 1 種、準絶滅危惧がコイヌガラシ、タコノアシ、ガガブタ等の 7 種の計 8 種であった。兵庫県 RDB では、A ランクがウマスゲの 1 種、B ランクがフジバカマ、フサスゲの 2 種、C ランクがミズワラビ、サデクサ、ハンゲショウ等の 12 種、要調査種がサイカチ、ケテイカカズラ、ヌマガヤツリ、フトウの 4 種の計 19 種であった。

ミズワラビ
H22 年 10 月撮影 St.3
（粟田橋）

サデクサ
H22 年 10 月撮影 St.1
（新加古川橋）

ハンゲショウ
H22 年 10 月撮影 St.3
（粟田橋）
表 6.2-14 加古川大堰およびその周辺の植物の重要種の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>科和名</th>
<th>种和名</th>
<th>重要種の選定基準</th>
<th>調査項目</th>
<th>植物</th>
<th>植物</th>
<th>植物</th>
<th>植物</th>
<th>環境基図</th>
<th>環境基図</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ミズワラビ科</td>
<td>ミズワラビ</td>
<td>C</td>
<td>1 2 3 4</td>
<td>H7</td>
<td>H11・H12</td>
<td>H15</td>
<td>H22</td>
<td>H22</td>
<td>H26</td>
</tr>
<tr>
<td>2</td>
<td>サテ科</td>
<td>サテクサ</td>
<td>C</td>
<td>● ● ● ●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ドクダミ科</td>
<td>ハンゲショウ</td>
<td>C</td>
<td>● ● ● ●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>アブラナ科</td>
<td>コイヌガラシ</td>
<td>NT</td>
<td>● ● ● ●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ベンケイソウ科</td>
<td>タイトゴメ</td>
<td>C</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ユキノシタ科</td>
<td>タコノアシ</td>
<td>NT</td>
<td>C ● ● ● ● ● ●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>マメ科</td>
<td>サイカチ</td>
<td>調</td>
<td>● ● ● ●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>イヌハギ</td>
<td>VU</td>
<td>C</td>
<td>● ● ● ●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>マキエハギ</td>
<td>C</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ウリ科</td>
<td>ゴキヅル</td>
<td>C</td>
<td>● ● ● ●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ミツガシワ科</td>
<td>ガガブタ</td>
<td>NT</td>
<td>● ● ● ●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>キョウチクトウ科</td>
<td>ケテイカカズラ</td>
<td>調</td>
<td>● ● ● ●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>シソ科</td>
<td>ミソコウジュ</td>
<td>NT</td>
<td>C ● ● ● ● ●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ゴマノハグサ科</td>
<td>カワチシャ</td>
<td>NT</td>
<td>C ● ● ● ●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>キツネノマゴ科</td>
<td>オギノツメ</td>
<td>C</td>
<td>● ● ● ●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>キク科</td>
<td>フジバカマ</td>
<td>NT</td>
<td>B ● ● ● ●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>ミクリ科</td>
<td>ミクリ</td>
<td>NT</td>
<td>C ● ● ● ●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>カヤツリグサ科</td>
<td>ウマスゲ</td>
<td>A</td>
<td>● ● ● ●</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>フサスゲ科</td>
<td>B</td>
<td>● ● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>ヌマガヤツリ</td>
<td>調</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>フトイ</td>
<td>調</td>
<td>● ● ● ●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

合計 16科 21種 0種 0種 8種 19種 12種 15種 16種 16種 2種 1種

※種名、学名及び種の配列は、「河川水辺の国勢調査のための生物リスト 平成26年度版」に準拠。

【重要種の選定基準】
·1:文化財保護法
·2:種の保存法
·3:環境省レッドリスト2017
 VU:絶滅危惧Ⅱ類、NT:準絶滅危惧
·4:兵庫県レッドデータブック2013
 A:Aランク、B:Bランク、C:Cランク、調:要調査種
(5) 鳥類

加古川大堰およびその周辺における鳥類の重要種の確認状況を表 6.2-15 に示す。加古川大堰およびその周辺において確認された重要種は、平成 5 年度から平成 24 年度の調査において、ササゴイ、トモエガモ、オオタカ等の計 8 目 17 科 29 種であった。

選定基準別にみると、文化財保護法では、特別天然記念物がコウノトリの 1 種であった。種の保存法では、国内希少野生動植物種がコウノトリ、ハヤブサの 2 種であった。環境省RL では、絶滅危惧 I A 類がコウノトリの 1 種、絶滅危惧 II 類がトモエガモ、ハヤブサ、タマシギ等の 5 種、準絶滅危惧がチュウサギ、ミサゴ、ハチクマ等の 6 種の計 13 種であった。

兵庫県 RL では、A ランクがコウノトリ、ミサゴ、ノビタキ等の 5 種、B ランクがハチクマ、オオタカ、ノスリ等の 13 種、C ランクがササゴイ、チュウサギ、トモエガモ等の 6 種、要注目種がカワセミ、オオヨシキリ、コムクドリの 3 種、要調査種がエゾセンニュウの 1 種の計 28 種であった。
表 6.2-15 加古川大堰およびその周辺の鳥類の重要種の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>重要種の選定基準</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 2 3 4</td>
<td>H5 H10 H16 H24</td>
</tr>
<tr>
<td>1</td>
<td>コウノトリ目</td>
<td>サギ科</td>
<td>ササゴイ</td>
<td>C</td>
<td>●</td>
</tr>
<tr>
<td>2</td>
<td>チドリ目</td>
<td>チュウザギ</td>
<td>NT</td>
<td>C</td>
<td>●</td>
</tr>
<tr>
<td>3</td>
<td>コウノトリ科</td>
<td>コウノトリ</td>
<td>鳥類</td>
<td>国内</td>
<td>CR</td>
</tr>
<tr>
<td>4</td>
<td>カモ目</td>
<td>カモ科</td>
<td>トモエガモ</td>
<td>VU</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>タカ目</td>
<td>タカ科</td>
<td>ミサゴ</td>
<td>NT</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>ハチクマ</td>
<td>ハチクマ</td>
<td>NT</td>
<td>B</td>
<td>●</td>
</tr>
<tr>
<td>7</td>
<td>オオタカ</td>
<td>オオタカ</td>
<td>NT</td>
<td>B</td>
<td>●</td>
</tr>
<tr>
<td>8</td>
<td>ノスリ</td>
<td>ノスリ</td>
<td>B</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>9</td>
<td>ハヤブサ科</td>
<td>ハヤブサ</td>
<td>国内</td>
<td>VU</td>
<td>B</td>
</tr>
<tr>
<td>10</td>
<td>コチョウゲンボウ</td>
<td>コチョウゲンボウ</td>
<td>B</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ツル目</td>
<td>クイナ科</td>
<td>ヒクイナ</td>
<td>NT</td>
<td>B</td>
</tr>
<tr>
<td>12</td>
<td>チドリ目</td>
<td>タマシギ科</td>
<td>タマシギ</td>
<td>VU</td>
<td>B</td>
</tr>
<tr>
<td>13</td>
<td>チドリ科</td>
<td>イカルチドリ</td>
<td>B</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>14</td>
<td>ケリ</td>
<td>ケリ</td>
<td>DD</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>15</td>
<td>シギ科</td>
<td>アオアシシギ</td>
<td>B</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>タカブシギ</td>
<td>タカブシギ</td>
<td>VU</td>
<td>B</td>
<td>●</td>
</tr>
<tr>
<td>17</td>
<td>イソギ</td>
<td>イソギ</td>
<td>C</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>18</td>
<td>タシギ</td>
<td>タシギ</td>
<td>B</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>19</td>
<td>カモ科</td>
<td>グロカモメ</td>
<td>VU</td>
<td>B</td>
<td>●</td>
</tr>
<tr>
<td>20</td>
<td>カワセミ科</td>
<td>ヤマセミ</td>
<td>B</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>21</td>
<td>カワセミ</td>
<td>カワセミ</td>
<td>注</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>22</td>
<td>キツキ目</td>
<td>キツキ科</td>
<td>アリスイ</td>
<td>B</td>
<td>●</td>
</tr>
<tr>
<td>23</td>
<td>スズメ目</td>
<td>スズメ科</td>
<td>ノビタキ</td>
<td>A</td>
<td>●</td>
</tr>
<tr>
<td>24</td>
<td>ウグイス科</td>
<td>ウグイス科</td>
<td>エソセンニュウ</td>
<td>調</td>
<td>●</td>
</tr>
<tr>
<td>25</td>
<td>オオヨシキリ</td>
<td>オオヨシキリ</td>
<td>注</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>26</td>
<td>ツリスガラ科</td>
<td>ツリスガラ</td>
<td>C</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>27</td>
<td>ホオジロ科</td>
<td>ホオジロ</td>
<td>NT</td>
<td>A</td>
<td>●</td>
</tr>
<tr>
<td>28</td>
<td>ノジコ</td>
<td>ノジコ</td>
<td>注</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>29</td>
<td>ムクドリ科</td>
<td>コムクドリ</td>
<td>注</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>8目</td>
<td>17科</td>
<td>29種</td>
<td>1種</td>
<td>2種</td>
</tr>
</tbody>
</table>

※種名、学名及び種の配列は、「河川水辺の国勢調査のための生物リスト 平成24年度版」に準拠。
【重要種の選定基準】
1:文化財保護法
2:特別天然記念物
3:種の保存法
4:環境省レッドリスト2017
5:兵庫県レッドデータブック2013
A: Aランク、B: Bランク、C: Cランク、注:要注目種、調:要調査種
(6) 両生類・爬虫類・哺乳類
加古川大堰およびその周辺における両生類・爬虫類・哺乳類の重要種の確認状況を表6.2-16に示す。
加古川大堰およびその周辺において確認された重要種は、平成7年度から平成27年度の調査において、ニホンヒキガエル、ニホンイシガメ、ホンシュウジネズミ等の計3綱4目7科9種であった。
選定基準別にみると、環境省RLでは、準絶滅危惧がトノサマガエル、ニホンイシガメの2種、情報不足がニホンスッポンの1種の計3種であった。兵庫県RLでは、Cランクがニホンヒキガエル、ツチガエル、ニホンイシガメの3種、要注目種がニホンヤモリ、ジムグリ、ヒバカリ、ホンシュウジネズミの4種、要調査種がニホンスッポンの1種の計8種であった。

表6.2-16 加古川大堰およびその周辺の両生類・爬虫類・哺乳類の重要種の確認状況

<table>
<thead>
<tr>
<th>№</th>
<th>綱和名</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>重要種の選定基準</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>両生綱</td>
<td>無尾目</td>
<td>ヒキガエル科</td>
<td>ニホンヒキガエル</td>
<td>C</td>
<td>●</td>
</tr>
<tr>
<td>2</td>
<td>アカガエル科</td>
<td>トノサマガエル</td>
<td>NT</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>3</td>
<td>ツチガエル</td>
<td>C</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>爬虫綱</td>
<td>カメ目</td>
<td>イシガメ科</td>
<td>ニホンイシガメ</td>
<td>NT</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>スッポン科</td>
<td>ニホンスッポン</td>
<td>DD</td>
<td>調</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ヤモリ科</td>
<td>ニホンヤモリ</td>
<td>注</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>7</td>
<td>ニホンヘビ科</td>
<td>ジムグリ</td>
<td>注</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ヒバカリ</td>
<td>注</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>哺乳綱</td>
<td>モグラ目(食虫目)</td>
<td>トガリネズミ科</td>
<td>ホンシュウジネズミ</td>
<td>注</td>
<td>●</td>
</tr>
</tbody>
</table>

合計 3綱 4目 7科 9種 0種 0種 3種 3種 3種 3種 6種 6種 4種

※種名、学名及び種の配列は、「河川水辺の国勢調査のための生物リスト 平成27年度版」に準拠。
【重要種の選定基準】
・1:文化財保護法
・2:種の保存法
・3:環境省レッドリスト2017
NT:準絶滅危惧、DD:情報不足
・4:兵庫県レッドデータブック2013
C:Cランク、注:要注目種、調:要調査種
(7) 陸上昆虫類等
加古川大堰およびその周辺における陸上昆虫類等の重要種の確認状況を表 6.2-17 に示す。
加古川大堰およびその周辺において確認された重要種は、平成 4年度から平成 28年度の調査において、ナニワトンボ、ヤネホソバ等の計 7目 23科 26種であった。
選定基準別にみると、環境省 RL では、絶滅危惧Ⅱ類がナニワトンボの 1種、準絶滅危惧がクロアシブトハナカメムシ、シロヘリツチカメムシ、コオイムシ等の9種、情報不足がコガムシ、ヤマトアシナガバチ、モンスズメハシ、アオスジクモノハシの4種の計 14種であった。兵庫県 RL では、A ランクがシッチコモリグモ、スジグロチャバネセセリ北海道・本州・九州亜種の 2種、B ランクがヒゲカゴネの 1種、C ランクがキクメハシリグモ、カトリヤンマ、ナニワトンボ、マメハサンミョウの 4種、要注目種がアキアカネ、スズムシ、ジュウサンホシテントウ、ジュウサンホシテントウの 4種、要調査種がナカムラオニグモ、ヒメコオロギ、ヒゲヒクス、シジミガムシの 4種の計 14種であった。

スズムシ
H28 年 9 月撮影 St. 2
（西川合流点上流）

コガムシ
H28 年 5 月撮影 St. 4
（粟田橋）

ジュウサンホシテントウ
H28 年 5 月撮影 St. 4
（粟田橋）

カトリヤンマ♀
H28 年 9 月撮影 St. 4
（粟田橋）

カトリヤンマ♂
H28 年 9 月撮影 St. 4
（粟田橋）

ヤマトアシナガバチ
H28 年 9 月撮影 St. 4
（粟田橋）

6-127
<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>重要種の選定基準</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 2 3 4 H4 H8 H13 H18 H28</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>クモ目</td>
<td>コガネグモ科</td>
<td>ナカムラオニグモ</td>
<td>調</td>
<td>●</td>
</tr>
<tr>
<td>2</td>
<td>コモリグモ科</td>
<td>シミチョコリグモ</td>
<td>A</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>キワリグモ科</td>
<td>キメレハリグモ</td>
<td>C</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ヨキ目</td>
<td>ヤマトショウ科</td>
<td>カトリヤマ</td>
<td>C</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>5</td>
<td>トアウタ科</td>
<td>トアウタ</td>
<td>アキアカネ</td>
<td>注</td>
<td>●</td>
</tr>
<tr>
<td>6</td>
<td>ナニワトウ科</td>
<td>ナニワトウ</td>
<td>ナニワトウ</td>
<td>VU</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>バッタ目</td>
<td>マツムシ科</td>
<td>スズムシ</td>
<td>注</td>
<td>●</td>
</tr>
<tr>
<td>8</td>
<td>鳥類目</td>
<td>コオロギ科</td>
<td>ヒメコオロギ</td>
<td>調</td>
<td>●</td>
</tr>
<tr>
<td>9</td>
<td>エビリモドキ科</td>
<td>エビリモドキ</td>
<td>エビリモドキ</td>
<td>調</td>
<td>●</td>
</tr>
<tr>
<td>10</td>
<td>カメムシ目</td>
<td>ハナカメムシ科</td>
<td>クロアシブトハナカメムシ</td>
<td>NT</td>
<td>●</td>
</tr>
<tr>
<td>11</td>
<td>ツシカメムシ科</td>
<td>シロヘリツシカメムシ</td>
<td>NT</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>12</td>
<td>コオイムシ科</td>
<td>コオイムシ</td>
<td>NT</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>ショウ目</td>
<td>セセリチョウ科</td>
<td>セセリチョウ</td>
<td>NT</td>
<td>A</td>
</tr>
<tr>
<td>14</td>
<td>ヒトリガ科</td>
<td>ヤネホソバ</td>
<td>NT</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>ドウガ科</td>
<td>スグドウガ</td>
<td>NT</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>ヤガ科</td>
<td>カツモハナオイツバ</td>
<td>NT</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>オサムシ科</td>
<td>イグチケガギムシ</td>
<td>NT</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>コガネムシ科</td>
<td>コガネムシ</td>
<td>DD</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>19</td>
<td>コガネムシ科</td>
<td>ヒゲコガネ</td>
<td>B</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>20</td>
<td>テントウムシ科</td>
<td>シュウホシシントウ</td>
<td>注</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>シュウシシントウ</td>
<td>注</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>22</td>
<td>ショウハシモウ科</td>
<td>マツハシモウ</td>
<td>C</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>23</td>
<td>ハチ目</td>
<td>スズメバチ科</td>
<td>オオギタシナガバチ</td>
<td>DD</td>
<td>●</td>
</tr>
<tr>
<td>24</td>
<td>ハチ目</td>
<td>スズメバチ科</td>
<td>ヨリスバチ</td>
<td>DD</td>
<td>●</td>
</tr>
<tr>
<td>25</td>
<td>ハチ目</td>
<td>クモバチ科</td>
<td>ムシクモバチ</td>
<td>DD</td>
<td>●</td>
</tr>
<tr>
<td>26</td>
<td>ハチ目</td>
<td>コガムシ科</td>
<td>コガムシ</td>
<td>DD</td>
<td>●</td>
</tr>
</tbody>
</table>

合計 7目 23科 26種 10種 14種 12種 13種 9種 10種 11種

※種名、学名および種の配列は「河川水辺の国勢調査のための生物リスト 平成26年度版」に準拠。
【重要種の選定基準】
1: 文化財保護法
2: 种の保存法
3: 環境省レッドリスト2017
 VU: 絶滅危惧Ⅱ類、NT: 準絶滅危惧、DD: 情報不足
4: 兵庫県レッドデータブック2013
 A: Aランク、B: Bランク、C: Cランク、注: 要注目種、調: 要調査種

6-128
6.2.5 外来種の概況
加古川大堰およびその周辺において確認された外来種について整理した。なお、外来種の選定基準とカテゴリーは、下記のとおりである。

● 外来生物法
「特定外来生物による生態系に係わる被害の防止に関する法律（平成16年法律第78号）」
「特定外来生物」：海外から我が国に導入されることによりその本来の生息地又は生育地の外に存することとなる生物であって、我が国にその本来の生息地又は生育地を有する生物とその性質が異なることにより生態系等に係る被害を及ぼし、又は及ぼすおそれがあるものとして政令で定めるもの。

● 生態系被害防止外来種リスト
「環境省報道発表資料　我が国の生態系等に被害を及ぼすおそれのある外来種リスト（生態系被害防止外来種リスト）」（環境省　平成27年3月公開）
「定着予防（侵入予防）」：生態系被害防止外来種リスト掲載種のうち、国内に未侵入・未定着であり、定着した場合に生態系等への被害のおそれがあるため、特に国内への侵入を未然に防ぐ必要がある外来種。
「定着予防（その他）」：生態系被害防止外来種リスト掲載種のうち、侵入の情報はあるが、国内に未定着であり、定着した場合に生態系等への被害のおそれがあるため、早期防除が必要な外来種。
「総合対策（緊急）」：生態系被害防止外来種リスト掲載種のうち、国内に定着が確認されており、生態系等への被害のおそれがあるため、総合的に対策が必要な外来種のうち、緊急性が高く、積極的に防除が必要な外来種。
「総合対策（重点）」：生態系被害防止外来種リスト掲載種のうち、国内に定着が確認されており、生態系等への被害のおそれがあるため、総合的に対策が必要な外来種のうち、甚大な被害が予想される重点的に対策が必要な外来種。
「総合対策（その他）」：生態系被害防止外来種リスト掲載種のうち、国内に定着が確認されており、生態系等への被害のおそれがあるため、総合的に対策が必要な外来種のうち、緊急、重点に該当しない種。
「産業管理」：産業又は公益的役割において重要であり、利用において逸出等の防止のための適切な管理に重点を置いた対策が必要な外来種。
兵庫県 BL
・「兵庫県ブラックリスト 2010」（兵庫県, 2016年11月26日変更）
 「Z（警戒種）」: 生物多様性への影響が大きい、または今後影響が大きくなることが予測される種。
 「Y（注意種）」: 生物多様性への影響がある種、将来影響を及ぼす可能性が考えられるなど、引き続き情報を集積し今後の動向を注目していく種。

外来種 HB
・「外来種ハンドブック」（日本生態学会 平成14年9月）
 「国外外来種」: 過去あるいは現在の自然分布域外に導入された種、亜種、それ以下の分類群であり、国外起源であるもの。
加古川大堰およびその周辺における魚類の外来種の確認状況を表 6.2-18 に示す。

加古川大堰およびその周辺において確認された外来種は、平成2年度から平成24年度の調査において、タイリクバラタナゴ、ニジマス、ブルーギル等の計3目4科6種であった。

選定基準別にみると、外来生物法では、特定外来生物のブルーギル、オオクチバスの2種であった。生態系被害防止外来種リストでは、総合対策（緊急）がブルーギル、オオクチバスの2種、総合対策（重点）がタイリクバラタナゴの1種、産業管理がニジマスの1種の計4種であった。兵庫県BLでは、Z（警戒種）がブルーギル、オオクチバスの２種、Y（注意種）がタイリクバラタナゴの1種の計3種であった。

表 6.2-18 加古川大堰およびその周辺の魚類の外来種の確認状況

<table>
<thead>
<tr>
<th>№</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>外来種の選定基準</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>H2</td>
<td>H4</td>
</tr>
<tr>
<td>1</td>
<td>コイ目</td>
<td>コイ科</td>
<td>タイリクバラタナゴ</td>
<td>総合（重点）</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>サケ目</td>
<td>サケ科</td>
<td>ニジマス</td>
<td>産業</td>
<td>国外</td>
</tr>
<tr>
<td>3</td>
<td>スズキ目</td>
<td>サンフィッシュ科</td>
<td>ブルーギル</td>
<td>特定</td>
<td>総合（緊急）</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>オオクチバス</td>
<td>特定</td>
<td>総合（緊急）</td>
<td>Z</td>
</tr>
<tr>
<td>5</td>
<td>タイワンドジョウ科</td>
<td>タイワンドジョウ</td>
<td></td>
<td></td>
<td>国外</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>カムルチ</td>
<td></td>
<td></td>
<td>国外</td>
</tr>
</tbody>
</table>

合計 | 3目 | 4科 | 6種 | 2種 | 4種 | 3種 | 6種 | 3種 | 4種 | 4種 | 5種 | 6種 | 5種 |

※種名、学名及び種の配列は、「河川水辺の国勢調査のための生物リスト 平成24年度版」に準拠。
【外来種の選定基準】
- a. 外来生物法
 特定：特定外来生物
- b. 我が国の生態系等に被害を及ぼすおそれのある外来種リスト（環境省2015年3月26日記者発表）
 総合（緊急）: 総合対策（緊急） 総合（重点）: 総合対策（重点） 産業: 産業管理
- c. 兵庫県ブラックリスト2010（兵庫県2016年11月26日変更）
 Z: 警戒種、Y: 注意種
- d. 外来種HB
 国外: 国外外来種
参考：河川水辺の国勢調査以外の外来種情報

加古川大堰を含む加古川の本川および支流の漁業権を有する加古川漁業協同組合に対し、平成24年度の河川水辺の国勢調査の魚類調査において、聞き取り調査を実施しており、加古川に生息する外来種の情報を得ている。よって、河川水辺の国勢調査で確認できていない外来種の情報や漁協の外来種に対する関心を把握するための参考資料として整理した。

漁協よりいただいたご意見の概要は、下記のとおりである。

○加古川で確認されている外来種のうち、漁協で情報を得ている種は、オオクチバス、ブルーギル、ガー類、南方系のナマズ類等である。
○近年、増加している外来魚はブルーギルで、オオクチバスは逆に減少していると認識している。
○オオクチバスが減少している要因は、出水等により海まで流されてしまうことのほか、漁協独自で駆除活動を継続的に実施していることも一因と考えている。

外来魚に係る聞き取り調査の結果より、河川水辺の国勢調査で確認できない外来魚として、ガー類や南方系ナマズ類（特定外来生物のチャネルキャットフィッシュの可能性あり）の生息情報があるほか、外来魚の継続的な駆除活動を実施している状況を踏まえると、外来魚駆除に対する関心は高いものにあると考えられる。

また、ガー類については、平成28年12月の新聞報道にて、加古川大堰より下流側で「アリゲーターガー」が捕獲されたとの記事（朝日新聞）が掲載されており、放流された個体が1個体のみの場合は、既に駆除されたこととなる。
(2) 底生動物

加古川大堰およびその周辺における底生動物の外来種の確認状況を表 6.2-19 に示す。

加古川大堰およびその周辺において確認された外来種は、平成 4年度から平成 25年度の調査において、スクミリンゴガイ、フロリダマミズヨコエビ、オオマリコケムシ等の計 3 門 4 綱 6 目 8 科 9 種であった。

選定基準別にみると、生態系被害防止外来種リストでは、総合対策（緊急）がアメリカザリガニの 1 種、総合対策（重点）がスクミリンゴガイの 1 種、総合対策（その他）がハブタエモノアラガイ、Corbicula 属、フロリダマミズヨコエビの 3 種の計 5 種であった。兵庫県 BL では、Z（警戒種）がスクミリンゴガイ、Y（注意種）がCorbicula 属、Neocaridina 属、アメリカザリガニの 3 種の計 4 種であった

![表 6.2-19 加古川大堰およびその周辺の底生動物の外来種の確認状況](image)

※種名、学名及び種の配列は、「河川水辺の国勢調査のための生物リスト 平成25年度版」に準拠。
【外来種の選定基準】
a. 外来生物法
b. 我が国の生態系等に被害を及ぼすおそれのある外来種リスト（環境省2015年3月26日記者発表）
総合（緊急）: 総合対策（緊急） 総合（重点）: 総合対策（重点） 総合（その他）: 総合対策（その他）
c. 兵庫県ブラックリスト2010（兵庫県2016年11月26日変更）
d. 外来種HB
e. 警戒種、Y: 注意種
外: 国外

6-133
(3) 動植物プランクトン

動植物プランクトンには、外来種の指定はない。

(4) 植物

加古川大堰およびその周辺における植物の外来種の確認状況を表 6.2-20 に示す。

加古川大堰およびその周辺において確認された外来種は、平成 7年度から平成 26年度の
調査において、シャクチリソバ、イタチハギ、オオブタクサ等の計 48 科 182 種であった。
選定基準別にみると、外来生物法では、特定外来生物のアレチウリ、オオフサモ、オオカワヂシャ等の計 7 種であった。生態系被害防止外来種リストでは、総合対策（緊急）が
ナガエツルノゲイトウ、アレチウリ、オオフサモ等の 7 種、総合対策（重点）がオランダガラシ、イタチハギ、シンジュ等の 19 種、総合（その他）がシャクチリソバ、エゾノギシギシ、マンテマ等の 26 種、産業管理がハリエンジュ、カモガヤ、オニウシノケグサ等の 8 種の計 53 種であった。兵庫県 BL では、Z（警戒種）がイタチハギ、オオフサモ、オオカワヂシャ等の 12 種、Y（注意種）がシンジュ、アレチマツヨイグサ、キクイモ等の 9 種の計 21 種であった。
表 6.2-20 (1) 加古川大堰およびその周辺の植物の外来種の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>科和名</th>
<th>種和名</th>
<th>外来種の選定基準</th>
<th>調査項目</th>
<th>植物</th>
<th>植物</th>
<th>植物</th>
<th>植物</th>
<th>環境基図</th>
<th>環境基図</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>アカウキサ科</td>
<td>Azolla属</td>
<td>特定 (緊急)</td>
<td>Z</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>イラクサ科</td>
<td>ナンバンカラムシ</td>
<td>国外</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>タデ科</td>
<td>シャクチリソバ</td>
<td>総合 (その他)</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>ヒメスイバ</td>
<td>総合 (その他)</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>アレチギンギシ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>ナガバギンギシ</td>
<td>総合 (その他)</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>エゾノギンギシ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ヤマゴボウ科</td>
<td>ヨウシュヤマゴボウ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>オシロイバナ科</td>
<td>オシロイバナ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>サクラソウ科</td>
<td>サクラソウ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ナデシコ科</td>
<td>ナガウチイソバ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>オハナナデシコ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>イヌコモチナデシコ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>ムトリナデシコ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>シロバナマンデマ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>マンデマ</td>
<td>総合 (その他)</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>ウスベツツメクサ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>コハコベ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>アカザ科</td>
<td>アカザ</td>
<td>国外</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>アリサツノウ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>アメリカアリサツノウ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>ヒユ科</td>
<td>ホソバツルノゲイトウ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>ナガエツルノゲイトウ</td>
<td>国外</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>ツルノゲイトウ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>ホソアネゲイトウ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>ホナガイズビユ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>ノゲイトウ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>ケシ科</td>
<td>ナガミヒナゲシ</td>
<td>国外</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>キンポウゲ科</td>
<td>トゲミノキツネノボタン</td>
<td>国外</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>アブラナ科</td>
<td>セイヨウカラシナ</td>
<td>総合 (その他)</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>マメグンバインナズナ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>オランダガラシ</td>
<td>総合 (重点)</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>カキネガラシ</td>
<td>国外</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>イスカキネガラシ</td>
<td>国外</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>ベンケイソウ科</td>
<td>メキシコマンネングサ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>ツルマンネングサ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>バラ科</td>
<td>オオヘビイチゴ</td>
<td>国外</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>オキシジュロ</td>
<td>国外</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6-135
<table>
<thead>
<tr>
<th>No.</th>
<th>科和名</th>
<th>種和名</th>
<th>外来種の選定基準</th>
<th>調査項目</th>
<th>環境基図</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>植物 株 花 果</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>マメ科</td>
<td>イタチハギ</td>
<td>総合 (重点)</td>
<td>Z 国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>アレチヌスピトハギ</td>
<td>総合 (その他)</td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>41</td>
<td>カラメドハギ</td>
<td></td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>42</td>
<td>セイヨウミヤコゴサ</td>
<td></td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>43</td>
<td>コメツブウマゴヤシ</td>
<td></td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>44</td>
<td>ウマゴヤシ</td>
<td></td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>45</td>
<td>ムラサキウマゴヤシ</td>
<td></td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>46</td>
<td>シロバナシナガワハギ</td>
<td></td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>47</td>
<td>ハリエンジュ</td>
<td></td>
<td>産業 (その他)</td>
<td>Z 国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>48</td>
<td>クスダマツメクサ</td>
<td></td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>49</td>
<td>コメツブウメクサ</td>
<td></td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>50</td>
<td>ムラサキツメクサ</td>
<td></td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>51</td>
<td>シロツメクサ</td>
<td></td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>52</td>
<td>カタバミ科</td>
<td>ムラサキカタバミ</td>
<td>総合 (その他)</td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td>オオナタカタバミ</td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>54</td>
<td>フウロソウ科</td>
<td>アメリカフウロ</td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>55</td>
<td>ドウダイグサ科</td>
<td>アイビソキソウ</td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>オオニシキソウ</td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>57</td>
<td></td>
<td>コニシキソウ</td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>ナンキンハゼ</td>
<td>総合 (その他)</td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>59</td>
<td>ニガキ科</td>
<td>シンジュ</td>
<td>総合 (重点) Y</td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>60</td>
<td>カエデ科</td>
<td>トウカエデ</td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>61</td>
<td>アオイ科</td>
<td>ムクゲ</td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>62</td>
<td>ユリ科</td>
<td>アレチウリ</td>
<td>特定 (緊急) Z</td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>63</td>
<td>ミソハギ科</td>
<td>ホバヒメミソハギ</td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>64</td>
<td>アカバナ科</td>
<td>アメリカミズキンバイ</td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>メマツヨイグサ</td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td>オオマツヨイグサ</td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>コマツヨイグサ</td>
<td>総合 (重点) Y</td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>アレマツヨイグサ</td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>ユウケショウ</td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>マツヨイグサ</td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td>オオフサモ</td>
<td>特定 (緊急) Z</td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>72</td>
<td>セリ科</td>
<td>マツバセリ</td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td>ノラシジン</td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>74</td>
<td>モクセイ科</td>
<td>トウネズミモチ</td>
<td>総合 (重点)</td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>75</td>
<td>リンドウ科</td>
<td>ハナハマセンブリ</td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>76</td>
<td>キョウチクトウ科</td>
<td>タルチニチソウ</td>
<td>総合 (重点)</td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>77</td>
<td>アカネ科</td>
<td>オオフタバムグラ</td>
<td>総合 (その他)</td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>78</td>
<td></td>
<td>メリケンムグラ</td>
<td></td>
<td>国外</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>No.</td>
<td>科和名</td>
<td>種和名</td>
<td>外来種の選定基準</td>
<td>調査項目</td>
<td>植物</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>----------------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>79</td>
<td>ヒルガオ科</td>
<td>アメリカネナシカズラ</td>
<td>総合（その他）</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>80</td>
<td>マルバロコ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>81</td>
<td>アメリカアサガオ</td>
<td>国外</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>マルバアメリカアサガオ</td>
<td>国外</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>ハメアサガオ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>84</td>
<td>ホシアサガオ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>85</td>
<td>ムラサキ科</td>
<td>ハラムラサキ</td>
<td>国外</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>クマツツラ科</td>
<td>ヒメイダレソウ</td>
<td>総合（その他）</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>87</td>
<td>ヤナギハナガサ</td>
<td>総合（その他）</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>88</td>
<td>アレチハナガサ</td>
<td>総合（その他）</td>
<td>Y</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>89</td>
<td>シソ科</td>
<td>ヒメドリコソウ</td>
<td>国外</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>ヨウシュハッカ</td>
<td>国外</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>オランダハッカ</td>
<td>国外</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>ナス科</td>
<td>ヒロハフウレンホオズキ</td>
<td>国外</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>ヒメセンナリホオズキ</td>
<td>国外</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>ウルナスビ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>95</td>
<td>タマサンゴ</td>
<td>国外</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>アメリカイヌホオズキ</td>
<td>国外</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>ゴマノハグサ科</td>
<td>マツバウンラン</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>98</td>
<td>タケトアセナ</td>
<td>国外</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>アメリカアセナ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>100</td>
<td>オオカワヂシャ</td>
<td>特定（緊急）</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>101</td>
<td>タチイヌノフグリ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>102</td>
<td>オオイヌノフグリ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>103</td>
<td>オオバコ科</td>
<td>ヘラオオバコ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>104</td>
<td>タチオオバコ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>105</td>
<td>オオバコ科</td>
<td>ノハナバコ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>106</td>
<td>キシヨウ科</td>
<td>ユナキキョウソウ</td>
<td>国外</td>
<td>品種</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>キキョウソウ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>108</td>
<td>キク科</td>
<td>ブダクサ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>109</td>
<td>オオブタクサ</td>
<td>特定（緊急）</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>110</td>
<td>クソニンギク</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>ヒロハホウキギク</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>112</td>
<td>ホウキギク</td>
<td>国外</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>アメリカセンダングサ</td>
<td>総合（その他）</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>114</td>
<td>コシセンダングサ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>115</td>
<td>シロバナセンダングサ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>116</td>
<td>アレチギク</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>117</td>
<td>オオアレチギク</td>
<td>国外</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>118</td>
<td>オオキンケイギク</td>
<td>特定（緊急）</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>119</td>
<td>ハルシャギク</td>
<td>総合（その他）</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>
表 6.2-20（4） 加古川大堰およびその周辺の植物の外来種の確認状況

| No. | 科和名 | 種和名 | 外来種の選定基準 | 調査項目 | 環境図基
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>植物</td>
<td>植物</td>
<td>植物</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a b c d</td>
<td>H7</td>
<td>H11・H12</td>
</tr>
<tr>
<td>120</td>
<td>(キク科)</td>
<td>コスモス</td>
<td>国外</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td></td>
<td>キバナコスモス</td>
<td>国外</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td></td>
<td>マメカミツレ</td>
<td>国外</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>ベニバナポロギク</td>
<td>国外</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td></td>
<td>アメリカタカサブロウ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>ヒメムカシヨモギ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>126</td>
<td></td>
<td>ハルジオン</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>127</td>
<td></td>
<td>ハキダメギク</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>128</td>
<td></td>
<td>タチチチコグサ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>129</td>
<td></td>
<td>チチコグサモドキ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>130</td>
<td></td>
<td>ウスペニチチコグサ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>131</td>
<td></td>
<td>キクイモ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>132</td>
<td></td>
<td>ブタナ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>133</td>
<td></td>
<td>トゲチシャ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>134</td>
<td></td>
<td>ノポロギク</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>135</td>
<td></td>
<td>セイタカアワダチソウ</td>
<td>総合（重点）</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>136</td>
<td></td>
<td>オニノゲシ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>137</td>
<td></td>
<td>ヒメショオン</td>
<td>総合（その他）</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>138</td>
<td></td>
<td>ヤナギバヒメショオン</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>139</td>
<td></td>
<td>ヘラバヒメショオン</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>140</td>
<td></td>
<td>セイヨウタンポボ</td>
<td>総合（重点）</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>141</td>
<td></td>
<td>イガオナモミ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>142</td>
<td></td>
<td>オオナオナモミ</td>
<td>総合（その他）</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>143</td>
<td></td>
<td>オモダカ科</td>
<td>国外</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td></td>
<td>オオオナモミ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>145</td>
<td></td>
<td>オカナダモ</td>
<td>総合（重点）</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>146</td>
<td></td>
<td>タマスダレ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>147</td>
<td></td>
<td>ホテイアオイ</td>
<td>総合（重点）</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>148</td>
<td></td>
<td>キショウブ</td>
<td>総合（重点）</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>149</td>
<td></td>
<td>ニワセキショウ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>アイロニワセキショウ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>151</td>
<td></td>
<td>オオニワセキショウ</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>152</td>
<td></td>
<td>ヒメヒオウギズイセン</td>
<td>総合（その他）</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>153</td>
<td></td>
<td>イグサ科</td>
<td>国外</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>
表 6.2-20（5）加古川大堰およびその周辺の植物の外来種の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>科和名</th>
<th>種和名</th>
<th>外来種の選定基準</th>
<th>調査項目</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>154</td>
<td>イネ科</td>
<td>ハナヌカススキ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>155</td>
<td></td>
<td>メリケンカルカヤ</td>
<td>総合（その他）</td>
<td>国外</td>
</tr>
<tr>
<td>156</td>
<td></td>
<td>ハルガヤ</td>
<td>総合（その他）</td>
<td>国外</td>
</tr>
<tr>
<td>157</td>
<td></td>
<td>コバシソウ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>158</td>
<td></td>
<td>ヒメコバンソウ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>159</td>
<td></td>
<td>イヌムギ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>160</td>
<td></td>
<td>ムクゲチャヒキ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>161</td>
<td></td>
<td>ヒゲナガスメソノチャヒキ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>162</td>
<td></td>
<td>カモガヤ</td>
<td>産業</td>
<td>国外</td>
</tr>
<tr>
<td>163</td>
<td></td>
<td>ママガヤ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>164</td>
<td></td>
<td>シナダレズメガヤ</td>
<td>総合（重点）</td>
<td>国外</td>
</tr>
<tr>
<td>165</td>
<td></td>
<td>オニウナコケサ</td>
<td>産業</td>
<td>国外</td>
</tr>
<tr>
<td>166</td>
<td></td>
<td>ヒロハノウナコケサ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>167</td>
<td></td>
<td>ネズミホソムギ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>168</td>
<td></td>
<td>メリケンガヤツリ</td>
<td>総合（その他）</td>
<td>国外</td>
</tr>
<tr>
<td>169</td>
<td></td>
<td>シハガヤツリ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>170</td>
<td></td>
<td>シマガヤツリ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>171</td>
<td></td>
<td>キシュウズメソヒエ</td>
<td>総合（その他）</td>
<td>国外</td>
</tr>
<tr>
<td>172</td>
<td></td>
<td>シマスメソヒエ</td>
<td>総合（その他）</td>
<td>国外</td>
</tr>
<tr>
<td>173</td>
<td></td>
<td>チュゴスメソヒエ</td>
<td>総合（重点）</td>
<td>国外</td>
</tr>
<tr>
<td>174</td>
<td></td>
<td>アメリカスメソヒエ</td>
<td>産業</td>
<td>国外</td>
</tr>
<tr>
<td>175</td>
<td></td>
<td>タチスメソヒエ</td>
<td>総合（その他）</td>
<td>国外</td>
</tr>
<tr>
<td>176</td>
<td></td>
<td>モウソウチク</td>
<td>産業</td>
<td>Y</td>
</tr>
<tr>
<td>177</td>
<td></td>
<td>オオスメソノカタビラ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>178</td>
<td></td>
<td>セイパンモロコン</td>
<td>総合（その他）</td>
<td>Y</td>
</tr>
<tr>
<td>179</td>
<td></td>
<td>ナギナタガヤ</td>
<td>産業</td>
<td>国外</td>
</tr>
<tr>
<td>180</td>
<td>サトイモ科</td>
<td>ポタシウキサ</td>
<td>特定</td>
<td>総合（緊急）</td>
</tr>
<tr>
<td>181</td>
<td></td>
<td>カヤツリグサ科</td>
<td>ホンシキグサツツツリ</td>
<td>国外</td>
</tr>
<tr>
<td>182</td>
<td></td>
<td>カヤツリグサ</td>
<td>国外</td>
<td>メリケンガヤツリ</td>
</tr>
</tbody>
</table>

合計 48 科 182 種 6 種 53 種 21 種 159 種 105 種 125 種 143 種 118 種 35 種 35 種

※種名、学名及び種の配列は、「河川水辺の国勢調査のための生物リスト 平成26年度版」に準拠。
【外来種の選定基準】
・a: 外来生物法
 特定: 特定外来生物
・b: 我が国の生態系等に被害を及ぼすおそれのある外来種リスト（環境省2015年3月26日記者発表）
 定着(侵入): 定着予防(侵入予防) 定着(その他): 定着予防(その他)
 総合(緊急): 総合対策(緊急) 総合(重点): 総合対策(重点) 総合(その他): 総合対策(その他)
 産業: 産業管理
・c: 兵庫県ブラックリスト2010（兵庫県2016年11月26日変更）
 Z: 警戒種、Y: 注意種
・d: 外来種HB
 国外: 国外外来種
(5) 鳥類

加古川大堰およびその周辺における鳥類の外来種の確認状況を表6.2-21に示す。

加古川大堰およびその周辺において確認された外来種は、平成5年度から平成24年度の調査において、コジュケイ、ドバト、ベニスズメ、ハッカチョウの計3目4科4種であった。

選定基準別にみると、兵庫県BLでは、Z（警戒種）がドバトの計1種であった。

表6.2-21 加古川大堰およびその周辺の鳥類の外来種の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>外来種の選定基準</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a b c d H5 H10 H16 H24</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>キジ目</td>
<td>キジ科</td>
<td>コジュケイ</td>
<td></td>
<td>国外 ●</td>
</tr>
<tr>
<td>2</td>
<td>ハト目</td>
<td>ハト科</td>
<td>ドバト</td>
<td>Z 国外 ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>スズメ目</td>
<td>スズメ科</td>
<td>ベニスズメ</td>
<td>国外 ● ●</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ムクドリ科</td>
<td>ハッカチョウ</td>
<td>国外 ● ● ●</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

合計 3目 4科 4種 0種 0種 1種 4種 3種 3種 2種 2種

※種名、学名及び種の配列は、「河川水辺の国勢調査のための生物リスト 平成24年度版」に準拠。

【外来種の選定基準】
・a: 外来生物法
・b: 我が国の生態系等に被害を及ぼすおそれのある外来種リスト（環境省,2015年3月26日記者発表）
・c: 兵庫県ブラックリスト2010（兵庫県,2016年11月26日変更）
 • Z: 警戒種
・d: 外来種HB

国外: 国内外外来種
(6) 両生類・爬虫類・哺乳類

両生類・爬虫類・哺乳類の外来種の確認状況を表6.2-22に示す。

加古川大堰およびその周辺において確認された外来種は、平成7年度から平成27年度の調査において、両生類はウシガエル、爬虫類はミシシッピアカミミガメ、哺乳類はハツカネズミ、ヌートリア、アライグマ等の5種、計3綱4目7科7種であった。

選定基準別にみると、外来生物法では、特定外来生物のウシガエル、ヌートリア、アライグマの計3種であった。生態系被害防止外来種リストでは、総合対策（緊急）がミシシッピアカミミガメ、ヌートリア、アライグマの3種、総合対策（重点）がウシガエル、ハツカネズミ、ハクビシンの3種の計6種であった。兵庫県BLでは、Z（警戒種）がウシガエル、ヌートリア、アライグマ等の計5種であった。
表 6.2-22 加古川大堰およびその周辺の両生類・爬虫類・哺乳類の外来種の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>綱和名</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>外来種の選定基準</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a b c d H7</td>
<td>H12 H17</td>
</tr>
<tr>
<td>1</td>
<td>両生綱</td>
<td>無尾目</td>
<td>アカガエル科</td>
<td>ウシガエル</td>
<td>特定</td>
<td>総合（重点） Z</td>
</tr>
<tr>
<td>2</td>
<td>爬虫綱</td>
<td>カメ目</td>
<td>ヌマガメ科</td>
<td>ミシシッピアカミミガメ</td>
<td>総合 (緊急)</td>
<td>国外</td>
</tr>
<tr>
<td>3</td>
<td>哺乳綱</td>
<td>ネズミ目 (齧歯目)</td>
<td>ネズミ科</td>
<td>ハツカネズミ</td>
<td>総合 (重点)</td>
<td>国外</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>ヌートリア科</td>
<td>ヌートリア</td>
<td>特定</td>
<td>総合 (緊急) Z</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>ネコ目 (食肉目)</td>
<td>アライグマ科</td>
<td>アライグマ</td>
<td>特定</td>
<td>総合 (緊急) Z</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>イタチ科</td>
<td>チョウセンイタチ</td>
<td>Z</td>
<td>国外</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>ジャコウネコ科</td>
<td>ハクシン</td>
<td>総合 (重点) Z</td>
<td>国外</td>
</tr>
<tr>
<td>合計</td>
<td>3綱</td>
<td>4目</td>
<td>7科</td>
<td>7種</td>
<td>3種</td>
<td>6種</td>
</tr>
</tbody>
</table>

※種名、学名及び種の配列は、「河川水辺の国勢調査のための生物リスト 平成27年度版」に準拠。
【外来種の選定基準】
 a: 外来生物法
 特定: 特定外来生物
 b: 我が国の生態系等に被害を及ぼすおそれのある外来種リスト（環境省, 2015年3月26日記者発表）
 総合(緊急): 総合対策(緊急) 総合(重点): 総合対策(重点)
 c: 兵庫県ブラックリスト2010 (兵庫県, 2016年11月26日変更)
 Z: 警戒種
 d: 外来種HB
 国外: 国外来児種
参考：アライグマ、ヌートリアの農業被害について

加古川市では、イノシシ、アライグマ、ヌートリア、カラス、ニホンジカを対象に、農林水産業等に係る被害防止を図る目的として、「加古川市鳥獣被害防止計画（加古川市、平成27年）を策定し、計画期間を平成28年度から平成30年度と定めている。鳥獣被害防止計画の中では、対象となる鳥獣の重点的な捕獲、防護等の取り組みを行うこととなっており、対象種のうち、アライグマとヌートリアについては、河川水辺の国勢調査においても確認されている。これらの2種については、鳥獣被害防止計画の中で可能な限り捕獲駆除することとなっている。よって、これらの2種の加古川大堰周辺での農業被害について、参考資料として整理した。

1) アライグマ

アライグマの兵庫県内の農業被害の近年の状況を図6.2-8に示す。

兵庫県内の近年のアライグマの農業被害は、ほぼ横ばいで推移しているが、加古川大堰周辺での被害は、兵庫県内では大きくはないものの、被害は堰より上流側の範囲で増加傾向にある。

なお、加古川大堰の周辺地域および関係機関からのアライグマに係る害獣に対する問い合わせは、現在のところない。

※下図は、「兵庫県森林動物研究センター」のホームページ（http://www.wmi-hyogo.jp/index.html）で示される「兵庫県野生動物管理データ集」を使用。
2) ヌートリア

ヌートリアの兵庫県内の農業被害の近年の状況を図 6.2-9 に示す。

兵庫県内の近年のヌートリアの農業被害は、減少傾向にあるが、加古川大堰周辺での農業被害は、兵庫県内では大きくはないものの、被害は堰より下流側の範囲で部分的に増加傾向にある。

なお、加古川大堰の周辺地域および関係機関からのヌートリアに係る害獣に対する堰への問い合わせは、現在のところない。

図 6.2-9 ヌートリアの農業被害の近年の状況

※下図は、「兵庫県森林動物研究センター」のホームページ（http://www.wmi-hyogo.jp/index.html）で示される「兵庫県野生動物管理データ集」を使用。
陸上昆虫類等
加古川大堰およびその周辺における陸上昆虫類等の外来種の確認状況を表6.2-23に示す。
加古川大堰およびその周辺において確認された外来種は、平成4年度から平成28年度の調査において、アオマツムシ、シバツトガ、ブタクサムシ等の計25科32種であった。
選定基準別にみると、兵庫県BLでは、Y（注意種）がトガリアメンボ、アルファルファタコゾウムシの2種であった。外来種HBでは、国内外外来種がカンタン、アオマツムシ等の28種であった。

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>外来種の選定基準</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>目（飛翔目）</td>
<td>科（半翅目）</td>
<td>科（直翅目）</td>
<td>外来種HB</td>
<td>国外</td>
</tr>
<tr>
<td>1</td>
<td>パタ目</td>
<td>ツツムシ科</td>
<td>カンタン</td>
<td>国外</td>
<td>● ● ●</td>
</tr>
<tr>
<td>2</td>
<td>カメムシ目</td>
<td>マツガムシ科</td>
<td>ムシロムシ</td>
<td>国外</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>3</td>
<td>カメムシ目</td>
<td>マツガムシ科</td>
<td>ヨコヅナムシ</td>
<td>国外</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>4</td>
<td>シロチョウ目</td>
<td>シロチョウ科</td>
<td>ナンショウムシ</td>
<td>国外</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>5</td>
<td>タカブサハムシ目</td>
<td>タカブサハムシ科</td>
<td>ハミガキムシ</td>
<td>国外</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>6</td>
<td>ハエ目（双翅目）</td>
<td>ハエ目</td>
<td>サイコハエ</td>
<td>国外</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>7</td>
<td>ショウジョウバエ目</td>
<td>ショウジョウバエ科</td>
<td>キイロショウジョウバエ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>8</td>
<td>カタクリムシ目</td>
<td>カタクリムシ科</td>
<td>タカムシ</td>
<td>国外</td>
<td>● ● ●</td>
</tr>
<tr>
<td>9</td>
<td>ケシキスイ目</td>
<td>ケシキスイ科</td>
<td>チャイロケシキスイ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>10</td>
<td>カヤナガツツムシ目</td>
<td>カヤナガツツムシ科</td>
<td>モンガヤナガツツムシ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>11</td>
<td>クマガタテントウ目</td>
<td>クマガタテントウ科</td>
<td>リュウガタテントウ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>12</td>
<td>ショウジョウバエ目</td>
<td>ショウジョウバエ科</td>
<td>キイロショウジョウバエ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>13</td>
<td>ケショウジョウバエ目</td>
<td>ケショウジョウバエ科</td>
<td>イワニガケショウジョウバエ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>14</td>
<td>ショウジョウバエ目</td>
<td>ショウジョウバエ科</td>
<td>イワニガケショウジョウバエ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>15</td>
<td>ショウジョウバエ目</td>
<td>ショウジョウバエ科</td>
<td>イワニガケショウジョウバエ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>16</td>
<td>ショウジョウバエ目</td>
<td>ショウジョウバエ科</td>
<td>イワニガケショウジョウバエ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>17</td>
<td>ショウジョウバエ目</td>
<td>ショウジョウバエ科</td>
<td>イワニガケショウジョウバエ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>18</td>
<td>ショウジョウバエ目</td>
<td>ショウジョウバエ科</td>
<td>イワニガケショウジョウバエ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>19</td>
<td>ショウジョウバエ目</td>
<td>ショウジョウバエ科</td>
<td>イワニガケショウジョウバエ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>20</td>
<td>ショウジョウバエ目</td>
<td>ショウジョウバエ科</td>
<td>イワニガケショウジョウバエ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>21</td>
<td>ショウジョウバエ目</td>
<td>ショウジョウバエ科</td>
<td>イワニガケショウジョウバエ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>22</td>
<td>ショウジョウバエ目</td>
<td>ショウジョウバエ科</td>
<td>イワニガケショウジョウバエ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>23</td>
<td>ショウジョウバエ目</td>
<td>ショウジョウバエ科</td>
<td>イワニガケショウジョウバエ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>24</td>
<td>ショウジョウバエ目</td>
<td>ショウジョウバエ科</td>
<td>イワニガケショウジョウバエ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>25</td>
<td>ショウジョウバエ目</td>
<td>ショウジョウバエ科</td>
<td>イワニガケショウジョウバエ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>26</td>
<td>ショウジョウバエ目</td>
<td>ショウジョウバエ科</td>
<td>イワニガケショウジョウバエ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>27</td>
<td>ショウジョウバエ目</td>
<td>ショウジョウバエ科</td>
<td>イワニガケショウジョウバエ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>28</td>
<td>ショウジョウバエ目</td>
<td>ショウジョウバエ科</td>
<td>イワニガケショウジョウバエ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>29</td>
<td>ショウジョウバエ目</td>
<td>ショウジョウバエ科</td>
<td>イワニガケショウジョウバエ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>30</td>
<td>ショウジョウバエ目</td>
<td>ショウジョウバエ科</td>
<td>イワニガケショウジョウバエ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>31</td>
<td>ショウジョウバエ目</td>
<td>ショウジョウバエ科</td>
<td>イワニガケショウジョウバエ</td>
<td>国外</td>
<td>●</td>
</tr>
<tr>
<td>32</td>
<td>ショウジョウバエ目</td>
<td>ショウジョウバエ科</td>
<td>イワニガケショウジョウバエ</td>
<td>国外</td>
<td>●</td>
</tr>
</tbody>
</table>

※種名、学名および種の配列は「河川水辺の国勢調査のための生物リスト 平成26年度版」に準拠。
※ルリアリ、イマイツツハナバチの2種は、既往文献により国内外外来種の可能性が高い。
注1:種名:ルリアリ/学名:Ochetellus glaber、種名:イマイツツハナバチ/学名:Osmia jacoti
注2:カンタン、モンシロチョウの2種は、外来種ハンドブックによると国内外外来種となっているが、明治時代以前の移入と推測されており、河川水辺の国勢調査では在来種として扱っている。
【外来種の選定基準】
a:外来生物法
b:我が国の生態系等に被害を及ぼすおそれのある外来種リスト（環境省2015年3月26日記者発表）
c:兵庫県ブラックリスト2010（兵庫県2016年11月26日変更）
d:外来種HB
国外:国内外外来種

合計6目 25科 32種 0種 0種 2種 28種 7種 12種 11種 14種 18種
6.3 生物の生息・生育状況の変化の検証

生物の生息・生育状況の検証にあたっては、生物の生息・生育環境条件の変化の状況、加古川大堰の特性（立地条件、経過年数、既往調査結果等）を踏まえ、生物分類群毎に堰の管理・運用による影響を把握するために必要と考えられる分析対象種を抽出し、それら分析対象種が影響を受けると考えられる環境区分ごとに環境の状況と生物の生息・生育状況を経年的に比較、検討し、変化の状況を把握した。

重要種については、生物多様性や種の保存の観点から、個体数、分布状況、加古川大堰の事業との関連等の定量的な基本情報を整理するとともに、重要種と堰事業との関連性について、堰の管理・運用に伴う重要種への影響要因を分析し、重要種毎に分布位置、生態的特性から影響の有無を現状分析した。また、重要種の現況の課題について整理するとともに、今後の保全対策等の必要性や方向性についても評価を行った。

外来種についても、個体数、分布状況、加古川大堰の事業との関連等の定量的な基本情報を整理するとともに、外来種と堰の事業との関連性について、堰の管理・運用に伴う外来種の経年変化の傾向を分析した。また、外来種の現況の課題について整理するとともに、今後の駆除対策等の必要性や方向性についても評価を行った。

6.3.1 立地条件の整理

(1) 想定される環境への影響要因と生物の変化

加古川大堰で想定される環境への影響要因と生物の生息・生育環境の変化フローを図6.3-1に示す。

加古川大堰の存在・供用により、堰の湛水域内、流入河川、下流河川および堰の湛水域周辺において環境の変化が起こり、そこに生息する様々な生物の生息・生育に影響を与えているものと想定される。

加古川大堰の湛水域内、流入河川、下流河川および堰の湛水域周辺における環境の変化と生物への影響要因および生物の生息・生育環境条件の変化を想定するとともに、加古川大堰の特性（立地条件、経過年数、既往調査結果等）を踏まえて、堰の管理・運用と関連して影響を及ぼすおそれのある生物の生息・生育状況の変化について検証を実施した。
図 6.3-1 加古川大堰で想定される環境への影響要因と生物の生息・生育環境の変化
(2) 加古川大堰の特性の把握

生物相の整理・分析にあたり、加古川大堰の特性（立地条件、経過年数、既往定期報告書）について、その概要を整理した。

1）加古川大堰の立地条件

加古川大堰は、兵庫県加古川市に位置し、加古川水系加古川の河口から12km地区に建設された多目的堰である。周辺の水域は、堰下流付近も含め、感潮区間に該当しない。

加古川市街地（加古川市役所を起点とした場合）から加古川大堰までの距離は約10kmであり、市街地から車で15分程度である。JRによるアクセスは、「加古川駅」から最寄駅は「JR加古川線 神野駅」、もしくは「JR加古川線 厄神駅」で、いずれの駅からも約1.5kmと中間地区にある。両駅より、徒歩で15分程度である。市街地へのアクセスも容易であることから、周辺は大阪都市圏の通勤圏となっており、住宅地も多く存在する。

上記のような立地条件を踏まえると、加古川大堰およびその周辺の交通量は比較的に多い状況と考えられ、堰周辺の自然環境にも人為的な影響がある程度の影響は及ぼしているものと想定される。

2）加古川大堰の経過年数

加古川大堰の事業の経緯を表6.3-1に示す。

加古川大堰は、平成元年4月より管理を開始し、平成29年度4月で、管理開始後28年を経ている。

加古川大堰の建設事業は、昭和43年に予備調査を開始し、昭和55年11月に工事用道路付替工事の開始をもって建設事業の着手となり、大堰本体は、昭和56年11月から昭和59年10月までの建設工事を経て、完成している。その後、試験湛水を経て、平成元年より管理・運用を開始している。

加古川大堰の管理・運用を開始した平成元年から数年間は、人工の湛水域の出現により、自然環境はある程度の変化が生じたものと考えられるが、28年を経た近5ヵ年の自然環境は、安定した湛水域が維持されており、大きな変化はないものと想定される。

表6.3-1 加古川大堰の事業の経緯

<table>
<thead>
<tr>
<th>年 月</th>
<th>事業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>昭和43年4月</td>
<td>予備調査を開始</td>
</tr>
<tr>
<td>昭和54年4月</td>
<td>実施計画調査を開始</td>
</tr>
<tr>
<td>昭和55年11月</td>
<td>建設事業着手</td>
</tr>
<tr>
<td>昭和56年3月</td>
<td>基本計画告示</td>
</tr>
<tr>
<td>昭和59年10月</td>
<td>本体完成</td>
</tr>
<tr>
<td>昭和62年4月</td>
<td>試験湛水開始</td>
</tr>
<tr>
<td>平成元年3月</td>
<td>試験湛水終了</td>
</tr>
<tr>
<td>平成元年4月</td>
<td>管理開始</td>
</tr>
<tr>
<td>平成元年7月</td>
<td>竣工式</td>
</tr>
<tr>
<td>平成8年4月</td>
<td>貯水池右岸に「加古川市立漕艇センター」開設</td>
</tr>
<tr>
<td>平成29年4月</td>
<td>管理・運用開始後28年が経過</td>
</tr>
</tbody>
</table>

6-148
3) 加古川大堰の既往定期報告書等における生物の変化の状況

a. 魚類
加古川大堰周辺の水域環境は、下流付近も含め感潮区間では該当しない。よって、上下流も含め堰の周辺は、純淡水魚および河川と海を往来する回遊魚の生息環境となっている。
堰の主ゲートは、基本的に常時締め切られており、堰の上流側には湛水域が広がっており、止水性魚類の生息環境を創出している。
堰の左右岸には、魚道が整備されており、堰周辺に生息する魚類の移動経路として利用されている。
なお、加古川大堰が完成する以前より、五ヶ井堰および上部井堰が存在し、既に魚類の生息に係る連続的分布に影響が生じていた可能性がある。

b. 底生動物
加古川大堰周辺の水域環境は、下流付近も含め感潮区間では該当しない。よって、上下流も含め堰の周辺は、淡水性および河川と海を往来する回遊性の底生動物の生息環境となっている。
堰の主ゲートは、基本的に常時締め切られており、堰の上流側には湛水域が広がっており、止水性の底生動物の生息環境を創出している。
堰の左右岸には、魚道が整備されており、堰周辺に生息する底生動物の移動経路として利用されている。
なお、加古川大堰が完成する以前より、五ヶ井堰および上部井堰が存在し、既に底生動物の生息に係る連続的分布に影響が生じていた可能性がある。

c. 植物
加古川大堰の上下流側には、堰の存在に伴う流速低下に伴い、土砂が堆積し、中州が形成されている。一部に砂州の固定化、樹林化の傾向がみられるものの、出水時には土砂が流出し、自然裸地を形成し、擾乱頻度の高い環境に生育する植物の生育環境となっている。
また、加古川の管理区間においては、輪伐による樹木管理を実施しており、中州が一面に人工裸地化しないように、配慮している。
水際の高水敷には、河畔林が広がっており、樹林環境に生育する植物の生育環境となっているほか、出水時には中州程度ではないものの、土砂の流出とともに一部が裸地化し、中程度の擾乱頻度の環境に生育する植物の生育環境となっている。
堤防近くの河川敷は、木本等は生育しておらず、広く草本環境となっており、人の出入りが比較的ある環境となっているほか、堰下流にはグランド等のある河川敷緑地が整備されており、人の出入りの頻度が高い環境となっている。よって、堤防近くの河川敷は、外来種等の拡散を招く恐れのある人為的影響の大きい環境となっている。
d. 鳥類
加古川大堰の上流側の湛水域は、止水環境を休息場や餌場として利用する水鳥等の生息環境となっている。特に、冬季は冬鳥のカイツブリ類やカモ類が飛来する可能性が高いものと考えられる。また、湛水域は、漕艇場として利用されているおり、定期的にレガッタ等のイベントも開催されており、止水環境を利用する鳥類に対し、比較的に人為的な影響が及ぼしているものと想定される。
湛水域を除くその他の環境は、植生に応じて、樹林性および草地性の鳥類の生息環境が創出されている。
なお、付近に猛禽類の営巣木の確認はなく、サギ類やツバメ類等の集団分布地は確認されていない。

e. 両生類・爬虫類・哺乳類
加古川大堰の上流の湛水域は、止水性のカエル類、カメ類、ネズミ類等の両生類、爬虫類、哺乳類の生息環境となっていると想定される。
湛水域より上流側は、比較的に攪乱頻度の高い河原環境が分布しており、河原環境を利用する両生類、爬虫類、哺乳類の生息環境となっている。
比較的に攪乱頻度の高い一部が裸地化した河原環境は、カメ類の産卵場として利用されている可能性もある。

f. 陸上昆虫類等
加古川大堰の上流の湛水域は、止水性の陸上昆虫類等の生息環境となっていると想定される。
湛水域より上流側は、比較的に攪乱頻度の高い河原環境が分布しており、河原環境を利用するクモ類、バッタ類、ゴミムシ類等の陸上昆虫類等の生息環境となっている。
湛水域を除くその他の環境は、植生に応じて、樹林性および草地性の陸上昆虫類等の生息環境が創出されている。
なお、堤防近くの河川敷は、人の出入りが比較的ある環境となっているほか、堰下流にはグラウンド等が整備された河川公園が存在し、人の出入りの頻度が高い環境となっており、外来種等の拡散を招く恐れのある人為的な影響の大きい環境となっている。
(3) 環境条件の変化の把握
1) 堰の諸元および運用実績

加古川大堰の施設の概要を図 6.3-2 に、平成元年から平成 28 年度までの運用実績を図 6.3-3 に示す。

加古川大堰は、加古川水系幹川の河口より約 12km 地区の美嚢川合流点の下流に設置された可動堰であり、「治水」、「流水の正常な機能の維持」、「都市用水」を図るために建設された多目的堰である。

a. 治水
加古川大堰地区の改修計画高水流量 7,400m³/s を安全に流下させるため、加古川改修計画にあわせて、五ヶ井堰（12.4km 地区付近：当時の疎通能力 Q=4,900 m³/s）および上部井堰の撤去等によって河道の疎通能力の増大を図り、加古川下流域の水害を防除する。

b. 流水の正常な機能の維持
下流部の既得用水の補給等、流水の正常な機能の維持と増進を図る。

c. 都市用水
加古川大堰の設置によって、加古川下流域の都市用水として、新たに 40,000m³/日の取水を可能とする。

東播磨用水農業水利事業との合併事業である県営東播磨広域上水道事業および県営加古川工業用水道事業の取水を行うための取水位を確保する。
図 6.3-2 加古川大堰の施設の概要

ダム等名
（貯水池名） 加古川大堰
水系名 一級河川
河川名 加古川水系
管理事務所等名 加古川
所在地 （ダム等施設） 加古川
完成年度 昭和63年度
管理者 国土交通省

＜ダム等の外観＞

＜ダム等の諸元＞

<table>
<thead>
<tr>
<th>形式</th>
<th>可動堰</th>
<th>目的</th>
<th>N</th>
<th>A</th>
<th>W</th>
<th>I</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>堤高</td>
<td>5.3 (m)</td>
<td>堤体・水槽容量</td>
<td>1,960 (m³)</td>
<td>有効貯水容量</td>
<td>1,640 (m³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>堤頂長</td>
<td>273.5 (m)</td>
<td>洪水調節容量</td>
<td>—— (m³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>堤体積</td>
<td>—— (m³)</td>
<td>利水容量</td>
<td>上水 : 650 (m³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>浸没面積</td>
<td>1,657 (km²)</td>
<td>不特定 : 1,010 (m³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湖面面積</td>
<td>0.82 (km²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

洪水調節 かんがい

<table>
<thead>
<tr>
<th>仕様等</th>
<th>施設名</th>
<th>個数</th>
</tr>
</thead>
<tbody>
<tr>
<td>流入量</td>
<td>設備面積</td>
<td>特定用水取水量</td>
</tr>
<tr>
<td>(m³/s)</td>
<td>(a²/s)</td>
<td>(ha)</td>
</tr>
<tr>
<td>——</td>
<td>——</td>
<td>——</td>
</tr>
</tbody>
</table>

洪水管理 施設名

<table>
<thead>
<tr>
<th>種類</th>
<th>施設名</th>
<th>個数</th>
<th>仕様等</th>
</tr>
</thead>
<tbody>
<tr>
<td>流入</td>
<td>ダート戸: T.P.+7.20m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>流入</td>
<td>縦断面: 4.1m×90.2m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>流入</td>
<td>－</td>
<td></td>
<td></td>
</tr>
<tr>
<td>流入</td>
<td>低水取水 ダート戸: T.P.+9.900m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>流入</td>
<td>－</td>
<td></td>
<td></td>
</tr>
<tr>
<td>流入</td>
<td>堤頂長 273.5 (m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>流入</td>
<td>堤 高 5.3 (m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>流入</td>
<td>総貯水容量 1,960 (千m³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>流入</td>
<td>有効貯水容量 1,640 (千m³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>流入</td>
<td>出力 100,000 (kW)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>流入</td>
<td>電力量 未定 (MWh)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>流入</td>
<td>取水量 未定 (m³/日)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(大) 淀水調節, (非) 洪水管理

＜ダム等の外観＞

＜計画洪水流量図＞

＜容量分配図＞

図 6.3-2 加古川大堰の施設の概要
図 6.3-3 加古川大堰の貯水池運用実績
2）堰の湛水域内における水温・水質の状況
加古川大堰における水温と水質の変化を図 6.3-4 に示す。
水温および水質の変化の概要は、下記のとおりである。

a. 水温
概ね、2℃から 30℃の範囲内で季節的な変動がみられる。

b. pH
概ね、pH7.0から pH8.0で推移しているものの、4月から 9月にかけて pH8.5 を超過する場合がある。
なお、加古川が該当する河川 B 類型の環境基準は、pH6.5 から pH8.5 の範囲内となっており、4月から 9月にかけての pH8.5 を超過する状況は、環境基準を満たしていない。

c. DO
概ね、夏季に低く、冬季に高い季節変動を示し、8mg/L から 15 mg/L程度の範囲内で推移しているが、夏季に高くなる場合もあ る。
なお、加古川が該当する河川 B 類型の環境基準は、5mg/L 以上となっており、観測値は環境基準を満たしている。

d. BOD
概ね、1mg/L から 3mg/L程度の範囲内で推移しており、夏季に高くなる傾向がある。
なお、加古川が該当する河川 B 類型の環境基準は、3mg/L 以上となっており、観測値は環境基準を満たしている。

e. SS
概ね、20mg/L 以下で推移しており、農繁期前の 2月から 5月にかけて、高くなる傾向がある。
なお、加古川が該当する河川 B 類型の環境基準は、25mg/L 以下となっており、観測値は環境基準を満たしている。

f. 大腸菌群数
春季から夏季にかけて、増加傾向で 100,000MPN/100mL を超過する傾向がある。
なお、加古川が該当する河川 B 類型の環境基準は、5,000MPN/100mL 以下となっており、100,000MPN/100mL を超過する状況は、環境基準を満足していない。ただし、自然状況下において、環境基準が定める大腸菌群数を保持することは困難であり、環境基準の定める数値は、見直される可能性がある。

g. COD
概ね、2mg/L から 5mg/L程度の範囲内で推移している。
h. T-N
概ね、0.5mg/Lから1.0mg/L程度の範囲内で推移している。

i. T-P
概ね、0.05mg/Lから0.15mg/L程度の範囲内で推移しており、夏季に観測値が若干高くなる傾向がある。

j. クロロフィル a
堰の湛水域の流入部のみで観測しているが、概ね、40μg/L以下で推移している。夏季に、50μg/L以上となる場合もある。
図 6.3-4（1） 加古川大堰供用前
測定データなし

大住橋、相生橋は夏場の水温だけのデータがあるためそちらに引っ張られた。
図 6.3-4(2) 加古川大堰の湛水域、流入河川および下流河川における水温・水質の変化
図 6.3-4(3) 加古川大堰の湛水域、流入河川および下流河川における水温・水質の変化
3) 堰の湛水域周辺の河床状況
加古川大堰における平成元年度、平成23年度、平成28年における河床状況の変化を図6.3-5に示す。
堰の湛水域内の堆砂は、ほぼ均等に進んでいるものの、若干、堰の直上流部に該当する12.0〜14.2kmの範囲で堰の機能に影響のない程度で堆積の傾向がみられる。
なお、貯水池容量を維持するための河道掘削は、掘削が容易な堰の湛水域の流入端に該当する15.2〜16.4kmの範囲で実施されている。

図 6.3-5 加古川大堰の湛水域周辺における河床状況の変化
4) 加古川で内水面漁業における放流実績

加古川での平成 7 年から平成 27 年までの内水面漁業における放流実績を表6.3-2に示す。

加古川では、これまでにニホンウナギ、コイ、フナ類、モロコ類、アユ、ニジマス、サツキマス（アマゴ）、サクラマス（ヤマメ）、ワカサギ、モクズガニ等の放流が実施されている。年毎に魚種により放流量に違いがあるものの、近 5 年では、フナ類の放流量が増加しており、モロコ類、アユ、サツキマス（アマゴ）、ワカサギは概ね横ばいで、ニジマス、モクズガニは減少している。ニホンウナギは、平成 27 年のみ放流量を増やしている。コイとサクラマス（ヤマメ）は、平成 16 年以降の放流は実施されていない。

内水面漁業に放流は、水域の生物の生息状況に影響を及ぼすものと考えられる。

<table>
<thead>
<tr>
<th>年</th>
<th>ニホンウナギ</th>
<th>コイ</th>
<th>フナ類</th>
<th>モロコ類</th>
<th>アユ</th>
<th>ニジマス</th>
<th>サツキマス</th>
<th>サクラマス</th>
<th>ワカサギ</th>
<th>モクズガニ</th>
</tr>
</thead>
<tbody>
<tr>
<td>H7</td>
<td>260</td>
<td>10,000</td>
<td>10,000</td>
<td>0</td>
<td>6,500</td>
<td>3,000</td>
<td>0</td>
<td>0</td>
<td>300</td>
<td>25,000</td>
</tr>
<tr>
<td>H8</td>
<td>300</td>
<td>10,000</td>
<td>10,000</td>
<td>0</td>
<td>7,985</td>
<td>20,000</td>
<td>0</td>
<td>0</td>
<td>3,000,000</td>
<td>0</td>
</tr>
<tr>
<td>H9</td>
<td>300</td>
<td>10,000</td>
<td>10,000</td>
<td>100,000</td>
<td>5,119</td>
<td>16,800</td>
<td>0</td>
<td>22,700</td>
<td>0</td>
<td>36,000</td>
</tr>
<tr>
<td>H10</td>
<td>280</td>
<td>10,000</td>
<td>10,000</td>
<td>100,000</td>
<td>10,600</td>
<td>27,800</td>
<td>0</td>
<td>26,500</td>
<td>0</td>
<td>42,000</td>
</tr>
<tr>
<td>H11</td>
<td>890</td>
<td>10,000</td>
<td>10,000</td>
<td>200,000</td>
<td>9,435</td>
<td>33,200</td>
<td>0</td>
<td>15,500</td>
<td>0</td>
<td>14,600</td>
</tr>
<tr>
<td>H12</td>
<td>500</td>
<td>10,000</td>
<td>20,000</td>
<td>1,000</td>
<td>11,000</td>
<td>35,000</td>
<td>0</td>
<td>63,000</td>
<td>0</td>
<td>24,000</td>
</tr>
<tr>
<td>H13</td>
<td>500</td>
<td>10,000</td>
<td>10,000</td>
<td>1,000</td>
<td>9,468</td>
<td>9,600</td>
<td>0</td>
<td>25,000</td>
<td>0</td>
<td>30,000</td>
</tr>
<tr>
<td>H14</td>
<td>740</td>
<td>10,000</td>
<td>10,000</td>
<td>1,000</td>
<td>9,315</td>
<td>18,500</td>
<td>0</td>
<td>10,000</td>
<td>0</td>
<td>30,000</td>
</tr>
<tr>
<td>H15</td>
<td>740</td>
<td>10,000</td>
<td>10,000</td>
<td>1,000</td>
<td>9,315</td>
<td>18,500</td>
<td>0</td>
<td>10,000</td>
<td>0</td>
<td>30,000</td>
</tr>
<tr>
<td>H16</td>
<td>330</td>
<td>0</td>
<td>21,500</td>
<td>1,000</td>
<td>6,993</td>
<td>13,000</td>
<td>8,000</td>
<td>0</td>
<td>300</td>
<td>9,000</td>
</tr>
<tr>
<td>H17</td>
<td>300</td>
<td>0</td>
<td>10,000</td>
<td>1,000</td>
<td>7,025</td>
<td>11,000</td>
<td>11,000</td>
<td>0</td>
<td>0</td>
<td>7,600</td>
</tr>
<tr>
<td>H18</td>
<td>340</td>
<td>0</td>
<td>10,000</td>
<td>1,000</td>
<td>8,000</td>
<td>10,000</td>
<td>25,500</td>
<td>0</td>
<td>300</td>
<td>18,000</td>
</tr>
<tr>
<td>H19</td>
<td>200</td>
<td>0</td>
<td>10,000</td>
<td>14,000</td>
<td>6,000</td>
<td>10,000</td>
<td>13,000</td>
<td>0</td>
<td>0</td>
<td>7,500</td>
</tr>
<tr>
<td>H20</td>
<td>200</td>
<td>0</td>
<td>10,000</td>
<td>1,000</td>
<td>6,000</td>
<td>10,000</td>
<td>15,000</td>
<td>0</td>
<td>1,300</td>
<td>7,500</td>
</tr>
<tr>
<td>H21</td>
<td>200</td>
<td>0</td>
<td>10,000</td>
<td>24,000</td>
<td>6,000</td>
<td>10,000</td>
<td>13,000</td>
<td>0</td>
<td>1,300</td>
<td>7,500</td>
</tr>
<tr>
<td>H22</td>
<td>200</td>
<td>0</td>
<td>10,000</td>
<td>4,000</td>
<td>6,000</td>
<td>10,000</td>
<td>11,650</td>
<td>0</td>
<td>1,300</td>
<td>0</td>
</tr>
<tr>
<td>H23</td>
<td>200</td>
<td>0</td>
<td>10,000</td>
<td>4,000</td>
<td>6,000</td>
<td>10,000</td>
<td>11,650</td>
<td>0</td>
<td>1,300</td>
<td>0</td>
</tr>
<tr>
<td>H24</td>
<td>140</td>
<td>0</td>
<td>14,000</td>
<td>0</td>
<td>6,200</td>
<td>7,600</td>
<td>5,000</td>
<td>0</td>
<td>2,000</td>
<td>5,400</td>
</tr>
<tr>
<td>H25</td>
<td>200</td>
<td>0</td>
<td>29,600</td>
<td>4,000</td>
<td>5,000</td>
<td>*</td>
<td>14,000</td>
<td>0</td>
<td>2,500</td>
<td>0</td>
</tr>
<tr>
<td>H26</td>
<td>200</td>
<td>0</td>
<td>18,600</td>
<td>8,000</td>
<td>5,000</td>
<td>5,500</td>
<td>16,000</td>
<td>0</td>
<td>2,000</td>
<td>450</td>
</tr>
<tr>
<td>H27</td>
<td>450</td>
<td>0</td>
<td>40,000</td>
<td>12,400</td>
<td>4,800</td>
<td>4,400</td>
<td>6,100</td>
<td>0</td>
<td>2,000</td>
<td>0</td>
</tr>
</tbody>
</table>

* 平成24年のニジマスは、4,000kgの放流を実施している。
※表内の数値は、「兵庫県統計書」の記載内容を参照。
5) 人による堰の湛水域周辺の利用状況

加古川大堰およびその周辺の河川空間利用実態調査の利用者場所別の利用者数の変化を図 6.3-6 に示す。

加古川大堰周辺の利用者数は、堰下流の 10.0kmから湛水域の端部にあたる 16.0kmまでの範囲を整理している。

調査年度が進むにつれて、「高水敷 スポーツ」および「高水敷 散策・その他」の利用者数が減少しており、要因として、堰下流の野球場、グランドゴルフ場がある河川敷緑地が整備されており、河川敷緑地の利用者が減少していることが考えられる。

一方で、「水面 水上スポーツ」の利用者数は、経年で一定数を維持しており、加古川大堰の湛水域が漕艇場として利用され、レガッタ等のイベントを通じて、継続的に利用されていることが要因と考えられる。

平成 26 年度は、平成 21 年度と比較し、「堤防 散策・その他」の利用者数が増加しており、近年の健康ブームもあり、歩きやすく、一般車両の通行もない管理用道路をジョギングやウォーキング等で利用する人が増加していることが要因と考えられる。

なお、加古川大堰の管理用道路は、日本陸上連盟のマラソンの公認コースとなっている。

図 6.3-6 加古川大堰およびその周辺の人々の利用状況の変化
6.3.2 生物相の変化の把握

(1) 分析項目の選定

生物相に係る分析項目の選定結果の一覧を表6.3-3に、生物の生息・生育状況の変化を把握する際の視点と整理データ年度を表6.3-4に示す。

加古川大堰の存在・供用に伴う環境条件の変化、加古川大堰の特性（立地条件、経過年数、既往定期報告書等）から生物相の変化を踏まえ、湛水域管理・運用と関連して影響を及ぼすおそれのある生物群の分析項目を抽出した。

表6.3-3（1） 生物相に係る分析項目の選定結果の一覧

<table>
<thead>
<tr>
<th>分析項目</th>
<th>特性条件</th>
<th>選定理由</th>
</tr>
</thead>
<tbody>
<tr>
<td>魚類</td>
<td></td>
<td></td>
</tr>
<tr>
<td>止水性魚類</td>
<td>既往調査</td>
<td>湛水域では、止水性魚類のギンブナやコウライモロコ等の在来種の生息情報があるほか、外来種のオオクチバスやブルーギルの生息情報もあり、外来種の捕食による影響が止水性魚類の生息状況に影響する可能性がある。</td>
</tr>
<tr>
<td></td>
<td>立地条件</td>
<td>湛水域に水質変化があった場合、止水性魚類の生息状況に影響する可能性がある。</td>
</tr>
<tr>
<td></td>
<td>経過年数</td>
<td>堰の管理開始後28年が経過している。</td>
</tr>
<tr>
<td>回遊性魚類</td>
<td>既往調査</td>
<td>ニホンウナギ、ウグイ、アユ等の多様な回遊性魚類の生息情報がある。</td>
</tr>
<tr>
<td></td>
<td>立地条件</td>
<td>堰による河川域の分断が常態化しており、回遊性魚類の生息状況に影響している可能性がある。</td>
</tr>
<tr>
<td></td>
<td>経過年数</td>
<td>堰の管理開始後28年が経過している。</td>
</tr>
<tr>
<td>底生動物</td>
<td>回遊性底生動物</td>
<td>既往調査</td>
</tr>
<tr>
<td></td>
<td>立地条件</td>
<td>堰による河川域の分断が常態化しており、回遊性底生動物の生息状況に影響している可能性がある。</td>
</tr>
<tr>
<td></td>
<td>経過年数</td>
<td>堰の管理開始後28年が経過している。</td>
</tr>
</tbody>
</table>
表 6.3-3（2） 生物相に係る分析項目の選定結果の一覧

<table>
<thead>
<tr>
<th>分析項目</th>
<th>特性条件</th>
<th>選定理由</th>
<th>検証対象環境区分</th>
</tr>
</thead>
<tbody>
<tr>
<td>動植物フランクトン</td>
<td>優占種</td>
<td>既往調査</td>
<td>堰の湛水域</td>
</tr>
<tr>
<td></td>
<td></td>
<td>立地条件</td>
<td>流入河川</td>
</tr>
<tr>
<td></td>
<td></td>
<td>経過年数</td>
<td>下流河川</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>堰の湛水域周辺</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>動植物フランクトン</th>
<th>優占種</th>
<th>既往調査</th>
<th>堰の湛水域</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>流入河川</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>下流河川</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>堰の湛水域周辺</td>
</tr>
</tbody>
</table>

- 湿地の植物プランクトンは珪藻綱や緑藻綱等、動物プランクトンは単生殖巣綱等に属する種を中心に生息・生育情報がある。

- 湿地に水質変化があった場合、動物プランクトンの生息状況に影響する可能性がある。

- 堰の管理開始後 28 年が経過している。

<table>
<thead>
<tr>
<th>植物</th>
<th>河道内植生</th>
<th>既往調査</th>
<th>堰の湛水域</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>流入河川</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>下流河川</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>堰の湛水域周辺</td>
</tr>
</tbody>
</table>

- 河道内植生は、草本群落が中心であるが、ヤナギを中心とする木本群落も一定割合で分布している。

- 湿地は、管理上、水位変動が少なく、年間を通じて安定した水環境となっており、流入河川や下流河川を含む水際部の搅乱頻度が減少した場合、植生の群落組成に影響する可能性がある。

- 堰の管理開始後 28 年が経過している。

<table>
<thead>
<tr>
<th>鳥類</th>
<th>水鳥</th>
<th>既往調査</th>
<th>堰の湛水域</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>流入河川</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>下流河川</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>堰の湛水域周辺</td>
</tr>
</tbody>
</table>

- 湿地は、管理上、水位変動が少なく、年間を通じて安定した水環境となっており、湿地水鳥の生息状況に影響する可能性がある。

- 堰の管理開始後 28 年が経過している。

<table>
<thead>
<tr>
<th>両生類・爬虫類・哺乳類</th>
<th>河川環境利用種</th>
<th>既往調査</th>
<th>堰の湛水域</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>流入河川</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>下流河川</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>堰の湛水域周辺</td>
</tr>
</tbody>
</table>

- 湿地の河川環境利用種として、カヤネズミの生息情報がある。

- 湿地域の存在に伴う背水区間の流速低下により、流入河川の河川環境が変質し、河川環境利用種の生息状況に影響する可能性がある。

- 堰の管理開始後 28 年が経過している。
表 6.3-3（3） 生物相に係る分析項目の選定結果の一覧

<table>
<thead>
<tr>
<th>分析項目</th>
<th>特性条件</th>
<th>選定理由</th>
</tr>
</thead>
<tbody>
<tr>
<td>陸上昆虫類等</td>
<td>既往調査</td>
<td>・イサゴコモリグモ、ヒョウゴミズギワゴミムシ等の河原環境利用種の生息情報がある。</td>
</tr>
<tr>
<td>河原環境利用種</td>
<td>立地条件</td>
<td>・湛水域の存在に伴う背水区間の流速低下により、流入河川の河原環境が変質し、河原環境利用種の生息状況に影響する可能性がある。</td>
</tr>
<tr>
<td></td>
<td>経過年数</td>
<td>・堰の管理開始後28年が経過している。</td>
</tr>
</tbody>
</table>

表 6.3-4 生物の生息・生育状況の変化を把握する際の視点と整理データ年度

<table>
<thead>
<tr>
<th>想定した生物の生息・生育環境条件の変化</th>
<th>生物の生息・生育状況の変化</th>
<th>整理データ年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>①河川域の連続性の分断</td>
<td>魚類</td>
<td>③湛水域の存在、⑤水質の変化により、止水性魚類（コイ、フナ類）が生息しているか。</td>
</tr>
<tr>
<td>②土砂供給量の減少</td>
<td>①河川域の連続性の分断、③湛水域の存在により、回遊性魚類の生息状況が改善されていないか。</td>
<td></td>
</tr>
<tr>
<td>③湛水域の存在</td>
<td>①河川域の連続性の分断、③湛水域の存在により、回遊性魚類の生息状況が改善されていないか。</td>
<td></td>
</tr>
<tr>
<td>④水温の変化</td>
<td>底生動物</td>
<td>①河川域の連続性の分断、③湛水域の存在により、回遊性底生動物の生息状況が改善されていないか。</td>
</tr>
<tr>
<td>⑤水質の変化</td>
<td>動植物プランクトン</td>
<td>③湛水域の存在、⑤水質の変化により、動植物プランクトンの代表種（優占種）が変化しているか。</td>
</tr>
<tr>
<td>⑥流下有機物（落ち葉等）の質および量の変化</td>
<td>植物</td>
<td>②土砂供給量の変化、⑧河原環境の出現・樹林化、⑨河床の擾乱頻度の減少等により、河原の樹林化や自然裸地の減少が生じているか。</td>
</tr>
<tr>
<td>⑦生息・生育地の減少に伴う生息・生育数の減少</td>
<td>鳥類</td>
<td>③湛水域の存在により、水鳥がどの程度飛来しているか。</td>
</tr>
<tr>
<td>⑧河原環境の出現・樹林化</td>
<td>両生類・哺乳類</td>
<td>②土砂供給量の変化、⑧河原環境の出現・樹林化、⑨河床の擾乱頻度の減少等により、河原環境を利用して産卵する両生類、倉鼠類、哺乳類等の生息状況に変化はないか。</td>
</tr>
<tr>
<td>⑨河床の擾乱頻度の減少</td>
<td>陸上昆虫類等</td>
<td>⑨河床の擾乱頻度の減少により、河原の樹林化がおこり、河原環境を利用する種の生息状況が変化しているか。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>検証対象環境区分</th>
<th>堰の湛水域</th>
<th>流入河川</th>
<th>下流河川</th>
<th>堰の湛水域周辺</th>
</tr>
</thead>
<tbody>
<tr>
<td>堰の湛水域</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6-164
(2)生物相の変化の把握
1) 魚類
a. 堰の湛水域内における止水性魚類の経年変化
加古川大堰およびその周辺における止水性魚類の確認状況として湛水域内を表 6.3-5に、参考として下流河川と流入河川を表 6.3-6に、止水性魚類の経年の確認状況の変化を図 6.3-7に示す。

分析結果の概要は、下記のとおりである。
○平成14年以前は、外来種のタイリクバラタナゴが優占していたが、以降はコウライモロコが優占する状況となっている。
○直近の平成24年度もコウライモロコが優占しているが、前回の平成19年度に比べ、個体数は減っている。
○特定外来生物のブルーギルとオオクチバスの2種は、平成14年度以降では、個体数に大きな変化はない。

最新の平成24年度の調査では、堰の湛水域内の優占種であるコウライモロコの生息数が減少している可能性がある。特定外来生物である魚食性のブルーギル、オオクチバスの生息状況に大きな変化がない点を踏まえると、コウライモロコの生息数減少の要因として、ブルーギル、オオクチバスの捕食圧に起因する可能性がある。
なお、コウライモロコの生息状況は、魚類調査における魚類の採取数が調査時の天候や水温、流れ等の環境条件に大きく左右されることを踏まえると、次回以降の調査結果も参考に評価する必要がある。
管理・運用開始10年程度が経過の後、湛水域の止水性魚類の外来種がタイリクバラタナゴからコウライモロコに置き換わっている。タイリクバラタナゴを含みタナゴ類の生息状況は、繁殖環境となる二枚貝の生息状況に多くの影響を受けるといわれており、加古川大堰の湛水域周辺でも、二枚貝の生息数が減少した可能性があるが、詳細は不明である。

表 6.3-5 加古川大堰およびその周辺における止水性魚類の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>湛水域内</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H2</td>
<td>H4</td>
<td>H9</td>
<td>H14</td>
</tr>
<tr>
<td>1</td>
<td>コイ目</td>
<td>コイ科</td>
<td>コイ</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>コイ</td>
<td>コイ（飼育品種）</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>ゲンゴロウブナ</td>
<td>0.00</td>
<td>0.00</td>
<td>2.00</td>
</tr>
<tr>
<td>4</td>
<td>キンブナ</td>
<td>0.00</td>
<td>0.00</td>
<td>18.33</td>
</tr>
<tr>
<td>5</td>
<td>オオキンブナ</td>
<td>0.00</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>6</td>
<td>ガラシス属</td>
<td>0.00</td>
<td>28.50</td>
<td>2.33</td>
</tr>
<tr>
<td>7</td>
<td>サンブナ</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>カネモロコ</td>
<td>0.00</td>
<td>0.50</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>イチモンジタナゴ</td>
<td>0.00</td>
<td>2.50</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>タイリクバラタナゴ</td>
<td>2.00</td>
<td>44.50</td>
<td>39.00</td>
</tr>
<tr>
<td>11</td>
<td>モツゴ</td>
<td>0.00</td>
<td>2.50</td>
<td>1.67</td>
</tr>
<tr>
<td>12</td>
<td>タモロコ</td>
<td>0.00</td>
<td>5.00</td>
<td>5.83</td>
</tr>
<tr>
<td>13</td>
<td>イトモロコ</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>14</td>
<td>スゴモロコ</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>15</td>
<td>コウライモロコ</td>
<td>0.00</td>
<td>30.00</td>
<td>4.17</td>
</tr>
<tr>
<td>16</td>
<td>ドジョウ科</td>
<td>ドジョウ</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>17</td>
<td>メダ科</td>
<td>メダカ南日本集団</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>18</td>
<td>サンフィッシュ科</td>
<td>ブルーギル</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>19</td>
<td>オオクチバス</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>20</td>
<td>タイワンドジョウ科</td>
<td>タイワンドジョウ</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>21</td>
<td>カムルチー</td>
<td>0.00</td>
<td>0.00</td>
<td>12.00</td>
</tr>
</tbody>
</table>

計 3目 5科 21種 3種 8種 13種 14種 13種 15種

単位：個体数/地区数/回数
表 6.3-6(1) 加古川大堰およびその周辺における止水性魚類の確認状況 [参考]

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>単位: 個体数/地区数/回数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>コイ目</td>
<td>コイ科</td>
<td>コイ</td>
<td>H2 0.00 0.50 0.67 11.22 9.17 12.50</td>
</tr>
<tr>
<td>2</td>
<td>コイ目</td>
<td>コイ科</td>
<td>コイ(飼育品種)</td>
<td>H4 0.00 0.00 0.00 0.00 0.00 0.00</td>
</tr>
<tr>
<td>3</td>
<td>ゲンゴロウブナ</td>
<td>ゲンゴロウブナ</td>
<td>H3 0.00 0.50 0.00 18.11 8.50 11.50</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ガンブナ</td>
<td>ガンブナ</td>
<td>H9 0.00 4.00 1.00 35.67 10.17 5.17</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>サオキブナ</td>
<td>サオキブナ</td>
<td>H14 0.00 0.00 0.00 1.00 0.33 0.00</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Carassius属</td>
<td>Carassius属</td>
<td>H19 0.00 5.25 1.33 0.00 2.50 3.67</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>カヤタナゴ</td>
<td>カヤタナゴ</td>
<td>H24 0.00 0.00 0.17 0.44 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>カネヒラ</td>
<td>カネヒラ</td>
<td>H2 0.00 0.25 0.67 0.67 2.33 0.67</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>イチモンジタナゴ</td>
<td>イチモンジタナゴ</td>
<td>H4 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>タイリクバラタナゴ</td>
<td>タイリクバラタナゴ</td>
<td>H3 0.00 4.00 1.33 28.89 8.83 2.67</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>タモロコ</td>
<td>タモロコ</td>
<td>H14 0.60 0.50 1.00 10.17 10.17 10.17</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>イトモロコ</td>
<td>イトモロコ</td>
<td>H9 0.00 0.00 0.00 0.11 0.50 0.00</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>タイワンドジョウ科</td>
<td>タイワンドジョウ</td>
<td>H14 50.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>コウライモロコ</td>
<td>コウライモロコ</td>
<td>H19 0.00 4.50 5.50 257.78 1877.17 208.00</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>ドジョウ科</td>
<td>ドジョウ科</td>
<td>H24 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>ダツ目</td>
<td>メダカ科</td>
<td>メダカ南日本集団</td>
<td>H2 2.00 2.00 271.11 1.22 4.17</td>
</tr>
<tr>
<td>17</td>
<td>サンフィッシュ科</td>
<td>サンフィッシュ科</td>
<td>H4 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>タイワンドジョウ科</td>
<td>タイワンドジョウ</td>
<td>H9 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>ガンブナ</td>
<td>ガンブナ</td>
<td>H14 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>オオクチバス</td>
<td>オオクチバス</td>
<td>H19 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>タイワンドジョウ科</td>
<td>タイワンドジョウ</td>
<td>H24 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
</tbody>
</table>

計 3目 5科 21種 3種 12種 14種 17種 16種 15種

表 6.3-6(2) 加古川大堰およびその周辺における止水性魚類の確認状況 [参考]

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>単位: 個体数/地区数/回数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>コイ目</td>
<td>コイ科</td>
<td>コイ</td>
<td>H2 0.50 1.17 7.00 4.00 11.00</td>
</tr>
<tr>
<td>2</td>
<td>コイ目</td>
<td>コイ科</td>
<td>コイ(飼育品種)</td>
<td>H4 0.00 0.00 0.33 0.00 0.00</td>
</tr>
<tr>
<td>3</td>
<td>ゲンゴロウブナ</td>
<td>ゲンゴロウブナ</td>
<td>H3 10.33 4.17 20.17 15.33 24.33</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ガンブナ</td>
<td>ガンブナ</td>
<td>H14 6.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>オオキンブナ</td>
<td>オオキンブナ</td>
<td>H9 6.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Carassius属</td>
<td>Carassius属</td>
<td>H14 0.00 7.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ガンブナ</td>
<td>ガンブナ</td>
<td>H19 0.00 1.00 1.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>カネヒラ</td>
<td>カネヒラ</td>
<td>H24 0.00 1.77 4.17 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>カネヒラ</td>
<td>カネヒラ</td>
<td>H2 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>イチモンジタナゴ</td>
<td>イチモンジタナゴ</td>
<td>H4 1.00 1.67 5.00 1.33 14.33</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>タイリクバラタナゴ</td>
<td>タイリクバラタナゴ</td>
<td>H9 1.00 3.67 20.00 2.00 14.33</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>タモロコ</td>
<td>タモロコ</td>
<td>H14 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>イトモロコ</td>
<td>イトモロコ</td>
<td>H19 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>カラキル</td>
<td>カラキル</td>
<td>H24 0.00 0.00 16.67 114.33 81.33</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>ドジョウ科</td>
<td>ドジョウ科</td>
<td>H2 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>ダツ目</td>
<td>メダカ科</td>
<td>メダカ南日本集団</td>
<td>H4 0.00 1.33 2.33 0.33 3.00</td>
</tr>
<tr>
<td>17</td>
<td>サンフィッシュ科</td>
<td>サンフィッシュ科</td>
<td>H3 0.00 1.33 2.33 0.33 3.00</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>タイワンドジョウ科</td>
<td>タイワンドジョウ科</td>
<td>H14 0.00 1.77 5.33 3.33 0.00</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>カムルチー</td>
<td>カムルチー</td>
<td>H9 0.00 0.00 0.00 0.00 1.67</td>
<td></td>
</tr>
</tbody>
</table>

計 3目 5科 21種 11種 14種 14種 14種 14種

unit: 個体数/地区数/回数
図 6.3-7 壇の湛水域における止水性魚類の経年変化
b. 堰の湛水域内、流入河川および下流河川における回遊性魚類の経年変化
加古川大堰およびその周辺における回遊性魚類の確認状況を表 6.3-7に、回遊性魚類の
経年の確認状況の変化を図 6.3-8に示す。
分析結果の概要は、下記のとおりである。

○回遊性魚類は、ニホンウナギ、ウグイ等の11種が確認されている。
○このうち、スミウキゴリ、シマヨシノボリ、ヌマチチブ、チチブの4種は、下流
河川のみで確認されており、堰より上流での確認がない。
○ウグイ、サツキマスの2種は、堰の湛水域および流入河川のみで確認されている。
○なお、ウグイとサツキマスの両種は、別途に実施されている魚道調査で、魚道を
遡上する個体が確認されている。

最新の平成24年度の調査結果では、下流河川の回遊性魚類の生息数が増加している。回
遊性魚類の生息数の増加は、平成22年度に加古川大堰の下流にある潮止め堰である古新堰
堤の魚道改良がなされたことに起因する可能性がある。
なお、回遊性魚類の下流河川における生息状況は、魚類調査における魚類の採捕数が調
査時の天候や水温、流況等の環境条件に大きく左右されることを踏まえると、次回以降の
調査結果も参考に評価する必要がある。
平成24年度の調査結果では、堰の湛水域や流入河川において、ある程度の割合でゴクラ
クハゼが確認された。ゴクラクハゼは、これまでの魚道調査で利用の実績がないため、堰
より上流側で確認された個体は陸封化している可能性がある。ゴクラクハゼについては、
今後、魚道の利用状況について留意し、調査を進める必要がある。

表 6.3-7 (1) 加古川大堰およびその周辺における回遊性魚類の確認状況
単位：個体数/地区数/回数

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>H2</th>
<th>H4</th>
<th>H9</th>
<th>H14</th>
<th>H19</th>
<th>H24</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ウナギ目</td>
<td>ウナギ科</td>
<td>ニホンウナギ</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.67</td>
<td>3.00</td>
<td>1.67</td>
</tr>
<tr>
<td>2</td>
<td>コイ目</td>
<td>コイ科</td>
<td>ウグイ</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>サケ目</td>
<td>サケ科</td>
<td>アユ</td>
<td>1.00</td>
<td>0.00</td>
<td>3.33</td>
<td>8.44</td>
<td>6.00</td>
<td>26.50</td>
</tr>
<tr>
<td>4</td>
<td>サツキマス</td>
<td></td>
<td>サツキマス</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.11</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>5</td>
<td>スズキ目</td>
<td>ハゼ科</td>
<td>スミウキゴリ</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>6</td>
<td>ゴクラクハゼ</td>
<td></td>
<td>ゴクラクハゼ</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>シマヨシノボリ</td>
<td></td>
<td>シマヨシノボリ</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>チチブ</td>
<td></td>
<td>チチブ</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>ネマギ</td>
<td></td>
<td>ネマギ</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>ナマズ</td>
<td></td>
<td>ナマズ</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11</td>
<td>ペンギンハゼ</td>
<td></td>
<td>ペンギンハゼ</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

地区数：1地区 | 2地区 | 3地区 | 4地区 | 5地区 | 6地区 | 7地区 | 8地区 | 9地区 | 10地区 | 11地区
回数：1回 | 2回 | 3回 | 4回 | 5回 | 6回 | 7回 |

6-168
表 6.3-7 (2) 加古川大堰およびその周辺における回遊性魚類の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>湖水域内</th>
<th>流入河川</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H2</td>
<td>H4</td>
</tr>
<tr>
<td>1</td>
<td>ニホンウナギ</td>
<td>ウナギ科</td>
<td>ニホンウナギ</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>ウグイ</td>
<td>コイ科</td>
<td>ウグイ</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>アユ</td>
<td>サケ科</td>
<td>アユ</td>
<td>2.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>ナイマス</td>
<td>ハゼ科</td>
<td>ナイマス</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>シマヨシノボリ</td>
<td>スズキ目</td>
<td>シマヨシノボリ</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>ウキゴリ</td>
<td>サケ科</td>
<td>ウキゴリ</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>ゴクラクハゼ</td>
<td>ハゼ科</td>
<td>ゴクラクハゼ</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>オオヨシノボリ</td>
<td>スズキ目</td>
<td>オオヨシノボリ</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>ナマチブ</td>
<td>マス目</td>
<td>ナマチブ</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>チチブ</td>
<td>マス目</td>
<td>チチブ</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

表 6.3-7 (3) 加古川大堰およびその周辺における回遊性魚類の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>湖水域内</th>
<th>流入河川</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H2</td>
<td>H4</td>
</tr>
<tr>
<td>1</td>
<td>ニホンウナギ</td>
<td>ウナギ科</td>
<td>ニホンウナギ</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>2</td>
<td>ウグイ</td>
<td>コイ科</td>
<td>ウグイ</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>3</td>
<td>アユ</td>
<td>サケ科</td>
<td>アユ</td>
<td>0.00</td>
<td>0.50</td>
</tr>
<tr>
<td>4</td>
<td>ナイマス</td>
<td>ハゼ科</td>
<td>ナイマス</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>シマヨシノボリ</td>
<td>スズキ目</td>
<td>シマヨシノボリ</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>ウキゴリ</td>
<td>サケ科</td>
<td>ウキゴリ</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>ゴクラクハゼ</td>
<td>ハゼ科</td>
<td>ゴクラクハゼ</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>オオヨシノボリ</td>
<td>スズキ目</td>
<td>オオヨシノボリ</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>マス</td>
<td>スズキ目</td>
<td>マス</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>チチブ</td>
<td>マス目</td>
<td>チチブ</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11</td>
<td>ナマチブ</td>
<td>マス目</td>
<td>ナマチブ</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

単位：個体数/地区数/回数
図 6.3-8 堰の湛水域内、流入河川および下流河川における回遊性魚類の経年変化
2) 底生動物

a. 増の湛水域内、流入河川および下流河川における回遊性底生動物の経年変化

加古川大堰およびその周辺における回遊性底生動物の確認状況を表 6.3-8 に、回遊性底生動物の経年の確認状況の変化を図 6.3-9 に示す。

分析結果の概要は、下記のとおりである。

○回遊性底生動物のうち、平成 25 年度はミゾレヌマエビとモクズガニが堰の湛水域と下流河川で確認されている。
○テナガエビは、平成 25 年度では、堰より上流側で確認がなかったが、別途に実施されている平成 26 年度〜28年度の魚道調査で、堰の魚道を利用して、上流方向に移動する状況が確認されている。

最新の平成 24年度の調査結果では、下流河川の回遊性底生動物のうちミゾレヌマエビの生息数が増加している。ミゾレヌマエビの生息数の増加は、平成22年度に加古川大堰の下流にある潮止め堰である古新堰堤の魚道改良がなされたことに起因する可能性がある。

なお、ミゾレヌマエビ等の回遊性底生動物の下流河川における生息状況は、底生動物調査における底生動物の採集数が調査時の天候や水温、流況等の環境条件に大きく左右されるものと考えられるため、次回以降の調査結果も参考に評価する必要がある。

表 6.3-8 加古川大堰およびその周辺における回遊性底生動物の確認状況

<table>
<thead>
<tr>
<th>No.</th>
<th>科和名</th>
<th>種和名</th>
<th>下流河川</th>
<th>湧水域</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>H4</td>
<td>H9</td>
</tr>
<tr>
<td>1</td>
<td>モクズガニ科</td>
<td>モクズガニ</td>
<td>1.25</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>テナガエビ</td>
<td>テナガエビ</td>
<td>5.50</td>
<td>0.83</td>
</tr>
<tr>
<td>3</td>
<td>ヌマエビ科</td>
<td>ミゾレヌマエビ</td>
<td>0.00</td>
<td>3.17</td>
</tr>
<tr>
<td>計</td>
<td>2科</td>
<td>3種</td>
<td>2種</td>
<td>2種</td>
</tr>
</tbody>
</table>

下流河川

<table>
<thead>
<tr>
<th>No.</th>
<th>科和名</th>
<th>種和名</th>
<th>流入河川</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>H4</td>
</tr>
<tr>
<td>1</td>
<td>モクズガニ科</td>
<td>モクズガニ</td>
<td>0.50</td>
</tr>
<tr>
<td>2</td>
<td>テナガエビ</td>
<td>テナガエビ</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>ヌマエビ科</td>
<td>ミゾレヌマエビ</td>
<td>0.00</td>
</tr>
<tr>
<td>計</td>
<td>2科</td>
<td>3種</td>
<td>1種</td>
</tr>
</tbody>
</table>

地区数 | 2地区 | 3地区 | 2地区 | 1地区 | 1地区 | 1地区 | 1地区 | 1地区 |

調査回数 | 2回 | 2回 | 2回 | 2回 | 2回 | 2回 |

※H4の確認個体数は正確な記録はないものの、下記により便宜的に算出。
++: 2〜9個体以上→5個体
+: 1個体→1個体
図 6.3-9 堰の湛水域内、流入河川および下流河川における回遊性底生物の経年変化
3）動植物プランクトン
a. 場の湛水域内における動植物プランクトンの優占種の経年変化

動植物プランクトンの優占種の経年の確認状況の変化を表 6.3-9 に示す。分析結果の概要は、下記のとおりである。

<table>
<thead>
<tr>
<th>植物プランクトン</th>
<th>分類群</th>
<th>調査年度</th>
<th>種名</th>
<th>細胞数</th>
<th>調査年度</th>
<th>種名</th>
<th>細胞数</th>
</tr>
</thead>
<tbody>
<tr>
<td>H10</td>
<td>Cyclotella sp.</td>
<td>タラシオシラ科</td>
<td>14,425,920</td>
<td>(31.6%)</td>
<td>Navicula sp.</td>
<td>ナビクラ科</td>
<td>7,008,384</td>
</tr>
<tr>
<td>H15</td>
<td>Nitzschia sp.</td>
<td>ニッチア科</td>
<td>1,907,280</td>
<td>(10.0%)</td>
<td>Scenedesmus sp.</td>
<td>セネデスムス科</td>
<td>1,841,280</td>
</tr>
<tr>
<td>H20</td>
<td>Scenedesmus sp.</td>
<td>セネデスムス科</td>
<td>5,342,400</td>
<td>(17.2%)</td>
<td>Stephanodiscus sp.</td>
<td>タラシオシラ科</td>
<td>2,784,000</td>
</tr>
<tr>
<td>H25</td>
<td>Stephanodiscus sp.</td>
<td>タラシオシラ科</td>
<td>2,328,000</td>
<td>(14.0%)</td>
<td>Navicula sp.</td>
<td>ナビクラ科</td>
<td>1,894,400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>動物プランクトン</th>
<th>分類群</th>
<th>調査年度</th>
<th>種名</th>
<th>細胞数</th>
<th>調査年度</th>
<th>種名</th>
<th>細胞数</th>
</tr>
</thead>
<tbody>
<tr>
<td>H10</td>
<td>CILIOPHORA sp.</td>
<td>細毛虫門</td>
<td>10,109,860</td>
<td>(30.3%)</td>
<td>Polyarthra vulgaris</td>
<td>ヒゲワムシ科</td>
<td>8,273,836</td>
</tr>
<tr>
<td>H15</td>
<td>CILIOPHORA sp.</td>
<td>細毛虫門</td>
<td>1,177,320</td>
<td>(29.3%)</td>
<td>Peritrichida sp.</td>
<td>少膜綱</td>
<td>513,240</td>
</tr>
<tr>
<td>H20</td>
<td>Arcella vulgaris</td>
<td>アルケラ科</td>
<td>110,820</td>
<td>(19.8%)</td>
<td>Tintinnopsis lacustris</td>
<td>スナカラムシ科</td>
<td>48,930</td>
</tr>
<tr>
<td>H25</td>
<td>Tintinnopsis lacustris</td>
<td>スナカラムシ科</td>
<td>39,420</td>
<td>(10.5%)</td>
<td>Keratella cochlearis f.tecta</td>
<td>ツボワムシ科</td>
<td>38,840</td>
</tr>
</tbody>
</table>

注）細胞数の単位は、「cells/L/地区数/回数」。
※：珪藻綱　：緑藻綱　：原生動物門　：輪形動物門（ワムシ類）
4）植物

a. 堰の湛水域周辺、流入河川および下流河川における河道内植生の経年変化

加古川大堰およびその周辺における河道内植生の確認状況を表 6.3-10 に、堰の湛水域周辺、流入河川および下流河川における河道内植生の経年変化を図 6.3-10 に示す。

分析結果の概要は、下記のとおりである。

○木本群落の割合を平成 22 年度と平成 26 年度を比較すると、湛水域周辺、流入河川および下流河川のいずれの範囲も、ほぼ安定に推移している。

最新的平成 26 年度の調査結果では、河道内の樹林化の程度は安定しており、河道内樹木を輪伐による管理サイクルによる管理している効果が現れているものと考えられる。

表 6.3-10 (1) 加古川大堰およびその周辺における河道内植生の確認状況

<table>
<thead>
<tr>
<th>基本分類</th>
<th>下流河川</th>
<th>湛水域</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H7</td>
<td>H11</td>
</tr>
<tr>
<td>開放水面</td>
<td>130.61</td>
<td>130.91</td>
</tr>
<tr>
<td>その他</td>
<td>22.52</td>
<td>0.00</td>
</tr>
<tr>
<td>植林拡造物</td>
<td>5.82</td>
<td>19.13</td>
</tr>
<tr>
<td>グラウンドなど</td>
<td>29.18</td>
<td>53.73</td>
</tr>
<tr>
<td>人工草地</td>
<td>0.00</td>
<td>31.41</td>
</tr>
<tr>
<td>水田</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>畑</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>果樹園</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>植林地（その他）</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>植林地（竹林）</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>落葉広葉森林</td>
<td>0.04</td>
<td>0.00</td>
</tr>
<tr>
<td>その他の低木林</td>
<td>0.00</td>
<td>0.56</td>
</tr>
<tr>
<td>サナギ高木林</td>
<td>4.69</td>
<td>9.87</td>
</tr>
<tr>
<td>ヤナギ低木林</td>
<td>0.42</td>
<td>0.04</td>
</tr>
<tr>
<td>単子葉植物群落</td>
<td>0.10</td>
<td>0.86</td>
</tr>
<tr>
<td>その他の単子葉草本群落</td>
<td>33.67</td>
<td>9.91</td>
</tr>
<tr>
<td>オギ群落</td>
<td>3.63</td>
<td>6.59</td>
</tr>
<tr>
<td>ソルコ群落</td>
<td>0.50</td>
<td>2.11</td>
</tr>
<tr>
<td>ヨシ群落</td>
<td>5.05</td>
<td>2.87</td>
</tr>
<tr>
<td>多年生広葉草本群落</td>
<td>15.83</td>
<td>13.59</td>
</tr>
<tr>
<td>一年生草本群落</td>
<td>46.23</td>
<td>21.13</td>
</tr>
<tr>
<td>増殖植物群落</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>増殖植物群落</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>水辺植物群落</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>総計（開放水面を除く）</td>
<td>188.80</td>
<td>186.60</td>
</tr>
</tbody>
</table>
表 6.3-10（2） 加古川大堰およびその周辺における河道内植生の確認状況

<table>
<thead>
<tr>
<th>基本分類</th>
<th>開放水面</th>
<th>人工構造物</th>
<th>グラウンドなど</th>
<th>人工草地</th>
<th>水田</th>
<th>焼</th>
<th>果樹園</th>
<th>植林地（その他）</th>
<th>植林地（竹林）</th>
<th>その他の低木林</th>
<th>ヤナギ高木林</th>
<th>ヤナギ低木林</th>
<th>単子葉植物群落</th>
<th>その他の単子葉草本群落</th>
<th>オギ群落</th>
<th>ツルヨシ群落</th>
<th>オシ群落</th>
<th>多年生草本群落</th>
<th>一年生草本群落</th>
<th>砂丘植物群落</th>
<th>塩沼植物群落</th>
<th>沈水植物群落</th>
<th>経年変化</th>
</tr>
</thead>
<tbody>
<tr>
<td>H7</td>
<td>50.85</td>
<td>6.54</td>
<td>6.53</td>
<td>6.60</td>
<td>0.16</td>
<td>1.04</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>H11</td>
<td>72.07</td>
<td>20.12</td>
<td>5.07</td>
<td>6.20</td>
<td>0.00</td>
<td>2.17</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>H15</td>
<td>62.81</td>
<td>16.19</td>
<td>7.55</td>
<td>2.45</td>
<td>0.00</td>
<td>2.24</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>H22</td>
<td>60.82</td>
<td>22.51</td>
<td>6.84</td>
<td>0.04</td>
<td>0.00</td>
<td>1.21</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>H26</td>
<td>73.93</td>
<td>26.49</td>
<td>7.64</td>
<td>1.16</td>
<td>0.00</td>
<td>1.10</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

単位：ha

图 6.3-10 堰の湛水域周边、流入河川および下流河川における河道内植生の経年変化
5）鳥類
a. 堰の湛水域内における水鳥の経年変化

加古川大堰およびその周辺における水鳥の確認状況を 表6.3-11 に、堰の湛水域内における水鳥の経年変化を図6.3-11に示す。

分析結果の概要は、下記のとおりである

○湛水域を利用する水鳥として、カイツブリ、マガモ、カルガモ等の7種が、3回の調査で連続確認されている。
○漁業被害を及ぼすカワウは、平成24年度も多く確認されている。
○なお、平成24年度は、湛水域周辺にカワウの集団分布地は確認がないものの、上流の右岸29.4kmに集団ねぐら（114羽）が確認されている。

最新の平成24年度の調査結果では、冬鳥のカイツブリ、マガモ等の生息が確認されており、堰の湛水域は越冬期の冬鳥の休息場として利用されているものと考えられる。

カワウは、在来種であるが、アユ等の有用魚に対し漁業被害を及ぼすほか、河道内およびその周辺に点在する樹林地をねぐらとして利用し、飢餓被害も及ぼす有害鳥類として知られる。河道内樹木を伐採する際、周辺にねぐらが分布する場合には周辺への分散を招かないように留意が必要である。

<table>
<thead>
<tr>
<th>No.</th>
<th>目和名</th>
<th>科和名</th>
<th>種和名</th>
<th>渡り区分</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>カイツブリ目</td>
<td>カイツブリ科</td>
<td>カイツブリ</td>
<td>留鳥</td>
<td>H10: 7.00 H16: 5.25 H24: 0.75</td>
</tr>
<tr>
<td>2</td>
<td>カイツブリ目</td>
<td>カイツブリ科</td>
<td>ヨシガモ</td>
<td>冬鳥</td>
<td>H10: 38.00 H16: 9.25 H24: 9.50</td>
</tr>
<tr>
<td>3</td>
<td>ペリカン目</td>
<td>ウ科</td>
<td>カワウ</td>
<td>留鳥</td>
<td>H10: 13.75 H16: 7.25 H24: 7.25</td>
</tr>
<tr>
<td>4</td>
<td>カモ目</td>
<td>カモ科</td>
<td>マガモ</td>
<td>冬鳥</td>
<td>H10: 13.00 H16: 10.00 H24: 0.00</td>
</tr>
<tr>
<td>5</td>
<td>カモ目</td>
<td>カモ科</td>
<td>カルガモ</td>
<td>冬鳥</td>
<td>H10: 32.00 H16: 10.75 H24: 3.00</td>
</tr>
<tr>
<td>6</td>
<td>カモ目</td>
<td>カモ科</td>
<td>ヨシガモ</td>
<td>冬鳥</td>
<td>H10: 73.25 H16: 25.25 H24: 1.25</td>
</tr>
<tr>
<td>7</td>
<td>カモ目</td>
<td>カモ科</td>
<td>ヒドリガモ</td>
<td>冬鳥</td>
<td>H10: 0.00 H16: 0.50 H24: 0.50</td>
</tr>
<tr>
<td>8</td>
<td>カモ目</td>
<td>カモ科</td>
<td>オナガガモ</td>
<td>冬鳥</td>
<td>H10: 0.00 H16: 0.25 H24: 0.00</td>
</tr>
<tr>
<td>9</td>
<td>カモ目</td>
<td>カモ科</td>
<td>ミコアイサ</td>
<td>冬鳥</td>
<td>H10: 0.00 H16: 0.25 H24: 0.00</td>
</tr>
<tr>
<td>10</td>
<td>カモ目</td>
<td>カモ科</td>
<td>カワアイサ</td>
<td>冬鳥</td>
<td>H10: 0.00 H16: 0.25 H24: 0.00</td>
</tr>
<tr>
<td>11</td>
<td>カモ目</td>
<td>カモ科</td>
<td>ユリカモメ</td>
<td>冬鳥</td>
<td>H10: 0.00 H16: 0.25 H24: 0.00</td>
</tr>
<tr>
<td>12</td>
<td>カモ目</td>
<td>カモ科</td>
<td>セグロカモメ</td>
<td>冬鳥</td>
<td>H10: 0.00 H16: 0.25 H24: 0.00</td>
</tr>
<tr>
<td>13</td>
<td>カモ目</td>
<td>カモ科</td>
<td>カモメ</td>
<td>冬鳥</td>
<td>H10: 0.00 H16: 0.25 H24: 0.00</td>
</tr>
<tr>
<td>14</td>
<td>カモ目</td>
<td>カモ科</td>
<td>カモメ</td>
<td>冬鳥</td>
<td>H10: 0.00 H16: 0.25 H24: 0.00</td>
</tr>
<tr>
<td>15</td>
<td>カモ目</td>
<td>カモ科</td>
<td>カモメ</td>
<td>冬鳥</td>
<td>H10: 0.00 H16: 0.25 H24: 0.00</td>
</tr>
</tbody>
</table>

表6.3-11 加古川大堰およびその周辺における水鳥の確認状況
図 6.3-11 堰の湛水域内における水鳥の経年変化

※H5 の鳥類調査では湛水域は未実施。
6)両生類・爬虫類・哺乳類
a. 流入河川における河原環境利用種の経年変化
加古川大堰およびその周辺におけるカヤネズミの確認状況を表 6.3-12 に、河原環境利用種であるカヤネズミの経年変化を図 6.3-12 に示す。
分析結果の概要は、下記のとおりである。

○流入河川における河原環境利用種のカヤネズミの確認状況は、捕獲例は平成 7 年度と平成 17 年度で最新の平成 27 年度は確認なかったが、球巣は 4 回の調査で連続確認されている。
○なお、カヤネズミは、下流河川においても継続的に生息情報があり、堰を挟んで、連続的に生息している。

表 6.3-12 加古川大堰およびその周辺におけるカヤネズミの確認状況

<table>
<thead>
<tr>
<th>確認例</th>
<th>下流河川</th>
<th>流入河川</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H7</td>
<td>H12</td>
</tr>
<tr>
<td>捕獲</td>
<td>0.25</td>
<td>0.00</td>
</tr>
<tr>
<td>球巣</td>
<td>0.75</td>
<td>2.75</td>
</tr>
<tr>
<td>地区数</td>
<td>1地区</td>
<td>1地区</td>
</tr>
<tr>
<td>回数</td>
<td>4回</td>
<td>4回</td>
</tr>
</tbody>
</table>

単位：個体数/地区数/回数

図 6.3-12 河原環境利用種であるカヤネズミの経年変化
7) 陸上昆虫類等
a. 流入河川における河原環境利用種の経年変化

加古川大堰およびその周辺における陸上昆虫類等の河原環境利用種の確認状況を表6.3-13に、陸上昆虫類等の河原環境利用種の経年変化を図6.3-13に示す。

分析結果の概要は、下記のとおりである。

| ○流入河川における陸上昆虫類等の河原環境利用種として、ヒメバッタ科、オサムシ科、コメツキムシ科等の62種が確認されている。 |
| ○流入河川における河原環境利用種の確認種数は、経年で31種から38種で横ばいに推移しており、河原環境利用種の生息状況は安定している。 |

陸上昆虫類等の河原環境利用種は、クモ類ではコモリグモ科、ワシグモ科、昆虫類ではオオハサミムシ科、ヒシバッタ科、オサムシ科の内から、攪乱頻度の高い砂礫河原や湿性の草地環境に依存する種を抽出し、分析している。

流入河川での経年で連続して確認されている種は、オオハサミムシ、キイロチビゴクムシ、オオマルガタゴミムシ等の11種で、これらの種が流入河川における代表的な河原環境利用種といえる。

なお、下流河川でも同様な分析をしたところ、河原環境利用種の確認種数は、平成13年度までは30種未満であったが、平成18年度以降は流入河川と同等な30種以上となっており、近5ヵ年は良好な河原環境が維持されていると考えられた。
<table>
<thead>
<tr>
<th>No.</th>
<th>科和名</th>
<th>種和名</th>
<th>下流河川</th>
<th>流入河川</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>コモリグモ科</td>
<td>イサゴコモリグモ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ワシグモ科</td>
<td>メキリグモ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>マルムネハサミムシ科</td>
<td>ハマベハサミムシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>オオハサミムシ科</td>
<td>オオハサミムシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ヒシバッタ科</td>
<td>ネセシバッタ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ホソクビゴミムシ科</td>
<td>オオホソクビゴミムシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>オサムシ科</td>
<td>キアシマルガタゴミムシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ミイデラゴミムシ科</td>
<td>オオミイデラゴミムシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>キアシヌレチゴミムシ科</td>
<td>キイロチビゴモクムシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ヒョウゴミズギワゴミムシ科</td>
<td>オオヒョウゴミズギワゴミムシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>オオフタモンミズギワゴミムシ科</td>
<td>オオフタモンミズギワゴミムシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>スジミズアトキリゴミムシ科</td>
<td>スジミズアトキリゴミムシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>ハネカクシ科</td>
<td>ウスアカバホソハネカクシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>コガネムシ科</td>
<td>ヒゲコガネ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>ミズギワコメツキ科</td>
<td>ミズギワコメツキ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>ヒメスジミズギワゴミムシ科</td>
<td>ヒメスジミズギワゴミムシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>オオガシラナガゴミムシ科</td>
<td>オオガシラナガゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>オオマルガタゴミムシ科</td>
<td>オオマルガタゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>ヨツモンミズギワゴミムシ科</td>
<td>ヨツモンミズギワゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>キアシツヤヒラタゴミムシ科</td>
<td>キアシツヤヒラタゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>ヨツボシミズギワコメツキ科</td>
<td>ヨツボシミズギワコメツキ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>オスナハラゴミムシ科</td>
<td>オスナハラゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>ケゴモクムシ科</td>
<td>ケゴモクムシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>ケゴモクムシ科</td>
<td>ケゴモクムシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>フタモンクビナガゴミムシ科</td>
<td>フタモンクビナガゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>オオガシラアオゴミムシ科</td>
<td>オオガシラアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>ヨツボシミズギワコメツキ科</td>
<td>ヨツボシミズギワコメツキ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>サシマシホンスナゴミムシ科</td>
<td>サシマシホンスナゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>サシマシホンスナゴミムシ科</td>
<td>サシマシホンスナゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>オサムシ科</td>
<td>オサムシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>オサムシ科</td>
<td>オサムシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>クロヒゲアオゴミムシ科</td>
<td>クロヒゲアオゴミシ</td>
<td>● ● ● ●</td>
<td></td>
</tr>
</tbody>
</table>

計 14科 70種 17種 25種 39種 33種 35種 31種 38種 34種
図 6.3-13 流入河川における河原環境利用種の経年変化

※参考として下流河川の結果も整理した。
6.3.3 重要種の変化の把握

(1) 重要種の確認状況
加古川大堰の管理・運用と関わりの深い重要種の選定結果を表 6.3-14 に示す。
重要種については、各種の生態的特徴を踏まえ、加古川大堰の存在・供用に伴う環境変化、堰の管理・運用に伴い影響を受けるおそれのある種を選定した。
選定した種は、下記のとおりである。

<table>
<thead>
<tr>
<th>●魚類: ニホンウナギ</th>
</tr>
</thead>
<tbody>
<tr>
<td>魚類のニホンウナギは、海と河川を往来する回遊魚であり、最新の平成 24 年度の調査で、堰の湛水域内、流入河川および下流河川で生息情報があり、河川に連続的に分布していることが確認された。また、魚道を利用し、遡上する個体も定期的に確認されている。本種は、海と河川を往来する回遊性魚類であり、産業上の有用魚でもある。堰の管理・運用によっては、遡上の際に影響を受ける可能性があり、生息状況等の把握が必要である。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>●魚類: オオヨシノボリ</th>
</tr>
</thead>
<tbody>
<tr>
<td>魚類のオオヨシノボリは、海と河川を往来する回遊魚であり、最新の平成 24 年度の調査では、生息情報がなかった。ただし、魚道を利用し、遡上する個体は確認されている。管理・運用によっては、遡上の際に影響を受ける可能性があり、生息状況等の把握が必要である。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>●底生動物: ミゾレヌマエビ</th>
</tr>
</thead>
<tbody>
<tr>
<td>底生動物のミゾレヌマエビは、海と河川を往来する回遊性甲殻類であり、最新の平成 25 年度の調査で、湛水域内および下流河川で生息情報があり、河川の下流域で連続的に分布していることが確認された。また、魚道を利用し、遡上する個体も定期的に確認されている。本種は、幼生期を海で過ごし、成長すると川を遡上する回遊性甲殻類である。堰の管理・運用によっては、遡上の際に影響を受ける可能性があり、生息状況等の把握が必要である。</td>
</tr>
</tbody>
</table>
表 6.3-14 (1) 加古川大堰の管理・運用と関わりの深い重要種の選定結果

<table>
<thead>
<tr>
<th>種名</th>
<th>分類</th>
<th>生態的特徴</th>
<th>変化の状況</th>
<th>管理・運用との関連性</th>
<th>選定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>ニホンウナギ</td>
<td>Anguilla japonica</td>
<td>河川の下流部で産卵し、稚魚は河川下流部で育つ。成魚は全国の河川に生息する。</td>
<td>H9-H10に確認され、H14、H19、H24にも引き続き確認されている。</td>
<td>継続的に確認されているものの、純淡水魚であり、障の管理・運用との関連性はないため、分析・評価の対象としない。</td>
<td>○</td>
</tr>
<tr>
<td>ヤリナゴ</td>
<td>Tanaka lanceolata</td>
<td>北海道、宮崎県、鹿児島県、沖縄県を除く日本全土に分布する。流れが緩やかな河川中下流域に生息する。</td>
<td>H9-H10に確認され、H14、H19にも引き続き確認されている。</td>
<td>継続的に確認されているものの、純淡水魚であり、障の管理・運用との関連性はないと評価を対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>アブラボテ</td>
<td>Tanakia limbata</td>
<td>濃尾平野以西の本州、淡路島、四国瀬戸内海側、鹿児島県北西部の高松川までの九州に分布する。</td>
<td>H9-H10に確認され、H14、H19、H24にも引き続き確認されている。</td>
<td>継続的に確認されているものの、純淡水魚であり、障の管理・運用との関連性はないと評価を対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>カネヒラ</td>
<td>Acheilognathus rhombeus</td>
<td>本種は濃尾平野以西の本州、九州北部、及び霞ヶ浦に分布する。</td>
<td>H4に確認され、H9~10、H14、H19、H24にも引き続き確認されている。</td>
<td>継続的に確認されているものの、純淡水魚であり、障の管理・運用との関連性はないと評価を対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>イチモンジタナゴ</td>
<td>Acheilognathus cyanostigma</td>
<td>本種は濃尾平野と近畿地方。岡山平野にも移殖する。</td>
<td>H4のみ確認されている。</td>
<td>単年度の確認のみで、関連性は不明のため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>アブラハヤ</td>
<td>Phoxinus lagowskii steindachneri</td>
<td>河川の上流域から中流域、山あいの湖沼などに生息する。</td>
<td>H4に確認され、H14、H19、H24にも引き続き確認されている。</td>
<td>継続的に確認されているものの、純淡水魚であり、障の管理・運用との関連性はないと評価を対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>カワヒガイ</td>
<td>Sarcocheilichthys variegatus variegatus</td>
<td>全長12cm程度。濃尾平野、琵琶湖流入河川、山口県を除く山陽地方、九州北西部に分布する。</td>
<td>H4に確認され、H9~10、H14、H19、H24にも引き続き確認されている。</td>
<td>継続的に確認されているものの、純淡水魚であり、障の管理・運用との関連性はないと評価を対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>ゼゼラ</td>
<td>Esox zetra</td>
<td>深く清潔な水と河床の礫にすき間のあるような中・上流部を好み、そのような平瀬のあることが共通した生息条件である。産卵も石の下で行われる。産卵期は5~6月。</td>
<td>H9-H10に確認され、H14、H19、H24にも引き続き確認されている。</td>
<td>継続的に確認されているものの、純淡水魚であり、障の管理・運用との関連性はないと評価を対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>ドジョウ</td>
<td>Misgurnus anguillicaudatus</td>
<td>ほぼ日本全国に分布する。水田や湿原、周囲の池沼などに生息する。</td>
<td>H9-H10に確認され、H14、H19、H24にも引き続き確認されている。</td>
<td>継続的に確認されているものの、純淡水魚であり、障の管理・運用との関連性はないと評価を対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>スジシマドジョウ中型種</td>
<td>Cobitis sp.3</td>
<td>日本全国に分布する。</td>
<td>H2に確認され、H9~10、H14、H24にも引き続き確認されている。</td>
<td>継続的に確認されているものの、純淡水魚であり、障の管理・運用との関連性はないと評価を対象としない。</td>
<td>×</td>
</tr>
</tbody>
</table>
表 6.3-14(2) 加古川大堰の管理・運用と関わりの深い重要種の選定結果

<table>
<thead>
<tr>
<th>種名</th>
<th>指定区分</th>
<th>生態的特徴</th>
<th>変化の状況</th>
<th>堰の管理・運用との関連性</th>
<th>選定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>サツキマス Oncorhynchus masou ishikawae</td>
<td>国NT</td>
<td>奈良県高野川以西の本州太平洋側、四国、九州、南海地方に分布。河川で下流域に生息。</td>
<td>H14/H24に確認され、H24に引き続き確認されている。</td>
<td>継続的に確認されており、</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>メダカ南日本集団 Oryzias latipes</td>
<td>国VU</td>
<td>北海道を除く日本全国に分布。</td>
<td>H9-H10、H14/H19、H24に確認され、H24に引き続き確認されている。</td>
<td>継続的に確認されており、</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ウキゴリ Gymnogobius urotaenia</td>
<td>国C</td>
<td>北海道を除く日本全国に分布。</td>
<td>H14/H19、H24に確認され、H24に引き続き確認されている。</td>
<td>継続的に確認されており、</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オオヨシノボリ Rhinogobius fluviatilis</td>
<td>国NT</td>
<td>北海道を除く日本全国に分布。</td>
<td>H9/H10に確認され、H14/H19、H24に引き続き確認されている。</td>
<td>継続的に確認されており、</td>
<td>×</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※平成11年度は下流河川のみで調査が行われている。

注1）指定区分
国CR: 環境省レッドリストにおける絶滅危惧IA類
国EN: 環境省レッドリストにおける絶滅危惧IB類
国VU: 環境省レッドリストにおける絶滅危惧II類
国NT: 環境省レッドリストにおける準絶滅危惧
兵A: 兵庫県レッドデータブックにおけるAランク
兵B: 兵庫県レッドデータブックにおけるBランク
兵C: 兵庫県レッドデータブックにおけるCランク
兵注: 兵庫県レッドデータブックにおける注意種目
兵地: 兵庫県レッドデータブックにおける地域指定貴重種
兵調: 兵庫県レッドデータブックにおける要調査種
底生動物 (1)

<table>
<thead>
<tr>
<th>種名</th>
<th>分類</th>
<th>生態的特徴</th>
<th>変化の状況</th>
<th>堰の管理・運用との関連性</th>
<th>設定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>マルタニシ</td>
<td>Cipangopaludina chinensis laeta</td>
<td>本州から九州さらに中国・台湾の水田や池沼等の水深の深いところに生息する。生息地の条件としては、生活排水等の流入のない所がよい。</td>
<td>H9のみ確認されている。</td>
<td>年間の確認のみで、関連性は不明のため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>コンカカニメノウラガイ</td>
<td>Lymnaea truncatula</td>
<td>ヨーロッパ原産の外来種と考えられるが、在来も否定できない。日本各地に分布し、おもに水田の畔や湿地などの水際に棲息する。泥のくぼみや草本類の株元、湿ったコンクリート壁などに付着する。</td>
<td>H14のみ確認されている。</td>
<td>年間の確認のみで、関連性は不明のため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>イシガイ</td>
<td>Unio douglasiae nipponensis</td>
<td>北海道南部から本州、四国、九州にかけて全国的に分布し、将来に2種に分けられる可能性がる。川の中・下流や支流、水路、湖沼に生息する。殻長50mm程になり、殻はやや細長く、後端部は細まる。</td>
<td>H14に確認され、H20、H25に引も続き確認されている。</td>
<td>年間の確認のみで、関連性は不明のため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>ヤマトシジミ</td>
<td>Corbicula japonica</td>
<td>海水の影響のある河口域（汽水域）にすむ、最もよく知られているシジミ。卵生である。日本で食用に消費される大部分のシジミは利根川河口と宍道湖でとれる本種である。日本各地に分布する。</td>
<td>H4に確認され、H9, H20, H25に引も続き確認されている。</td>
<td>年間の確認のみで、関連性は不明のため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
</tbody>
</table>
表 6.3-14 (4) 加古川大堰の管理・運用と関わりの深い重要種の選定結果

底生動物 (2)

<table>
<thead>
<tr>
<th>種名</th>
<th>指定区分</th>
<th>確認年度</th>
<th>生態的特徴</th>
<th>変化の状況</th>
<th>堰の管理・運用との関連性</th>
<th>選定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>ミドリビル Glossiphonia paludosa</td>
<td>DD</td>
<td>1992年</td>
<td>特徴: 体長7〜14mm。体は背腹に扁平でやや長型の矛先型を呈する。頚部は小さく、足は7対、雌雄生殖孔は2体環離されている。背縁盲嚢は9〜15mmで、体長23mm程度まで、雄の方が大きくななる。湖内での分布: 湖北の湖岸部や湖とつながる用水路で採集されている。</td>
<td>99年のみ確認されている。</td>
<td>99年のみ確認されているため、関連性は不明のため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>ミソレヌマエビ Caridina leucosticta</td>
<td>B</td>
<td>1989年/1994年/2000年/2005年</td>
<td>日本海で新潟県以南、太平洋側では千葉県以南に分布する。体長30mm。雌の方が大型になる。鰓角の上緑に歯列が並び、先端は円形。下縁には10歯程度認められる。河川の下流域から中流域の流れの緩やかな場所を好む。淡水から汽水の上端付近に生息する。幼生は河口に生息し、河川横断構造物の存在が生息状況に影響を及ぼす可能性があり、堰の管理・運用との関連性があるため、分析・評価の対象とする。</td>
<td>99年確認、H14、H20、H25にも引き続き確認されている。</td>
<td>継続的に確認されているため、海と河川を往来する回遊性種であり、河川の中下流域を主な生息環境とするため、河川横断構造物の存在が生息状況に影響を及ぼす可能性があり、堰の管理・運用との関連性があるため、分析・評価の対象とする。</td>
<td>○</td>
</tr>
<tr>
<td>Neocaridina属 Neocaridina sp.</td>
<td>B</td>
<td>1989年/1994年/2000年/2005年</td>
<td>静岡県以南、京都府以南、和歌山県、兵庫県、広島県、大分県、長崎県に分布する。頭胸甲調8mm、体長29mm程度まで。雌の方が大きくなる。河川の下流域から中流域、湖沼、ため池に生息する。</td>
<td>99年に確認され、H4、H9、H14、H20、H25にも引き続き確認されている。</td>
<td>継続的に確認されているものの、淡水性種であり、堰の管理・運用との関連性は不明のため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>キイロサナエ Asilagomphus pryeri</td>
<td>NT</td>
<td>2025年</td>
<td>本州、四国、九州、種子島に分布する日本固有種。成虫は主に6〜7月にかけて発生する。平地から丘陵地の樹林に接した砂泥底に緩やかな流れに生息する。成熟したオスは水辺の植物や石などに静止して捕獲を行い、メスは打水なたを産卵する。幼虫は越冬する。生息地はやや広範で、分布域全域で減少傾向にあり、地域によっては衰亡著しい。</td>
<td>H25のみ確認されている。</td>
<td>単年度の確認のみで、関連性は不明のため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>コオイムシ Appasus japonicus</td>
<td>NT</td>
<td>2025年</td>
<td>北海道、本州、四国、九州に分布。水生植物が豊富な池沼や用水路などに生息し、水中の小昆虫や小魚などの水生生物を捕らえ体液を吸汁する。メスはオスの背面に卵を産み付ける。</td>
<td>H9、H14、H20、H25にも引き続き確認されている。</td>
<td>単年度の確認のみで、関連性は不明のため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>ミズカマキリ Ranatra chinensis</td>
<td>NT</td>
<td>2025年</td>
<td>北海道、本州、四国、九州に分布する。体長40〜45mm程度。体は棒状で細長く、体色は灰褐色から淡黄褐色。藻などの水生植物などに生息し、小動物を捕食する。口肢・脚・上翅側縁・腹部は黒色で後胸板の棘状突起はより長く、細く尖る。</td>
<td>H4のみ確認されている。</td>
<td>単年度の確認のみで、関連性は不明のため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>ヘイケボタル Luciola lateralis</td>
<td>NT</td>
<td>2014年</td>
<td>北海道、本州、四国、九州に分布する。日本では、ゲンジボタルと並んで、身近な光るホタルである。ゲンジボタルより小型で、より汚れた水域にも生息する。</td>
<td>H14のみ確認されている。</td>
<td>単年度の確認のみで、関連性は不明のため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
</tbody>
</table>

注) 指定区分

- 特定: 特定外来生物
- 国NT: 環境省レッドリストにおける準絶滅危惧
- 国DD: 環境省レッドリストにおける情報不足
- 国LP: 環境省レッドリストにおける地域個体群
- 兵B: 兵庫県レッドデータブックにおけるBランク
- 兵C: 兵庫県レッドデータブックにおけるCランク
- 兵注: 兵庫県レッドデータブックにおける要注目種
- 兵地: 兵庫県レッドデータブックにおける地域限定貴重種
<table>
<thead>
<tr>
<th>植物名</th>
<th>学名</th>
<th>生態的特徴</th>
<th>場所</th>
<th>関連性</th>
<th>種</th>
<th>理由</th>
</tr>
</thead>
<tbody>
<tr>
<td>ミズカズラ</td>
<td>Coriaria thalictroides</td>
<td>本種は日本未帰化で、高湿帯の湿った湿地に生育する。花期は5-6月。</td>
<td>本州、四国、九州</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>サンクサ</td>
<td>Persicaria mexicana</td>
<td>本種は、各地に分布する。湿った場所に生育する。</td>
<td>本州、四国、九州</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ハンゲショウ</td>
<td>Saururus chinensis</td>
<td>本種は、夏に開花する。</td>
<td>本州、四国、九州</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>コイヌガラシ</td>
<td>Ceratopteris thalictroides</td>
<td>本種は、夏に開花する。</td>
<td>本州、四国、九州</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>タノアシ</td>
<td>Actinostemma lobatum</td>
<td>本種は、夏に開花する。</td>
<td>本州、四国、九州</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>サデクサ</td>
<td>Gleditsia japonica</td>
<td>本種は、夏に開花する。</td>
<td>本州、四国、九州</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ゴキヅル</td>
<td>Penthorum chinense</td>
<td>本種は、夏に開花する。</td>
<td>本州、四国、九州</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ホウシュ</td>
<td>Sedum japonicum</td>
<td>本種は、夏に開花する。</td>
<td>本州、四国、九州</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>トウツメハギ</td>
<td>Rorippa cantoniensis</td>
<td>本種は、夏に開花する。</td>
<td>本州、四国、九州</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表6.3-14(5) 加古川大堰の管理・運用と関わりの深い重要種の選定結果

<table>
<thead>
<tr>
<th>項目</th>
<th>場所</th>
<th>関連性</th>
<th>種</th>
<th>理由</th>
</tr>
</thead>
<tbody>
<tr>
<td>建設年度</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 6.3-14(6) 加古川大堰の管理・運用と関わりの深い重要種の選定結果

<table>
<thead>
<tr>
<th>種名</th>
<th>分類</th>
<th>順位</th>
<th>区分</th>
<th>里山</th>
<th>生態的特徴</th>
<th>変化の状況</th>
<th>堰の管理・運用との関連性</th>
<th>選定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>植物</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ハマガタ</td>
<td>Nymphoides indica</td>
<td>病気</td>
<td>H7</td>
<td>北海道、本州、四国、九州に分布する。湖沼、溜池やよどんだ水路などに生育する多年生の浮葉植物。水深1.7m以下の水域に生育する。春先の生育初期には、数枚の沈水葉を形成し、後に水深に応じて長い葉柄を持つ初期の浮葉を水面に広げる。その後葉が伸長し、水面近くで節ができる。そこから数個の葉や花柄を出す。花は軽い緑色で、無花柱で、内面全面に白毛が現れる。萼は5深裂。雄蕊5個。雌蕊1個。長花柱花を持つ株と短花柱花を持つ株の2型があり、それぞれのタイプの株が混生しないと結実しない。果実は楕円形で長さ3~5mm、萼片に包まれる。夏から秋にかけて、柄の基部に根が変形肥厚して太短くなり、それがバナナの房状となった殖芽を形成する。翌春に葉と花が生じる。H7に確認され、H22にも引き続き確認されている。継続的に確認されているものの、堰の管理・運用との関連性はないため、分析・評価の対象としない。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ケテイカカズラ</td>
<td>Trachelospermum jasminoides var.pubescens</td>
<td>病気</td>
<td>H15/H22</td>
<td>本州(近畿以西)、四国、九州、沖縄に分布する。常緑藤本。若枝、花序、葉裏には毛が多い。葉は長楕円形楕円形、長さ4-8cmになり、幅2-5cm。花は白色、5-6月ごろに開き、径2-2.5cm。萼片は長さ5-6mm、長楕円形で先がすこし幅広く、まばらに毛がある。花筒の狭部は長さ3-4mmで広部とほぼ同長、花喉部にはふつう毛がある。雄蕊の葯の先は花喉部に達しない。果実は楕円形で長さ35mm、萼片に包まれる。夏から秋にかけて、柄の基部に根が変形肥厚して太短くなり、それがバナナの房状となった殖芽を形成する。翌春に葉と花が生じる。H15に確認され、H22にも引き続き確認されている。継続的に確認されているものの、堰の管理・運用との関連性はないため、分析・評価の対象としない。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ミゾコウジュ</td>
<td>Salvia plebeia</td>
<td>病気</td>
<td>H7/H11-H12/H15/H22</td>
<td>本州、四国、九州、沖縄に分布する。ロゼット葉にある越年草。湿った草地やあぜみちにはえる。葉は長楕円形で根出葉は長い柄があり、花時には枯れる。茎は高さ30cm~70cm、4角形で直立し、下向きの細毛がある。茎葉短い柄あり、長さ3-6cmになり、幅1-2cmで、縁は鈍い鋸歯があり、脈は凹入して葉面は細かいしわがあり、細毛である。花は5-6月に開き、花穂ははじめ短いが、のちに長く伸びて8-10cmとなる。萼は長さ2.5-3mm、唇形で、花が終わると左右に口を閉じるが、果時には長さ4mmとなってまた開く。H7に確認され、H11-H12に確認され、H15、H22にも引き続き確認されている。継続的に確認されているものの、堰の管理・運用との関連性はないため、分析・評価の対象としない。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>カワヂシャ</td>
<td>Veronica undulata</td>
<td>病気</td>
<td>H11-H12/H15/H22</td>
<td>本種は日本では本州(中部以西)、四国、九州および沖縄に分布する。川岸、溝のふちや水辺、水田にはえる2050cmの越年草である。花期は56月である。H11-H12に確認され、H15、H22にも引き続き確認されている。継続的に確認されているものの、堰の管理・運用との関連性はないため、分析・評価の対象としない。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>オギノツメ</td>
<td>Hygrophila salicifolia</td>
<td>病気</td>
<td>H15</td>
<td>本州(静岡県以西)、四国、九州、沖縄に分布する。暖地の水湿地にはえる多年草。根茎は地中をはい、節から多数の根と地上茎をだす。地下茎は直立して高さ30-60cmにより、ほとんど無毛。葉は長さ3-15cm、幅0.5-15cm、線状披針形、先は鈍く、基部はしだいに狭まって短い柄となり、全縁、節や葉柄の基部には長毛がある。H15に確認される。H11-H12に確認され、H15に引き続き確認されている。継続的に確認されているものの、堰の管理・運用との関連性はないため、分析・評価の対象としない。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>フジバカマ</td>
<td>Eupatorium japonicum</td>
<td>病気</td>
<td>H7/H11-H12/H15/H22</td>
<td>川岸の土手等に生える多年草で茎は多く集まって直立し高さ1-1.5m、下部は無毛。本州(関東地方以西)・四国・九州の暖帯に分布。H7に確認され、H11-H12、H15、H22にも引き続き確認されている。継続的に確認されているものの、堰の管理・運用との関連性はないため、分析・評価の対象としない。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ミクリ</td>
<td>Sparganium erectum ssp.stoloniferum</td>
<td>病気</td>
<td>H7/H11-H12/H15/H22</td>
<td>北海道、本州、四国、九州に分布する。浅い水底から直立してはえる多年草で、高さ50-100cmになる。地下茎は横にはい、先に新しい株をつくる。葉は線形で、直立して茎より長く、幅2-15mm、裏面中央に稜があり、先は鈍頭。6-8月に茎の上部の葉腋から枝を出し、枝の下部に1-3個の無柄の雌性頭花、上部に多数の無柄の雄性頭花をつける。雄花の花被片は3-4個でさじ形、長さ約2mm。雄蕊は3個ある。雌花の花被片は3個で倒卵形、長さ約3mmになり。花柱の先の片側に長さ3-6mmの糸状の柱頭がついている。雌性頭花は熟すると、径15-20mmの球形で緑色の集合果となる。H7に確認され、H11-H12に確認され、H15/H22にも引き続き確認されている。継続的に確認されているものの、堰の管理・運用との関連性はないため、分析・評価の対象としない。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>フサスゲ</td>
<td>Carex idzuroei</td>
<td>病気</td>
<td>H11-H12/H15</td>
<td>本州(関東以西)、四国、九州に分布する。オニスゲに似ているが、雌小穂は長楕円形、やや離れてつき、下方のものには短い柄がある。茎は高さ40-60cmになり、5-6月に熟す。H11-H12に確認され、H15にも引き続き確認されている。継続的に確認されているものの、堰の管理・運用との関連性はないため、分析・評価の対象としない。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>ウマスゲ</td>
<td>Carex metallica</td>
<td>病気</td>
<td>H7/H11-H12/H15/H22</td>
<td>本州(近畿以西)、四国、九州、沖縄に分布する。大きな株をつくり高さ30-60cmになり、上部が点頭する多年草。シラホスゲともいう。葉は幅3-6mm、小穂は5-10個が接続してつき、淡緑色で光沢がある。下方のものは雌性で円柱形をなし、長さ2-5cm、柄があり、上方のものは下部に雄花があり、頂小穂はときに雄花のみとなる。雌性頭花は無柄で、径15-20mmの緑色の集合果をつくる。H7に確認され、H11-H12、H15、H22にも引き続き確認されている。継続的に確認されているものの、堰の管理・運用との関連性はないため、分析・評価の対象としない。</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 6.3-14(6) 加古川大堰の管理・運用と関わりの深い重要種の選定結果

■植物 (2)
表 6.3-14(7) 加古川大堰の管理・運用と関わりの深い重要種の選定結果

■植物（3）

<table>
<thead>
<tr>
<th>種名</th>
<th>指定区分</th>
<th>指定年度</th>
<th>生態的特徴</th>
<th>変化の状況</th>
<th>堰の管理・運用との関連性</th>
<th>選定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>ヌマガヤツリ</td>
<td>Cyperus glomeratus</td>
<td>H7</td>
<td>本州に分布する。水窪地に生える大型の1年草。根を伸ばして茎を出させ、高さ10-50cm。下部は多数の葉鞘に包まれ、葉は併縮した葉身があり、その幅は3-8mm。茎は濃い褐色である。花は9-10月、花序は細形または単鈍、長さ6-13cm、幅は3-4cm。長い果実状、長さ3-5cmで、長いものは長さ10cmにおよぶ。花被は長卵形で長さ3-4cm、密に小穂をつけ、3-5個密集して花序の枝の先をくび。</td>
<td>H7のみ確認されている。</td>
<td>堰の管理・運用との関連性は不明のために、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>フトイ</td>
<td>Schoenoplectus tabernaemontani</td>
<td>H7/H11-H12/H15/H22</td>
<td>北海道、本州、四国、九州、沖縄に分布する。平地や山地の池沼などの浅水中に生える。大型の多年草で、根茎は太く、横に這い、茎は粉緑色で円く、高さ1-2m、径7-15mmある。花序は側生状で、数個の枝が出、枝端に1-3個の小穂がつく。苞は1個で直に続くが、花序よりも短い。小穂は卵形で赤褐色を帯び、長さ5-10mm。オオフトイの可能性があり、分類学的に再検討が必要。</td>
<td>H7に確認され、H11-H12/H15/H22にも確認されているが、堰の管理・運用との関連性は不明のために、分析・評価の対象としない。</td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>

注）指定区分
国VU: 環境省レッドリストにおける絶滅危惧Ⅱ類
国NT: 環境省レッドリストにおける準絶滅危惧
兵A: 兵庫県レッドデータブックにおけるAランク
兵B: 兵庫県レッドデータブックにおけるBランク
兵C: 兵庫県レッドデータブックにおけるCランク
兵調: 兵庫県レッドデータブックにおける要調査種

6-189
表 6.3-14 (8) 加古川大堰の管理・運用に関わる大事な種の選定結果

<table>
<thead>
<tr>
<th>種名</th>
<th>分類</th>
<th>生息の特徴</th>
<th>現状の変化</th>
<th>現状の管理・運用との関連性</th>
<th>選定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>サイコ</td>
<td>Buteo buteo</td>
<td>ハヤブサは、飛行力が強く、多くの場所を自由に移動できる</td>
<td>建設・管理は影響を受けない</td>
<td>×</td>
<td>関連性は少ないため、分析・評価の対象とはしない。</td>
</tr>
<tr>
<td>サイコ</td>
<td>Falco peregrinus</td>
<td>ハヤブサは、飛行力が強く、多くの場所を自由に移動できる</td>
<td>建設・管理は影響を受けない</td>
<td>×</td>
<td>関連性は少ないため、分析・評価の対象とはしない。</td>
</tr>
<tr>
<td>サイコ</td>
<td>Accipiter gentilis</td>
<td>ハヤブサは、飛行力が強く、多くの場所を自由に移動できる</td>
<td>建設・管理は影響を受けない</td>
<td>×</td>
<td>関連性は少ないため、分析・評価の対象とはしない。</td>
</tr>
<tr>
<td>サイコ</td>
<td>Pernis apivorus</td>
<td>ハヤブサは、飛行力が強く、多くの場所を自由に移動できる</td>
<td>建設・管理は影響を受けない</td>
<td>×</td>
<td>関連性は少ないため、分析・評価の対象とはしない。</td>
</tr>
<tr>
<td>サイコ</td>
<td>Pandion haliaetus</td>
<td>ハヤブサは、飛行力が強く、多くの場所を自由に移動できる</td>
<td>建設・管理は影響を受けない</td>
<td>×</td>
<td>関連性は少ないため、分析・評価の対象とはしない。</td>
</tr>
<tr>
<td>サイコ</td>
<td>Anas formosa</td>
<td>ハヤブサは、飛行力が強く、多くの場所を自由に移動できる</td>
<td>建設・管理は影響を受けない</td>
<td>×</td>
<td>関連性は少ないため、分析・評価の対象とはしない。</td>
</tr>
<tr>
<td>サイコ</td>
<td>Butorides striatus</td>
<td>ハヤブサは、飛行力が強く、多くの場所を自由に移動できる</td>
<td>建設・管理は影響を受けない</td>
<td>×</td>
<td>関連性は少ないため、分析・評価の対象とはしない。</td>
</tr>
<tr>
<td>サイコ</td>
<td>Ciconia boyciana</td>
<td>ハヤブサは、飛行力が強く、多くの場所を自由に移動できる</td>
<td>建設・管理は影響を受けない</td>
<td>×</td>
<td>関連性は少ないため、分析・評価の対象とはしない。</td>
</tr>
<tr>
<td>サイコ</td>
<td>Anas formosa</td>
<td>ハヤブサは、飛行力が強く、多くの場所を自由に移動できる</td>
<td>建設・管理は影響を受けない</td>
<td>×</td>
<td>関連性は少ないため、分析・評価の対象とはしない。</td>
</tr>
<tr>
<td>サイコ</td>
<td>Butorides striatus</td>
<td>ハヤブサは、飛行力が強く、多くの場所を自由に移動できる</td>
<td>建設・管理は影響を受けない</td>
<td>×</td>
<td>関連性は少ないため、分析・評価の対象とはしない。</td>
</tr>
<tr>
<td>サイコ</td>
<td>Ciconia boyciana</td>
<td>ハヤブサは、飛行力が強く、多くの場所を自由に移動できる</td>
<td>建設・管理は影響を受けない</td>
<td>×</td>
<td>関連性は少ないため、分析・評価の対象とはしない。</td>
</tr>
</tbody>
</table>

備考：表には、選定結果が示されているが、その情報が不足しているため、分析・評価の対象とはしない。
表 6.3-14（9） 加古川大堰の管理・運用と関わりの深い重要種の選定結果

<table>
<thead>
<tr>
<th>種名</th>
<th>生態的特徴</th>
<th>堰の管理・運用との関連性</th>
<th>場所</th>
<th>亜種</th>
</tr>
</thead>
<tbody>
<tr>
<td>ケリ Vaneilus cinereus</td>
<td>全国的に観察され、九州から北本州において繁殖するが地域差が現れ、本州北部の個体は夏鳥として観察される。繁殖期は３月から6月、越後水田、休耕地、大阪府、河川沿い、草地を利用して繁殖する。地域により増減傾向が異なり、中四国・九島などには広く分布している。</td>
<td>×</td>
<td>H5/H10/H16/H24</td>
<td></td>
</tr>
<tr>
<td>アオアシシギ Actitis hypoleucos</td>
<td>哺乳下流・海岸・湖岸の砂洲や干潟だけでなく、河川中流部や田植え前の水田・ため池といった内陸部の植生のない湿地にも飛来し、昆虫、甲殻類、ミミズなどの採食をする。</td>
<td>×</td>
<td>H10</td>
<td></td>
</tr>
<tr>
<td>タカブシギ Tringa glareola</td>
<td>旅鳥として普通に渡来する。越冬する個体もあり、近年越冬例が増えている。数羽から数十羽の群れが水田、休耕田、川岸などの内陸の湿地で観察される。浅い水中を活発に歩きながら、水棲昆虫、貝、オタマジャクシなどの小動物を捕食する。</td>
<td>×</td>
<td>H16/H24</td>
<td></td>
</tr>
<tr>
<td>イソシギ Actitis hypoleucos</td>
<td>北海道、本州、九州で繁殖し、北方ほど繁殖例が多い。冬期には、北方のものは暖地へ移動する。繁殖期には川や湖沼に棲息し、岸辺の草地で営巣する。低木や草の根元などを浅く掘って巣とし、枯れ草などを敷いて卵を産む。</td>
<td>×</td>
<td>H5/H10/H16/H24</td>
<td></td>
</tr>
<tr>
<td>タシギ Gallinago gallinago</td>
<td>北海道では旅鳥、本州、四国、九州では旅鳥または冬鳥、沖縄では冬鳥。湖沼や水田、ハス田、湿地、河川に生息する。水辺でくちばしを泥の中にさしこんでミミズ類や甲殻類、軟体動物、昆虫類を採食する。</td>
<td>×</td>
<td>H5/H10</td>
<td></td>
</tr>
<tr>
<td>ズグロカモメ Larus saundersi</td>
<td>南部では冬鳥、北海道、本州、四国、九州では不定期な渡来とされているが個体数が少ない。繁殖地、越冬地ともに生息環境の減少が深刻である。内湾や干潟、海上に生息し、カニ類、エビ類、魚類、貝類、昆虫類などの小動物や魚類の死骸などの採食をする。</td>
<td>×</td>
<td>H16</td>
<td></td>
</tr>
<tr>
<td>ヤマセミ Ceryle lugubris</td>
<td>本種は、北海道から九州の各地で留鳥、あるいは漂鳥として生息する。山地帯、湖沼、河川(上流)に生息し、営巣環境が限られ、渓流に餌となる魚類が豊富でないと生息しない。崖に突き出した枝の上などに止まって魚を探し、翼をすぼめて急角度で水中に飛びこんで魚を捕らえる。木から落下する昆虫に魚が集まる、水深が50cm以上の場所が餌場となる。体長5cmから18cmほどの魚を1日に7匹から15匹捕食し、イワナ、ヤマメ、ウグイ、カジカ、アカザなど多様な種類を食べる。カエル、サワガニ、昆虫も捕らえるが、餌の93.8%が魚類である。一般的に知られているヤマセミの行動圏は4~6kmだという。繁殖期は3月から8月で、一夫一妻で繁殖する。巣は3m以上、傾斜度が70度以上の急傾斜の崖に営巣することが多く、川から500m以上離れた場所でも営巣する。川沿い又は水から少し離れた土の壁に、自分で穴を掘って中に産卵する。主としてメスが抱卵し、雄は雌に魚を運ぶ。1巣卵数は4個から7個である。</td>
<td>×</td>
<td>H5/H10</td>
<td></td>
</tr>
<tr>
<td>カワセミ Alcedo atthis</td>
<td>北海道、本州、四国、沖縄で夏鳥。清流を代表する鳥で、平地から山地の湖沼、河川、水路などに生息し、土手や崖などに穴を掘って営巣する。主に、小魚類や水生昆虫類、カエル類、エビ類などを捕食する。</td>
<td>×</td>
<td>H5/H10/H16/H24</td>
<td></td>
</tr>
<tr>
<td>アリスイ Jynx torquilla</td>
<td>北海道、本州北部では夏鳥、本州中・南部・四国、九州では冬鳥。開けた森林、林縁、農耕地などに生息する。地上や樹上でアリ類を好んで採食する。</td>
<td>×</td>
<td>H16</td>
<td></td>
</tr>
<tr>
<td>ノビトキ Saxicola torquata</td>
<td>夏鳥として本州中部以北に渡来する。繁殖期には、山地帯、草地、渓流、越後水田、河川(河川敷)に生息する。繁殖期には、樹林の中で突出した枝やかれたススキなどの茎の上で、そこから出撃するように飛び立って昆虫を捕らえる。繁殖期は5月から8月で、一夫一妻で繁殖する。巣は3m以上、傾斜度が70度以上の急傾斜の崖に営巣することが多い。川から500m以上離れた場所でも営巣する。川沿いや水から少し離れた土の壁に、自分で穴を掘って中に産卵する。主としてメスが抱卵し、雄は雌に魚を運ぶ。1巣卵数は3個から7個である。</td>
<td>×</td>
<td>H16</td>
<td></td>
</tr>
<tr>
<td>エゾセンニュウ Locustella fasciolata</td>
<td>北海道では夏鳥、本州、四国、九州、沖縄では越後水田の河川沿い、草地を利用して繁殖する。地域により増減傾向が異なり、中四国・九島などには広く分布している。</td>
<td>×</td>
<td>H24</td>
<td></td>
</tr>
<tr>
<td>オオヨシキリ Acrocephalus arundinaceus</td>
<td>日本には、夏鳥として渡来し、北海道から九州までの全国で繁殖する。川や湖沼の岸、休耕地、田植えなどのアシの草原に生息し、特に水辺からアシが生えているような場所を好む。餌は昆虫である。産卵期は58月、卵期は45個、抱卵日数は12~14日、経過ができるまでの日数は14日である。</td>
<td>×</td>
<td>H5/H10/H16/H24</td>
<td></td>
</tr>
</tbody>
</table>
表 6.3-14（10） 加古川大堰の管理・運用と関わりの深い重要種の選定結果

<table>
<thead>
<tr>
<th>種名</th>
<th>指定区分</th>
<th>確認年度</th>
<th>生態的特徴</th>
<th>変化の状況</th>
<th>堰の管理・運用との関連性</th>
<th>選定結果</th>
</tr>
</thead>
</table>
| ノジコ Emberiza sulphurata | 国NT 新A | H16 | 夏鳥として飛来し、本州の中部以北だけで繁殖し、特に新潟県と長野県の県境の山地に多い。冬、日本南部に残るものもある。山地帯、夏緑広葉樹林、混交林、低山帯の雑木林、森林、湿地に生息し、沼地や入り組んだ間の湿った湿原地、あるいは湿土地の帯に生息する。ノジコは、湿原を含んだ高地の緩斜面や、沼沢沿いのハンノキ、ヤナギ、クルミ等の林が多く、同じような環境でも繁殖する地域は限られている。繁殖期は5月から7月で、越冬する傾向があり、繁殖後は山奥の湿原等の湿った環境に移る。巣は湿原を含んだ高地の緩斜面や、沼沢沿いのハンノキ、ヤナギ、クルミ等の林が多く、同じような環境でも繁殖する地域は限られている。繁殖期は5月から7月である。夏は、昆虫、特に甲虫、鱗翅類の幼虫等を食べる。
| | | | 揃い化を踏まえて、分散し、行動圏は平均12,000 ㎡ぐらいである。巣を築く場所として、湿原を含んだ高地の緩斜面や、沼沢沿いのハンノキ、ヤナギ、クルミ等の林が多く、同じような環境でも繁殖する地域は限られている。繁殖期は5月から7月である。夏は、昆虫、特に甲虫、鱗翅類の幼虫等を食べる。 | H16のみ確認されている。 | 1年度の確認のみで、関連性は不明のため、分析・評価の対象としない。 | |
| アオジ Emberiza spodocephala | 新A/ 05/ 10/ 16/ 24 | H16/ H16/ H16/ H24 | 夏鳥として北海道と本州に渡来し、繁殖する。北海道ト东北地方では平地から山地にまで広く分布するが、それ以南では山地に限定され、本州西部では分布が局地的である。本州では、代表的な高原の鳥である。産卵期は5~7月、卵数は4~5個、抱卵日数は13~14日を作る、卵立ちまでの日数は12~13日である。 | H16に確認され、H10、H16、H24にも引き続き確認されている。 | 繰年に確認されているものの、堰の管理・運用との関連性は不明のため、分析・評価の対象としない。 | × |
| コムクドリ Sturnus philippensis | 兵注 | H16 | 北海道、本州北・北部では夏鳥、本州中央部、四国、九州、沖縄では旅鳥。平地から山地の雑木林や農耕地に生息し、落葉広葉樹林で繁殖する。樹上で昆虫類や木の実を採食する。 | H16のみ確認されている。 | 1年度の確認のみで、関連性は不明のため、分析・評価の対象としない。 | × |

注）指定区分
国CR：環境省レッドリストにおける絶滅危惧ⅠA類
国VU：環境省レッドリストにおける絶滅危惧Ⅱ類
国NT：環境省レッドリストにおける準絶滅危惧
国DD：環境省レッドリストにおける情報不足
兵A：兵庫県レッドデータブックにおけるAランク
兵B：兵庫県レッドデータブックにおけるBランク
兵C：兵庫県レッドデータブックにおけるCランク
兵注：兵庫県レッドデータブックにおける要注目種
兵調：兵庫県レッドデータブックにおける要調査種
国内：国内重要種
<table>
<thead>
<tr>
<th>種名</th>
<th>国</th>
<th>指定</th>
<th>分布</th>
<th>生態的特徴</th>
<th>変化の状況</th>
<th>堰の管理・運用との関連性</th>
<th>選定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>ニホンヒキガエル</td>
<td>NT</td>
<td>兵C</td>
<td>H7/H12</td>
<td>本州、四国、九州に分布。産卵期は2-3月頃で、冬季に水没が確保される池沼の浅瀬に産卵する。体が大きいにもかかわらず、手や足の筋肉はあまり発達していないので跳躍力はあまりない。</td>
<td>H7に確認され、H12にも引き続き確認されている。</td>
<td>継続的に確認されているものの、堰の管理・運用との関連性はないと考えられる。</td>
<td>×</td>
</tr>
<tr>
<td>メトサマガエル</td>
<td>NT</td>
<td>兵C</td>
<td>H7/H12/H17/H27</td>
<td>本州(仙台から関東を除く)、四国、九州に分布している。水田や周辺の草地、河原などで生活する。春から初夏に水田や湿地などの浅い止水で繁殖し、雄はグルグル…と鳴く。一腹卵数は1,800~3,000個。幼生は初夏に変態、上陸する。クモ、昆虫などの他に、カエルをも捕食する。</td>
<td>H7に確認され、H12、H17、H27にも引き続き確認されている。</td>
<td>継続的に確認されているものの、堰の管理・運用との関連性はないと考えられる。</td>
<td>×</td>
</tr>
<tr>
<td>ツチガエル</td>
<td>C</td>
<td>兵</td>
<td>H17</td>
<td>本州、四国、九州に分布する。平地から標高1000mぐらいの丘陵地に生息している。幼生は深い池底で越冬する場合が多く、農村や都市周辺に深い池がなくなったため、絶滅のおそれがある。</td>
<td>H17のみ確認されている。</td>
<td>単年度の確認のみで、関連性は不明のため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>ニホンイシガメ</td>
<td>NT</td>
<td>兵C</td>
<td>H7/H12/H17/H27</td>
<td>日本の固有種で本州、四国、九州に分布。甲長は1421㎝程度で、雌の方が大きい。背甲は褐色ないし茶色で、腹甲は黒色。頸部側面は暗色で、不明瞭な茶色の縦条がはしる。幼若個体で、後部の縁甲版は鋸歯状だが、成長とともに鈍くなる。繁殖期は58月で、水中で交尾し、水辺の土中に回転楕円体の卵を数個から十数個産む。</td>
<td>H7に確認され、H12、H17、H27にも引き続き確認されている。</td>
<td>継続的に確認されているものの、堰の管理・運用との関連性はないと考えられる。</td>
<td>×</td>
</tr>
<tr>
<td>ニホンスッポン</td>
<td>DD</td>
<td>兵調</td>
<td>H12/H27</td>
<td>関東以西の本土に分布し、朝鮮半島や極東ロシア南部にも見られる。甲長は1530㎝程度。吻端が尖り、甲の表面は皮革状。夜行性で、貝類、甲殻類、水生昆虫、小魚、カエルなどを捕食。こうした小動物の豊かな河川や湖沼に生息し、日中は水底の砂中などに潜む。雌は58月に上陸して穴を掘り、20個から多いときは50個あまりの卵を産む。</td>
<td>H12に確認され、H27にも引き続き確認されている。</td>
<td>継続的に確認されているものの、堰の管理・運用との関連性はないと考えられる。</td>
<td>×</td>
</tr>
<tr>
<td>ニホンヤモリ</td>
<td>C</td>
<td>兵</td>
<td>H7/H12/H17/H27</td>
<td>本州、四国、九州と周辺島嶼に分布。北海道の一部でも見つかっているが、近年の人为的な分布拡大の結果と思われる。国外では中国東部と韓国のみで知られている。民家周辺に多く、しばしば物資に付くなどして人為的に運ばれるため、県内を含む全国の集団のほとんどが、人為的な移入に由来する可能性がある。</td>
<td>H7に確認され、H12、H17、H27にも引き続き確認されている。</td>
<td>継続的に確認されているものの、堰の管理・運用との関連性はないと考えられる。</td>
<td>×</td>
</tr>
<tr>
<td>ホンシュウジネズミ</td>
<td>NT</td>
<td>兵注</td>
<td>H12/H17</td>
<td>北海道を除く全国に広く分布する日本の固有種である。低地の河畔、水辺、農耕地辺りの林、低山帯の低木林に生息し、小型昆虫などを捕食する。</td>
<td>H12に確認され、H12、H17にも引き続き確認されている。</td>
<td>継続的に確認されているものの、堰の管理・運用との関連性はないと考えられる。</td>
<td>×</td>
</tr>
</tbody>
</table>

注) 指定区分
国NT: 環境省レッドリストにおける準絶滅危惧
国DD: 環境省レッドリストにおける情報不足
兵C: 兵庫県レッドデータブックにおけるCランク
兵注: 兵庫県レッドデータブックにおける要注目種
兵調: 兵庫県レッドデータブックにおける要調査種
表6.3-14(12) 加古川大堰の管理・運用と関わりの深い重要種の選定結果

陸上昆虫類等(1)

<table>
<thead>
<tr>
<th>種名</th>
<th>指定</th>
</tr>
</thead>
<tbody>
<tr>
<td>種名</td>
<td>分区</td>
</tr>
<tr>
<td>種名</td>
<td>年度</td>
</tr>
<tr>
<td>ナカムラオニグモ</td>
<td>兵注</td>
</tr>
<tr>
<td>シッチコモリグモ</td>
<td>兵注</td>
</tr>
<tr>
<td>キムネハシリグモ</td>
<td>兵注</td>
</tr>
<tr>
<td>カトリヤンマ</td>
<td>兵注</td>
</tr>
<tr>
<td>アキアカネ</td>
<td>兵注</td>
</tr>
<tr>
<td>スズムシ</td>
<td>兵注</td>
</tr>
<tr>
<td>ヒメコオロギ</td>
<td>兵注</td>
</tr>
<tr>
<td>クロアシブトハナカメムシ</td>
<td>兵注</td>
</tr>
<tr>
<td>コオイムシ</td>
<td>兵注</td>
</tr>
<tr>
<td>ヤネホソバ</td>
<td>兵注</td>
</tr>
</tbody>
</table>

陸上昆虫類等(2)

<table>
<thead>
<tr>
<th>種名</th>
<th>指定</th>
</tr>
</thead>
<tbody>
<tr>
<td>種名</td>
<td>分区</td>
</tr>
<tr>
<td>種名</td>
<td>年度</td>
</tr>
<tr>
<td>ラニオリノモ</td>
<td>兵注</td>
</tr>
<tr>
<td>シップコモリグモ</td>
<td>兵注</td>
</tr>
<tr>
<td>ボレオネズミ</td>
<td>兵注</td>
</tr>
<tr>
<td>カトリヤンマ</td>
<td>兵注</td>
</tr>
<tr>
<td>スランカネ</td>
<td>兵注</td>
</tr>
<tr>
<td>ヒゲシロスズ</td>
<td>兵注</td>
</tr>
<tr>
<td>クロアシブトハナカメムシ</td>
<td>兵注</td>
</tr>
<tr>
<td>コオイムシ</td>
<td>兵注</td>
</tr>
<tr>
<td>ヤネホソバ</td>
<td>兵注</td>
</tr>
</tbody>
</table>

質問に答える

この表に記載されている昆虫の生態的特徴や変化の状況について、具体的な説明を求める。特に、堰の管理・運用との関連性がある種について詳しく説明してください。
表 6.3-14 (13) 加古川大堰の管理・運用と関わりの深い重要種の選定結果

<table>
<thead>
<tr>
<th>種名</th>
<th>指定区分</th>
<th>生態的特徴</th>
<th>堰の管理・運用との関連性</th>
<th>選定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>スゲドクガ</td>
<td>Laelia coenosa</td>
<td>前総2年、5月-8月に出現する。湿地の縁として知られ、湿地の減少の要因ともなる。植生に中程度</td>
<td>堰の管理・運用との関連性</td>
<td>個体数が減少している。</td>
</tr>
<tr>
<td>カギモンハナオイアツ</td>
<td>Cidariplura signata</td>
<td>初期のカタクリの消費群が、特に、同科の主な食草として知られ、現在も湿地の減少に伴い、本種も減少している。</td>
<td>堰の管理・運用との関連性</td>
<td>個体数が減少している。</td>
</tr>
<tr>
<td>イグチケブカゴミムシ</td>
<td>Peronomerus auripilis</td>
<td>体長9-10mm。北海道、本州に分布する。前胸背はやや長く、側縁中央付近が突出する。上翅は金色の細毛に覆われる。平地の河川敷や湖沼周辺の湿地、湿原に生息。夏季~秋季に灯火に飛来する。ヨシ枯れ堆積注など成虫で越冬する。湖沼発、河川開発、湿地開発などによる生息環境の消滅のほか、湿地の乾燥化などによる進化進行も本種の生息には大きな影響を及ぼすと考えられる。</td>
<td>堤の管理・運用との関連性</td>
<td>個体数が減少している。</td>
</tr>
<tr>
<td>コガムシ</td>
<td>Hydrochara affinis</td>
<td>平地の池沼・水田などにすみ、成虫は年中見られる。夏は夜よく電燈に飛んでくる。成虫は水草、藻などを食べるが、幼虫は強い肉食性を持ち、ほかの虫を食べる。体長15-18mm。北海道、本州、四国、九州に分布。口肢・脚・上翅側縁・腹部は黒色で後胸板の棘状突起はより長く、細く尖る。</td>
<td>堤の管理・運用との関連性</td>
<td>個体数が減少している。</td>
</tr>
<tr>
<td>ヒゲコガネ</td>
<td>Polyphylla laticollis</td>
<td>本州、四国、九州に分布する。前胸から上翅にかけて、黄褐色の細かい斑紋をもつ。♂の触覚は先端節が大きく広がるが、♀では単純。成虫は夏に出現し、灯火にも多く集まる。比較的大きな河川敷に生息する。</td>
<td>堤の管理・運用との関連性</td>
<td>個体数が減少している。</td>
</tr>
<tr>
<td>ジュウクホシテントウ</td>
<td>Anisosticta kobensis</td>
<td>北海道、本州、四国、九州に分布する。体長3.5-4mm程度。体色は淡黄色で、上翅には19個の黒色紋がある。平地の湿地にあらうヨシ群落などに生息し、アブラムシ類を捕食する。成虫は4月~8月にかけて見られる。</td>
<td>堤の管理・運用との関連性</td>
<td>個体数が減少している。</td>
</tr>
<tr>
<td>ジュウサンホシテントウ</td>
<td>Hippodamia tredecimpunctata timberlakei</td>
<td>北海道、本州、四国、九州に分布する。体長4.57mm程度。体色は黄赤色で、上翅には13個の黒色紋がある。平地の湿地にあらうヨシ群落などに生息し、アブラムシ類を捕食する。成虫は5月10月にかけて見られる。</td>
<td>堤の管理・運用との関連性</td>
<td>個体数が減少している。</td>
</tr>
<tr>
<td>マメハンミョウ</td>
<td>Epicauta gorhami</td>
<td>本州、四国、九州に分布する。体長12~17mm程度。体色は黒色で、頭部は赤色。前胸背板と上翅には灰白色の条線がある。草地に生息、幼虫はイナゴ類の卵塊に寄生している。成虫は夏から秋にかけて見られる。</td>
<td>堤の管理・運用との関連性</td>
<td>個体数が減少している。</td>
</tr>
<tr>
<td>ヤマトアシナガバチ</td>
<td>Polistes japonicus</td>
<td>草本の葉裏や樹木の細枝に営巣し、巣の繭の色は緑がかった黄色である。家屋周辺で見られるアシナガバチとして代表的なもののひとつ。本州、四国、九州、対馬に分布する。体長16~22mm。</td>
<td>堤の管理・運用との関連性</td>
<td>個体数が減少している。</td>
</tr>
<tr>
<td>モンスズメバチ</td>
<td>Vespa crabro</td>
<td>北海道、本州、四国、九州に分布する。巣は樹洞、人家の天井、壁の間等に作ることが多い。</td>
<td>堤の管理・運用との関連性</td>
<td>個体数が減少している。</td>
</tr>
<tr>
<td>アオスジクモバチ</td>
<td>Paracyphononyx alienus</td>
<td>本州、四国、九州に分布する日本固有種。イソコモリグモなどを狩る。埼玉県、石川県、京都府の各府県で減少。海岸地域に生息する個体群では海岸砂丘の減少と破壊が減少の要因となる。</td>
<td>堤の管理・運用との関連性</td>
<td>個体数が減少している。</td>
</tr>
</tbody>
</table>

(2) 堰の管理・運用と関わりの深い重要種の確認状況

加古川大堰の管理・運用と関わりの深い重要種の確認状況を表6.3-15に、ニホンウナギの確認状況を図6.3-14に、オオヨシノボリの確認状況を図6.3-15に、ミゾレヌマエビの確認状況を図6.3-16に示す。

分析結果の概要は、下記のとおりである。

●魚類：ニホンウナギ
　・平成2年度や平成4年度には確認個体はなく、平成9年度は2個体のみであったが、平成14年度以降は15個体以上が確認されている。
　・アユの遡上期に実施される魚道遡上調査においても、特に平成25年度以降は、毎年に魚道を利用して、堰より遡上する状況が確認されている。

●魚類：オオヨシノボリ
　・平成2年度、平成4年度、平成9年度には確認個体はなく、平成14年度は3個体、平成19年度は8個体が確認されたが、平成24年度では確認個体はなかった。
　・平成28年度のアユの遡上期に実施された魚道遡上調査や秋季の調査では、堰より遡上する状況が確認されており、遡上する個体が回遊歴を有することも確認されている。

●底生動物：ミゾレヌマエビ
　・平成4年度には確認個体はなかったが、平成19年度は19個体、平成14年度からは40個体以上、平成24年度は96個体と確認個体数が増加している。
　・平成24年度は、特に堰の下流河川で多く確認されている。この要因は、堰より下流にある河川横断工作物である古新堰堤に設置される魚道が改良されたことに起因する可能性がある。
　・アユ遡上期に実施される魚道遡上調査においても、特に平成26年度以降は、毎年に魚道を利用して、堰より遡上する状況が確認されている。
表 6.3-15 加古川大堰の管理・運用と関わりの深い重要種の確認状況（個体数）

<table>
<thead>
<tr>
<th>種名</th>
<th>選定基準</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>環境省 RL</td>
<td>兵庫県 RL</td>
</tr>
<tr>
<td>ニホンウナギ</td>
<td>EN C</td>
<td>0</td>
</tr>
<tr>
<td>オオヨシノボリ</td>
<td>C</td>
<td>0</td>
</tr>
</tbody>
</table>

【重要種の選定基準】
○環境省 RL：「環境省レッドリスト 2017 の公表について」(環境省，2017) における掲載種
・EN：絶滅危惧 I B 類
○兵庫県 RL：「兵庫県版レッドリスト 2014（具類、その他無脊椎動物）」、「兵庫県版レッドリスト 2017（哺乳類・爬虫類・両生類・魚類・クモ類）」における掲載種
・B：環境省レッドデータブックの絶滅危惧 II 類に相当。兵庫県内において絶滅の危機が増大している種など、極力生息環境、自生地などの保全が必要な種。
・C：環境省レッドデータブックの準絶滅危惧に相当。兵庫県内において存続基盤が脆弱な種。
図 6.3-14 魚類ニホンウナギの経年の確認状況

<table>
<thead>
<tr>
<th>種名</th>
<th>調査年度</th>
<th>H2</th>
<th>H4</th>
<th>H9</th>
<th>H14</th>
<th>H19</th>
<th>H24</th>
</tr>
</thead>
<tbody>
<tr>
<td>オオヨシノボリ</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

■流入河川

<table>
<thead>
<tr>
<th>種名</th>
<th>調査年度</th>
<th>H2</th>
<th>H4</th>
<th>H9</th>
<th>H14</th>
<th>H19</th>
<th>H24</th>
</tr>
</thead>
<tbody>
<tr>
<td>オオヨシノボリ</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

■堰の湛水域

<table>
<thead>
<tr>
<th>種名</th>
<th>調査年度</th>
<th>H2</th>
<th>H4</th>
<th>H9</th>
<th>H14</th>
<th>H19</th>
<th>H24</th>
</tr>
</thead>
<tbody>
<tr>
<td>オオヨシノボリ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>18</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

■下流河川

<table>
<thead>
<tr>
<th>種名</th>
<th>調査年度</th>
<th>H2</th>
<th>H4</th>
<th>H9</th>
<th>H14</th>
<th>H19</th>
<th>H24</th>
</tr>
</thead>
<tbody>
<tr>
<td>オオヨシノボリ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>18</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
図 6.3-15 魚類オオヨシノボリの経年の確認状況

<table>
<thead>
<tr>
<th></th>
<th>調査年度</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H2</td>
<td>H4</td>
<td>H9</td>
<td>H14</td>
<td>H19</td>
<td>H24</td>
</tr>
<tr>
<td>■下流河川</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ニホンウナギ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>■堰の湛水域</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ニホンウナギ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>■流入河川</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ニホンウナギ</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

図 6.3-15 魚類オオヨシノボリの経年の確認状況
図 6.3-16 底生動物ミゾレヌマエビの経年の確認状況
現状での重要種に対する課題や保全対策実施の必要性について

重要種に対する課題や保全対策実施の必要性に対する評価は、下記のとおりである。

<table>
<thead>
<tr>
<th>魚類</th>
<th>ニホンウナギ</th>
</tr>
</thead>
<tbody>
<tr>
<td>最新の平成24年度の調査においても、既往の確認状況と大きな違いはなく、生息状況および魚道の利用状況に大きな変化はない。</td>
<td></td>
</tr>
<tr>
<td>現状において保全対策の必要は低く、よって、河川水辺の国勢調査や堰で実施する魚道遡上調査を通じ、定期的に本種の生息状況を監視する。</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>魚類</th>
<th>オオヨシノボリ</th>
</tr>
</thead>
<tbody>
<tr>
<td>最新の平成24年度の調査では確認がなく、既往でも定期的には確認されておらず、元々の生息数が少ない可能性が高く、生息状況に大きな変化はないものと考えられる。</td>
<td></td>
</tr>
<tr>
<td>現状において保全対策の必要は低く、よって、河川水辺の国勢調査や堰で実施する魚道遡上調査を通じ、定期的に本種の生息状況を監視する。</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>底生動物</th>
<th>ミゾレヌマエビ</th>
</tr>
</thead>
<tbody>
<tr>
<td>最新の平成25年度の調査においても、既往の確認状況と大きな違いはなく、生息状況および魚道の利用状況に大きな変化はない。</td>
<td></td>
</tr>
<tr>
<td>現状において保全対策の必要は低く、よって、河川水辺の国勢調査や堰で実施する魚道遡上調査を通じ、定期的に本種の生息状況を監視する。</td>
<td></td>
</tr>
</tbody>
</table>
6.3.4 外来種の変化の把握

(1) 外来種の確認状況

加古川大堰の管理・運用と関わりの深い外来種の選定結果を表6.3-16に示す。

重要種については、各種の生態的特徴を踏まえ、加古川大堰の存在・供用に伴う環境変化、堰の管理・運用に伴い影響を受けるおそれのある種を選定した。

選定した種は、下記のとおりである。

| ●魚類：ブルーギル、オオクチバス |
| ブルーギルおよびオオクチバスは、経年的に確認されている。これらの2種は、在来種への捕食圧が懸念される。既に広く河川内に定着している可能性が高いほか、周辺からの自然的な拡散や、レジャー目的で人為的に放流される場合もあるものと考えられる。 |

| ●植物：アレチウリ、オオカワヂシャ、オオキンケイギク、オオフサモ、Azolla属※ |
| アレチウリ、オオフサモおよびオオカワヂシャは経年的に、オオキンケイギクとAzolla属は平成15年度から2回の調査で連続確認されている。これらの4種は、特定外来生物に指定されており、人為的な拡散に対し、法的な規制を受ける種に該当する。 |
| ※Azolla属は、種まで同定することが困難な特定外来生物のアカウキクサ科に該当する。 |

| ●両生類：ウシガエル |
| ウシガエルは、経年的に確認されている。本種は、在来種への捕食圧が懸念され、既に広く河川内に定着している可能性が高いほか、周辺からの自然的な拡散もあるものと考えられる。 |

<p>| ●哺乳類：アライグマ、ヌートリア |
| ヌートリアは経年的に、アライグマは平成17年度と平成27年度の調査で2回の調査で連続確認されている。これらの2種は、特定外来生物に指定されており、人為的な放牧に対し、法的な規制を受ける種に該当する。 |</p>
<table>
<thead>
<tr>
<th>魚類</th>
<th>種名</th>
<th>指定区分</th>
<th>確認年度</th>
<th>生態的特徴</th>
<th>変化の状況</th>
<th>堰の管理・運用との関連性</th>
<th>選定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイリクバラタナゴ</td>
<td>Rhodeus ocellatus</td>
<td>国外</td>
<td></td>
<td>日本原産。沖縄県に分布する。平野部の池や河川の沿に生ずる。ドブガイなどの鰓葉に産卵する。繁殖期は3~9月。食性は混食で動物プランクトンや付着藻類。</td>
<td>H2/H4/H9/H10/H14/H19/H24に確認され、H4、H9-H10、H14、H19、H24にも引き続き確認されている。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>兵庫</td>
<td></td>
<td>堰の湛水域のような止水環境に生息する純淡水魚であるが、法令における規制を受けない外来種であるため、堰の管理・運用との関連性はないと考えられる。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ニジマス</td>
<td>Oncorhynchus mykiss</td>
<td>国内</td>
<td></td>
<td>東北、東京、和歌山(熊野川水系)、中国地方に分布する。一般に速い流れを好むが、湖やダム等の静止水域も生息する。繁殖期は113月。北海道は1月下旬から5月頃。自然繁殖では46月が確認されている。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>繰り返し確認されており、堰の湛水域のような止水環境に生息する純淡水魚で、法令における規制を受けない外来種であるため、堰の管理・運用との関連性はないが、分析・評価の対象とする。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ブルーギル</td>
<td>Lepomis macrochirus</td>
<td>国外</td>
<td></td>
<td>北米東部に自然分布し、日本では全国に分布する。止水環境や流れの緩やかな河川の下流域に生息する。繁殖期は39月。配偶魚は繁殖に関わる多型である。「なわばり雄」は全長1530cm程度で繁殖集団を形成し、すり鉢状の産卵床を作る。底産卵雌が訪問して放卵、放精が始まるが、その場に雌魚群やスニーカーが加わる。「なわばり雄」は卵から孵化した仔魚を稚魚になる寸前まで7~8日程度保護する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>繰り返し確認されており、堰の湛水域のような止水環境に生息する純淡水魚で、法令における規制を受けない外来種であるため、堰の管理・運用との関連性はないと考えられる。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オオクチバス</td>
<td>Micropterus salmoides</td>
<td>国外</td>
<td></td>
<td>北米に自然分布し、日本では全国に分布する。湖沼や河川の淀みなどの止水環境に生息する。繁殖期は5~8月。空気中の酸素を直接呼吸することができ、汚れた水や無酸素状態の水域にも生息可能。特に夏季の高水温時には空気呼吸が必要。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>繰り返し確認されており、堰の湛水域のような止水環境に生息する純淡水魚で、法令における規制を受けない外来種であるため、堰の管理・運用との関連性はないと考えられる。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>カムルチー</td>
<td>Channa argus</td>
<td>国外</td>
<td></td>
<td>中国大陸から長江周辺までの中国大陸及び朝鮮半島に自然分布する。湖沼や河川の淀みなどを生息するが、水温・日光等の条件に適応範囲が広く、空気呼吸の習性が発達している。雌雄が共同でドーナツ状の浮巣を作る。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>繰り返し確認されており、堰の湛水域のような止水環境に生息する純淡水魚で、法令における規制を受けない外来種であるため、堰の管理・運用との関連性はないと考えられる。</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注) 指定区分
- 特定: 特定外来生物
- 総合(緊急): 国内に定着が確認されており、生態系等への被害のおそれがあるため、総合的に対策が必要な外来種のうち、緊急性が高く、積極的に防除が必要な外来種。
- 総合(重要): 国内に定着が確認されており、生態系等への被害のおそれがあるため、総合的に対策が必要な外来種のうち、重点的に対策が必要な外来種。
- 総合(対策も): 国内に定着が確認されており、生態系等への被害のおそれがあるため、総合的に対策が必要な外来種のうち、緊急、重点的に該当しない種。
表 6.3-16(2) 加古川大堰の管理・運用に関わりの深い外来種の選定結果

<table>
<thead>
<tr>
<th>種名</th>
<th>国内</th>
<th>国外</th>
<th>生態的特性</th>
<th>現状の状況</th>
<th>変化の状況</th>
<th>管理・運用との関連性</th>
<th>選定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>スマリソニゴガイ Pomacea canaliculata</td>
<td>宜</td>
<td>国外</td>
<td>生態的特性</td>
<td>現状の状況</td>
<td>変化の状況</td>
<td>管理・運用との関連性</td>
<td>選定結果</td>
</tr>
<tr>
<td>コンサカモノアラガイ Lymnaea truncatula</td>
<td>国外</td>
<td>国外</td>
<td>生態的特性</td>
<td>現状の状況</td>
<td>変化の状況</td>
<td>管理・運用との関連性</td>
<td>選定結果</td>
</tr>
<tr>
<td>ハオタエモノアラガイ Pseudosuccinea columella</td>
<td>総合(その他)</td>
<td>国外</td>
<td>国外</td>
<td>国外</td>
<td>国外</td>
<td>国外</td>
<td>国外</td>
</tr>
<tr>
<td>サカマキガイ Physa acuta</td>
<td>国外</td>
<td>国外</td>
<td>国外</td>
<td>国外</td>
<td>国外</td>
<td>国外</td>
<td>国外</td>
</tr>
<tr>
<td>Corbicula属 Corbicula sp.</td>
<td>総合(その他)</td>
<td>国外</td>
<td>国外</td>
<td>国外</td>
<td>国外</td>
<td>国外</td>
<td>国外</td>
</tr>
<tr>
<td>Neocaridina属 Neocaridina sp.</td>
<td>国外</td>
<td>国外</td>
<td>国外</td>
<td>国外</td>
<td>国外</td>
<td>国外</td>
<td>国外</td>
</tr>
</tbody>
</table>

【生態的特性】
- スマリソニゴガイ: 生態的特性
- コンサカモノアラガイ: 生態的特性
- ハオタエモノアラガイ: 生態的特性
- サカマキガイ: 生態的特性
- Corbicula属: 生態的特性
- Neocaridina属: 生態的特性

【選定結果】
- スマリソニゴガイ: 選定結果
- コンサカモノアラガイ: 選定結果
- ハオタエモノアラガイ: 選定結果
- サカマキガイ: 選定結果
- Corbicula属: 選定結果
- Neocaridina属: 選定結果
表 6.3-16(3) 加古川大堰の管理・運用と関わりの深い外来種の選定結果

■底生動物(2)

<table>
<thead>
<tr>
<th>種名</th>
<th>指定区分</th>
<th>確認年度</th>
<th>生態的特徴</th>
<th>変化の状況</th>
<th>堰の管理・運用との関連性</th>
<th>選定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>アメリカザリガニ Procambarus clarkii</td>
<td>総合(緊急)</td>
<td>2016年</td>
<td>美国南部、ミシシッピ川河口周辺の湿地に自然分布し、日本では全国に分布する。生息環境は平野部の水田、用水路、池など、水深が浅くて流れのゆるい環境に多く生息し、流れの速い川には生息しない。湿地に穴を掘って生息し、夜になると出歩いて餌を探す。雨天では日中もしばしば活動し、岸辺に上陸して動く姿もみられる。冬は穴にひそんで冬眠する。</td>
<td>H4に確認され、H9、H14、H20、H25にも引き続き確認されている。</td>
<td>関係なく確認されており、淡水性種であるものの、法令における規制を受けない外来種であり、堰の管理・運用との関連性はないとため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
</tbody>
</table>
表 6.3-16（4） 加古川大堰の管理・運用と関わりの深い外来種の選定結果

<table>
<thead>
<tr>
<th>植物名</th>
<th>分類</th>
<th>原産地</th>
<th>生息環境</th>
<th>变化の状況</th>
<th>堰の管理・運用との関連性</th>
<th>除提供</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrolospora</td>
<td>テリophilus sp.</td>
<td>北海道</td>
<td>木本</td>
<td>H15/H22</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>ナンバンカラムシ</td>
<td>Euphorbia nivosea var. teneacissima</td>
<td>北海道</td>
<td>木本</td>
<td>H15</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>オランダミミナグサ</td>
<td>Festuca arundinacea</td>
<td>北海道</td>
<td>木本</td>
<td>H15</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>シャクチリソバ</td>
<td>Rumex obtusifolius</td>
<td>北海道</td>
<td>木本</td>
<td>H15</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>R. crispus</td>
<td>北海道</td>
<td>木本</td>
<td>H15</td>
<td>○</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>R. conglomeratus</td>
<td>北海道</td>
<td>木本</td>
<td>H15</td>
<td>○</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>R. acetosella</td>
<td>北海道</td>
<td>木本</td>
<td>H15</td>
<td>○</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Fagopyrum cymosum</td>
<td>北海道</td>
<td>木本</td>
<td>H15</td>
<td>○</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Boehmeria nivea</td>
<td>北海道</td>
<td>木本</td>
<td>H15</td>
<td>○</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>总合成(種名)</td>
<td></td>
<td>北海道</td>
<td>木本</td>
<td>H15</td>
<td>○</td>
<td>×</td>
</tr>
</tbody>
</table>

表中の「○」は選定を示し、「×」は選定を示さないことを示しています。
表 6.3-16（5） 加古川大堰の管理・運用と関わりの深い外来種の選定結果

<table>
<thead>
<tr>
<th>植物（2）</th>
<th>植物名</th>
<th>国内区分</th>
<th>注意</th>
<th>生態的特徴</th>
<th>変化の状況</th>
<th>管理・運用との関連性</th>
<th>選定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>ムシトリナデシコ</td>
<td>Silene armeria</td>
<td>総合 (その他)</td>
<td>国外</td>
<td>山地に生える大形の多年草で茎は高さ1.5-2mに達する。本州（近畿地方以北）-北海道-樺太-南千島の暖地に分布する。</td>
<td>H11-H12/H15に確認される</td>
<td>継続的に確認されているものの、法令において規制を受ける外来種ではなく、堰の管理・運用との関連性は不明なため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>シロバナマンテマ</td>
<td>Silene gallica</td>
<td>国外</td>
<td>H7/H11-H12/H15</td>
<td>瑞々な山地に生える大形の多年草で茎は高さ1.5-2mに達する。本州（近畿地方以北）-北海道-樺太-南千島の暖地に分布する。</td>
<td>H7に確認される</td>
<td>継続的に確認されているものの、法令において規制を受ける外来種ではなく、堰の管理・運用との関連性は不明なため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>ユスベニツメクサ</td>
<td>Spergularia rubra</td>
<td>国外</td>
<td>H15</td>
<td>海岸や道端の荒地に生える帰化植物。北半球の温帯全域に自生するが、日本では北海道や本州に帰化している。人里・田畑、河原・渓流、岩場・礫地、海岸に生息する。繁殖期：4~10月</td>
<td>H15のみ確認される</td>
<td>単年度の確認のみで、堰の管理・運用との関連性は不明なため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>コハコベ</td>
<td>Stellaria media</td>
<td>国外</td>
<td>H7/H11-H12/H15/H22</td>
<td>北アメリカやヨーロッパでは庭草として一般的な植物である。世界中に帰化植物として定着している。日本では史前帰化植物として扱われている。繁殖期：3~9月</td>
<td>H7に確認される、H11-H12、H15、H22にも引き続き確認されている。</td>
<td>継続的に確認されているものの、法令において規制を受ける外来種ではなく、堰の管理・運用との関連性は不明なため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>アカザ</td>
<td>Chenopodium album</td>
<td>国外</td>
<td>H7</td>
<td>熱帯アメリカが原産地。日本では帰化植物として野性化している多年草。</td>
<td>H7のみ確認される</td>
<td>単年度の確認のみで、堰の管理・運用との関連性は不明なため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>アメリカコバイチリソウ</td>
<td>Chenopodium ambrosioides</td>
<td>特定総合（緊急）</td>
<td>国外</td>
<td>メキシコが原産地。日本では北海道（まれ）、本州（岩手・山形県以南）九州に分布する。生育環境は荒地や道路脇ののり面など。繁殖期：711月、茎や葉の裏に黄色の腺体があり、強い匂いを放つ。</td>
<td>H7に確認される、H11-H12、H15、H22にも引き続き確認されている。</td>
<td>継続的に確認されているものの、法令において規制を受ける外来種ではなく、堰の管理・運用との関連性は不明なため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>アメリカアリタソウ</td>
<td>Chenopodium ambrosioides var. anthelminticum</td>
<td>国外</td>
<td>H22</td>
<td>アメリカが原産地。日本では帰化植物として野性化している多年草。</td>
<td>H22のみ確認される</td>
<td>単年度の確認のみで、堰の管理・運用との関連性は不明なため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>ホソバツルノゲイトウ</td>
<td>Alternanthera nodiflora</td>
<td>国外</td>
<td>H22</td>
<td>熱帯アメリカが原産地。日本では中部以南の太平洋岸~沖縄に分布する。生息環境は道端、田の畦。</td>
<td>H22のみ確認される</td>
<td>単年度の確認のみで、堰の管理・運用との関連性は不明なため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>ナガエツルノゲイトウ</td>
<td>Alternanthera philoxeroides</td>
<td>特定総合</td>
<td>国外</td>
<td>南米が原産地。日本では千葉、神奈川、静岡、滋賀、京都、大阪、兵庫、徳島、福岡、佐賀、熊本、鹿児島、沖縄の各府県に分布する。生息環境は水路、河川、湿地等。繁殖期：4~10月に開花。茎切片から栄養繁殖可能。生態的特性：水草であるが、乾燥に非常に強い。</td>
<td>H7のみ確認される</td>
<td>単年度の確認のみで、堰の管理・運用との関連性は不明なため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>ホソアオゲイトウ</td>
<td>Amaranthus hybridus</td>
<td>国外</td>
<td>H7/H11-H12/H15/H22</td>
<td>北アメリカが原産地。日本では本州（宮城県以西）九州に分布する。生育環境は荒地、道端、畑の縁など。繁殖期：610月</td>
<td>H7に確認される、H11-H12、H15、H22とも引き続き確認されている。</td>
<td>継続的に確認されているものの、法令において規制を受ける外来種ではなく、堰の管理・運用との関連性は不明なため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>ホナガイヌビユ</td>
<td>Amaranthus viridis</td>
<td>国外</td>
<td>H7/H11-H12/H15/H22</td>
<td>熱帯アメリカ原産で、日本では帰化植物。道端や畑などに生える雑草。</td>
<td>H7に確認される、H11-H12、H15、H22とも引き続き確認されている。</td>
<td>継続的に確認されているものの、法令において規制を受ける外来種ではなく、堰の管理・運用との関連性は不明なため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>ノゲイトウ</td>
<td>Celosia argentea</td>
<td>国外</td>
<td>H7/H11-H12/H15/H22</td>
<td>熱帯アメリカが原産地。日本では本州西部、九州、四国、沖縄などの暖地。生息環境は武庫川（兵庫県）では、河川敷の砂地。繁殖期：夏-秋</td>
<td>H7に確認される、H11-H12、H15、H22とも引き続き確認されている。</td>
<td>継続的に確認されているものの、法令において規制を受ける外来種ではなく、堰の管理・運用との関連性は不明なため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>ランチ</td>
<td>Ranunculus muricatus</td>
<td>特定総合</td>
<td>国外</td>
<td>西アジア、ヨーロッパが原産地。日本では本州~九州に分布する。</td>
<td>H15のみ確認される</td>
<td>単年度の確認のみで、堰の管理・運用との関連性は不明なため、分析・評価の対象としない。</td>
<td>×</td>
</tr>
<tr>
<td>種名</td>
<td>地域区分</td>
<td>季節</td>
<td>生態的特性</td>
<td>変化の状況</td>
<td>堰の管理・運用との関連性</td>
<td>選定結果</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
<td>------</td>
<td>------------</td>
<td>------------</td>
<td>--------------------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Lippia virginiopod</td>
<td>国外</td>
<td>07H</td>
<td>春季</td>
<td>春季</td>
<td>受け入れられる外来種</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Humulus japonicus</td>
<td>国内</td>
<td>11-12H</td>
<td>冬季</td>
<td>冬季</td>
<td>受け入れられる外来種</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Hordeum vulgare</td>
<td>国内</td>
<td>15H</td>
<td>春季</td>
<td>春季</td>
<td>受け入れられる外来種</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Medicago sativa</td>
<td>国内</td>
<td>15H</td>
<td>春季</td>
<td>春季</td>
<td>受け入れられる外来種</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Medicago polymorpha</td>
<td>国内</td>
<td>15H</td>
<td>春季</td>
<td>春季</td>
<td>受け入れられる外来種</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Lotus corniculatus</td>
<td>国内</td>
<td>15H</td>
<td>春季</td>
<td>春季</td>
<td>受け入れられる外来種</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Medicago lupulina</td>
<td>国内</td>
<td>15H</td>
<td>春季</td>
<td>春季</td>
<td>受け入れられる外来種</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Lotus japonicus</td>
<td>国内</td>
<td>15H</td>
<td>春季</td>
<td>春季</td>
<td>受け入れられる外来種</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Medicago sativa</td>
<td>国内</td>
<td>15H</td>
<td>春季</td>
<td>春季</td>
<td>受け入れられる外来種</td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>

注：選定結果は各項目の選定状況を示しています。
表 6.3-16 (7) 加古川大堰の管理・運用と関わりの深い外来種の選定結果

<table>
<thead>
<tr>
<th>種名</th>
<th>指定区域</th>
<th>確認年度</th>
<th>生態的特性</th>
<th>変化の状況</th>
<th>堰の管理・運用との関連性</th>
<th>選定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoobata shigaensis</td>
<td>国外</td>
<td>H22</td>
<td>業、生、繁殖などに生える中央アジア原産の種。</td>
<td>業年生で確認されている。</td>
<td></td>
<td>\times</td>
</tr>
<tr>
<td>Robinia pseudoacacia</td>
<td>国外</td>
<td>H11-H15</td>
<td>北アメリカ原産とされている。</td>
<td>業年生で確認されている。</td>
<td></td>
<td>\times</td>
</tr>
<tr>
<td>Ailanthus altissima</td>
<td>国外</td>
<td>H15</td>
<td>北アメリカ原産で、日本では全国的に分布する。</td>
<td>業年生で確認されている。</td>
<td></td>
<td>\times</td>
</tr>
<tr>
<td>Sapium sebiferum</td>
<td>国外</td>
<td>H11-H15</td>
<td>北アメリカ原産で、日本では全国的に分布する。</td>
<td>業年生で確認されている。</td>
<td></td>
<td>\times</td>
</tr>
<tr>
<td>Euphorbia supina</td>
<td>国外</td>
<td>H11-H15</td>
<td>北アメリカ原産で、日本では全国的に分布する。</td>
<td>業年生で確認されている。</td>
<td></td>
<td>\times</td>
</tr>
<tr>
<td>Geranium corymbosa</td>
<td>国外</td>
<td>H11-H12</td>
<td>北アメリカ原産で、日本では全国的に分布する。</td>
<td>業年生で確認されている。</td>
<td></td>
<td>\times</td>
</tr>
<tr>
<td>Oxalis stricta</td>
<td>国外</td>
<td>H11-H12</td>
<td>北アメリカ原産で、日本では全国的に分布する。</td>
<td>業年生で確認されている。</td>
<td></td>
<td>\times</td>
</tr>
<tr>
<td>Trifolium pratense</td>
<td>国外</td>
<td>H11-H12</td>
<td>北アメリカ原産で、日本では全国的に分布する。</td>
<td>業年生で確認されている。</td>
<td></td>
<td>\times</td>
</tr>
<tr>
<td>T. dubium</td>
<td>国外</td>
<td>H11-H12</td>
<td>北アメリカ原産で、日本では全国的に分布する。</td>
<td>業年生で確認されている。</td>
<td></td>
<td>\times</td>
</tr>
<tr>
<td>T. campestre</td>
<td>国外</td>
<td>H11-H12</td>
<td>北アメリカ原産で、日本では全国的に分布する。</td>
<td>業年生で確認されている。</td>
<td></td>
<td>\times</td>
</tr>
<tr>
<td>Robinia pseudoacacia</td>
<td>国外</td>
<td>H15</td>
<td>北アメリカ原産で、日本では全国的に分布する。</td>
<td>業年生で確認されている。</td>
<td></td>
<td>\times</td>
</tr>
<tr>
<td>Melilotus alba</td>
<td>国外</td>
<td>H15</td>
<td>ヨーロッパ原産で、世界中の温帯域で飼料として栽培されている。</td>
<td>業年生で確認されている。</td>
<td></td>
<td>\times</td>
</tr>
<tr>
<td>Melilotus chamaesyce</td>
<td>国外</td>
<td>H11-H12</td>
<td>ヨーロッパ原産で、日本では全国的に分布する。</td>
<td>業年生で確認されている。</td>
<td></td>
<td>\times</td>
</tr>
<tr>
<td>Acer buergerianum</td>
<td>国外</td>
<td>H15</td>
<td>北アメリカ原産で、日本では全国的に分布する。</td>
<td>業年生で確認されている。</td>
<td></td>
<td>\times</td>
</tr>
</tbody>
</table>

※表中の\times 表示は、選定結果において、管理・運用との関連性が不明であることを示しています。
表 6.3-16（8） 加古川大堰の管理・運用と関わりの深い外来種の選定結果

<table>
<thead>
<tr>
<th>植物 (5)</th>
<th>植物名</th>
<th>属名</th>
<th>种名</th>
<th>指定区分</th>
<th>確認年度</th>
<th>生態的特徴</th>
<th>変化の状況</th>
<th>堰の管理・運用との関連性</th>
</tr>
</thead>
<tbody>
<tr>
<td>ムササビ</td>
<td>Hibiscus syriacus</td>
<td>ムササビ</td>
<td>syriacus</td>
<td>堰外</td>
<td>H11-H12/022</td>
<td>水田、休耕田、湿地、河川、海岸、塩害地、腐植質の多い断続的な流水環境。</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>アレチツツツツ</td>
<td>Sicyos angulatus</td>
<td>アレチツツツツ</td>
<td>angulatus</td>
<td>特定</td>
<td>H7/</td>
<td>生態的特性は日当たりの良い、腐植質の多い断続的な流水環境。</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>ポンジオモツツツツ</td>
<td>Ludwigia decurrens</td>
<td>ポンジオモツツツツ</td>
<td>decurrens</td>
<td>国外</td>
<td>H15/H22</td>
<td>生態的特性は日当たりの良い、腐植質の多い断続的な流水環境。</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>アラセテツツツツ</td>
<td>Oenothera laciniata</td>
<td>アラセテツツツツ</td>
<td>laciniata</td>
<td>特定</td>
<td>H7/</td>
<td>生態的特性は日当たりの良い、腐植質の多い断続的な流水環境。</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>ムササビアオツツツツツツツ</td>
<td>Oenothera biennis</td>
<td>ムササビアオツツツツツツツツ</td>
<td>biennis</td>
<td>特定</td>
<td>H7/</td>
<td>生態的特性は日当たりの良い、腐植質の多い断続的な流水環境。</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>ルシブナメジツツツツツツツツツツ</td>
<td>Ludwigia decurrens</td>
<td>ルシブナメジツツツツツツツツツツツツツ</td>
<td>decurrens</td>
<td>特定</td>
<td>H7/</td>
<td>生態的特性は日当たりの良い、腐植質の多い断続的な流水環境。</td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>

注：生息環境や繁殖生態の詳細は上記の表で確認してください。
表 6.3-16（9） 加古川大堰の管理・運用と関わりの深い外来種の選定結果

<table>
<thead>
<tr>
<th>種名</th>
<th>活性指数</th>
<th>確定年度</th>
<th>生態的特徴</th>
<th>変化の状況</th>
<th>管理・運用との関連性</th>
<th>確定年度（H）</th>
</tr>
</thead>
<tbody>
<tr>
<td>ハナチャンダマール
Centaurium pulchellum</td>
<td>居外</td>
<td>H15</td>
<td>緑植物に寄生する草本。花はやや秋をかすかに。花冠長が短い。</td>
<td>H7のみ確認されている。</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>ヨウシュハッカ
Dioscorea macrostachya</td>
<td>居外</td>
<td>H15</td>
<td>ヨウシュハッカは、日本では本州中南部に分布する。生息環境は荒地や河川敷などに。</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>アレチハナガサ
Ipomoea hederacea</td>
<td>居外</td>
<td>H7</td>
<td>ハナガサは、日本ではほぼ全国に分布する。生息環境は野草地や道端、河川敷、海浜、栽培植生等に。</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>マリンガサ
Ipomoea coccinea</td>
<td>居外</td>
<td>H15</td>
<td>マリンガサは、日本では全国に分布する。生息環境は河川敷、海浜、栽培植生等に。</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>アメリカアサガオ
Ipomoea quamoclit</td>
<td>居外</td>
<td>H15</td>
<td>アメリカアサガオは、日本では全国に分布する。生息環境は道端、畦畔、土手、空き地。</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>マルバルコウ
Diodia teres</td>
<td>居外</td>
<td>H22</td>
<td>マルバルコウは、日本では全国に分布する。生息環境は道端、畦畔、土手、空き地。</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>サマガオ
Ipomoea lacunosa</td>
<td>居外</td>
<td>H15</td>
<td>サマガオは、日本ではほぼ全国に分布する。生息環境は道端、畦畔、土手、空き地。</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ホンサガオ
Ipomoea nil</td>
<td>居外</td>
<td>H15</td>
<td>ホンサガオは、日本では全国に分布する。生息環境は道端、畦畔、土手、空き地。</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ホオツナガオ
Ipomoea hederacea var. integerrima</td>
<td>居外</td>
<td>H15</td>
<td>ホオツナガオは、日本では全国に分布する。生息環境は道端、畦畔、土手、空き地。</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>マルバルコウ
Diodia teres</td>
<td>居外</td>
<td>H22</td>
<td>マルバルコウは、日本では全国に分布する。生息環境は道端、畦畔、土手、空き地。</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>サマガオ
Ipomoea lacunosa</td>
<td>居外</td>
<td>H15</td>
<td>サマガオは、日本では全国に分布する。生息環境は道端、畦畔、土手、空き地。</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>マリンガサ
Ipomoea coccinea</td>
<td>居外</td>
<td>H15</td>
<td>マリンガサは、日本では全国に分布する。生息環境は道端、畦畔、土手、空き地。</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ミレコレガ
Mirabilis jalapa</td>
<td>居外</td>
<td>H11-H12</td>
<td>ミレコレガは、日本では全国に分布する。生息環境は道端、畦畔、土手、空き地。</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>マリンガサ
Ipomoea coccinea</td>
<td>居外</td>
<td>H15</td>
<td>マリンガサは、日本では全国に分布する。生息環境は道端、畦畔、土手、空き地。</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ホンサガオ
Ipomoea nil</td>
<td>居外</td>
<td>H15</td>
<td>ホンサガオは、日本では全国に分布する。生息環境は道端、畦畔、土手、空き地。</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>マルバルコウ
Diodia teres</td>
<td>居外</td>
<td>H22</td>
<td>マルバルコウは、日本では全国に分布する。生息環境は道端、畦畔、土手、空き地。</td>
<td>×</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 6.3-16(10) 加古川大堰の管理・運用と関わりの深い外来種の選定結果

<table>
<thead>
<tr>
<th>植物(7)</th>
<th>特性区分</th>
<th>確認年度</th>
<th>生態的特性</th>
<th>変化の状況</th>
<th>堰の管理・運用との関連性</th>
<th>选定</th>
</tr>
</thead>
<tbody>
<tr>
<td>ニムセツナオホオズキ Physalis pubescens</td>
<td>国外</td>
<td>H11-H12/H15/H22</td>
<td>北アメリカが原産地。日本では暖地、市街地や路傍に分布する。花は8-12月、繁殖期:3-6月</td>
<td>○</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>タレフウリソウ Hanalea carolinense</td>
<td>国外</td>
<td>H11-H12/H15/H22</td>
<td>北アメリカが原産地。日本では全国に分布する。花の生息環境は水田、河川、湿地の水辺。繁殖期:6-9月</td>
<td>●</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>ハラオオバコ Plantago virginica</td>
<td>国外</td>
<td>H11-H12/H15/H22</td>
<td>北アメリカが原産地。日本では広域に分布する。花の生息環境は水田、河川、湿地の水辺。繁殖期:6-9月</td>
<td>●</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>アメリカアゼナ Lindernia dubia</td>
<td>国外</td>
<td>H11-H12/H15/H22</td>
<td>北アメリカが原産地。日本では全国に分布する。花の生息環境は水田、河川、湿地の水辺。繁殖期:6-9月</td>
<td>●</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>タケトアゼナ Plantago lanceolata</td>
<td>国外</td>
<td>H11-H12/H15/H22</td>
<td>北アメリカが原産地。日本では全国に分布する。花の生息環境は水田、河川、湿地の水辺。繁殖期:6-9月</td>
<td>●</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>アメリカイヌホオズキ Solanum ptycanthum</td>
<td>国外</td>
<td>H11-H12/H15/H22</td>
<td>北アメリカが原産地。日本では全国に分布する。花の生息環境は水田、河川、湿地の水辺。繁殖期:6-9月</td>
<td>●</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>タマサンゴ Physalis pubescens</td>
<td>国外</td>
<td>H11-H12/H15/H22</td>
<td>北アメリカが原産地。日本では全国に分布する。花の生息環境は水田、河川、湿地の水辺。繁殖期:6-9月</td>
<td>●</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>ウルチビ Solanum carolinense</td>
<td>国外</td>
<td>H11-H12/H15/H22</td>
<td>北アメリカが原産地。日本では全国に分布する。花の生息環境は水田、河川、湿地の水辺。繁殖期:6-9月</td>
<td>●</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>マツバウンラン Linaria canadensis</td>
<td>国外</td>
<td>H11-H12/H15/H22</td>
<td>北アメリカが原産地。日本では全国に分布する。花の生息環境は水田、河川、湿地の水辺。繁殖期:6-9月</td>
<td>●</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

注：○：積極的に確認されているもの，△：積極的に確認されていながら，国の管理・運用との関連性が不明であるため，分析・評価の対象としない。×：積極的に確認されていないもの，国の管理・運用との関連性があるため，分析・評価の対象としない。
種名	指定区分	推定年	生息場所特徴	変化の状況	県の管理・運用との関連性	备考
<p>| ジンソ | 植物 | 87 | 生息場所が広く、日本は長時間にわたり分布、生息場所は森林、農業、河川、道路、庭園、草地等 | 77.0確認され、H11-H12に引き続き確認されている | 県線に細分化されているものの、法令において規制を受ける外来種ではなく、県の管理・運用との関連性はないとみなされ、分析・評価の対象としない。 | ○ |
| シロバナセンダングサ | 植物 | 87 | 生息場所が広く、日本は長時間にわたり分布、生息場所は森林、農業、河川、道路、庭園、草地等 | 77.0確認され、H11-H12に引き続き確認されている | 県線に細分化されているものの、法令において規制を受ける外来種ではなく、県の管理・運用との関連性はないとみなされ、分析・評価の対象としない。 | ○ |
| アメリカセンダングサ | 植物 | 87 | 生息場所が広く、日本は長時間にわたり分布、生息場所は森林、農業、河川、道路、庭園、草地等 | 77.0確認され、H11-H12に引き続き確認されている | 県線に細分化されているものの、法令において規制を受ける外来種ではなく、県の管理・運用との関連性はないとみなされ、分析・評価の対象としない。 | ○ |
| ホウキギク | 植物 | 87 | 生息場所が広く、日本は長時間にわたり分布、生息場所は森林、農業、河川、道路、庭園、草地等 | 77.0確認され、H11-H12に引き続き確認されている | 県線に細分化されているものの、法令において規制を受ける外来種ではなく、県の管理・運用との関連性はないとみなされ、分析・評価の対象としない。 | ○ |
| クロリカ | 植物 | 87 | 生息場所が広く、日本は長時間にわたり分布、生息場所は森林、農業、河川、道路、庭園、草地等 | 77.0確認され、H11-H12に引き続き確認されている | 県線に細分化されているものの、法令において規制を受ける外来種ではなく、県の管理・運用との関連性はないとみなされ、分析・評価の対象としない。 | ○ |
| シコツツイチク | 植物 | 87 | 生息場所が広く、日本は長時間にわたり分布、生息場所は森林、農業、河川、道路、庭園、草地等 | 77.0確認され、H11-H12に引き続き確認されている | 県線に細分化されているものの、法令において規制を受ける外来種ではなく、県の管理・運用との関連性はないとみなされ、分析・評価の対象としない。 | ○ |
| トウキョウウラシモモク | 植物 | 87 | 生息場所が広く、日本は長時間にわたり分布、生息場所は森林、農業、河川、道路、庭園、草地等 | 77.0確認され、H11-H12に引き続き確認されている | 県線に細分化されているものの、法令において規制を受ける外来種ではなく、県の管理・運用との関連性はないとみなされ、分析・評価の対象としない。 | ○ |
| オオミシ | 植物 | 87 | 生息場所が広く、日本は長時間にわたり分布、生息場所は森林、農業、河川、道路、庭園、草地等 | 77.0確認され、H11-H12に引き続き確認されている | 県線に細分化されているものの、法令において規制を受ける外来種ではなく、県の管理・運用との関連性はないとみなされ、分析・評価の対象としない。 | ○ |
| ウラジオモモク | 植物 | 87 | 生息場所が広く、日本は長時間にわたり分布、生息場所は森林、農業、河川、道路、庭園、草地等 | 77.0確認され、H11-H12に引き続き確認されている | 県線に細分化されているものの、法令において規制を受ける外来種ではなく、県の管理・運用との関連性はないとみなされ、分析・評価の対象としない。 | ○ |
| キラリオモモク | 植物 | 87 | 生息場所が広く、日本は長時間にわたり分布、生息場所は森林、農業、河川、道路、庭園、草地等 | 77.0確認され、H11-H12に引き続き確認されている | 県線に細分化されているものの、法令において規制を受ける外来種ではなく、県の管理・運用との関連性はないとみなされ、分析・評価の対象としない。 | ○ |
| オオミシ | 植物 | 87 | 生息場所が広く、日本は長時間にわたり分布、生息場所は森林、農業、河川、道路、庭園、草地等 | 77.0確認され、H11-H12に引き続き確認されている | 県線に細分化されているものの、法令において規制を受ける外来種ではなく、県の管理・運用との関連性はないとみなされ、分析・評価の対象としない。 | ○ |</p>
<table>
<thead>
<tr>
<th>植物</th>
<th>原産地</th>
<th>引用年度</th>
<th>生息環境</th>
<th>生態的特性</th>
<th>変化の状況</th>
<th>管理・運用との関連性</th>
<th>相違点</th>
</tr>
</thead>
<tbody>
<tr>
<td>ベニバナクロウギ</td>
<td>herb.</td>
<td>H15</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>アデサイラグサ</td>
<td>Eriogonum canadense</td>
<td>H27</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>ヒメカヤモリギ</td>
<td>Eriogonum umbellatum</td>
<td>H30</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>ハルシオン</td>
<td>Maytenus philippiana</td>
<td>H31</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>ハギダサ</td>
<td>Salix phylicifolia</td>
<td>H32</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>タチコグサ</td>
<td>Solidago altissima</td>
<td>H33</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>チチコグサモドキ</td>
<td>Solidago rugosa</td>
<td>H34</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>ノボロギク</td>
<td>Solidago altissima</td>
<td>H35</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>ケンショウギ</td>
<td>Solidago rugosa</td>
<td>H36</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>テラハクモク</td>
<td>Solanum parviflorum</td>
<td>H37</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>ヌク</td>
<td>Urtica decumbens</td>
<td>H38</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>ムシボガムシ</td>
<td>Urtica dioica</td>
<td>H39</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>モクノキ</td>
<td>Urtica dioica</td>
<td>H40</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>チウブ</td>
<td>Urtica dioica</td>
<td>H41</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>キノコブラシ</td>
<td>Urtica dioica</td>
<td>H42</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>ネコノモサ</td>
<td>Urtica dioica</td>
<td>H43</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>ススキ</td>
<td>Urtica dioica</td>
<td>H44</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>サツナメ</td>
<td>Urtica dioica</td>
<td>H45</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>クサハラシ</td>
<td>Urtica dioica</td>
<td>H46</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>ウメノオカモツ</td>
<td>Urtica dioica</td>
<td>H47</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>ササノオカモツ</td>
<td>Urtica dioica</td>
<td>H48</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>ササハラシ</td>
<td>Urtica dioica</td>
<td>H49</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>サツナメハラシ</td>
<td>Urtica dioica</td>
<td>H50</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>サツナメハラシ</td>
<td>Urtica dioica</td>
<td>H51</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>サツナメハラシ</td>
<td>Urtica dioica</td>
<td>H52</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>サツナメハラシ</td>
<td>Urtica dioica</td>
<td>H53</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>サツナメハラシ</td>
<td>Urtica dioica</td>
<td>H54</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>サツナメハラシ</td>
<td>Urtica dioica</td>
<td>H55</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>サツナメハラシ</td>
<td>Urtica dioica</td>
<td>H56</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>サツナメハラシ</td>
<td>Urtica dioica</td>
<td>H57</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>サツナメハラシ</td>
<td>Urtica dioica</td>
<td>H58</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>サツナメハラシ</td>
<td>Urtica dioica</td>
<td>H59</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
<tr>
<td>サツナメハラシ</td>
<td>Urtica dioica</td>
<td>H60</td>
<td>アメリカ原産種</td>
<td>生息環境は森林地や、農耕地、草地、生態系の多様性の高い場所に生育しやすい</td>
<td>生息環境が変化する</td>
<td>生態的特性が変化する</td>
<td>×</td>
</tr>
</tbody>
</table>
表 6.3-16(13) 加古川大堰の管理・運用と関わりの深い外来種の選定結果

植物（10）

<table>
<thead>
<tr>
<th>種名</th>
<th>属</th>
<th>科</th>
<th>生態特徴</th>
<th>生態的特性</th>
<th>変化の状況</th>
<th>留意事項</th>
<th>堰の管理・運用との関連性</th>
</tr>
</thead>
<tbody>
<tr>
<td>蒲葵</td>
<td>Scirpus</td>
<td>グラニオン科</td>
<td>生態環境は河口から河川中流部まで。</td>
<td>繁殖</td>
<td>有性繁殖</td>
<td></td>
<td></td>
</tr>
<tr>
<td>オオニワゼキショウ</td>
<td>Sisyrinchium</td>
<td>ジスリシンチアム科</td>
<td>生態環境は河口から河川中流部まで。</td>
<td>繁殖</td>
<td>有性繁殖</td>
<td></td>
<td></td>
</tr>
<tr>
<td>オオオナモミ</td>
<td>Zephyranthes</td>
<td>シフランザンス科</td>
<td>生態環境は河口から河川中流部まで。</td>
<td>繁殖</td>
<td>有性繁殖</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ヘラバヒメジョオン</td>
<td>Elodea</td>
<td>ヘラバ科</td>
<td>生態環境は河口から河川中流部まで。</td>
<td>繁殖</td>
<td>有性繁殖</td>
<td></td>
<td></td>
</tr>
<tr>
<td>イガオナモミ</td>
<td>Xanthium</td>
<td>イガオナモミ科</td>
<td>生態環境は河口から河川中流部まで。</td>
<td>繁殖</td>
<td>有性繁殖</td>
<td></td>
<td></td>
</tr>
<tr>
<td>セイヨウワンボウ</td>
<td>Tarasaccus</td>
<td>タラサッカス科</td>
<td>生態環境は河口から河川中流部まで。</td>
<td>繁殖</td>
<td>有性繁殖</td>
<td></td>
<td></td>
</tr>
<tr>
<td>イガオナモミ</td>
<td>Xanthium</td>
<td>イガオナモミ科</td>
<td>生態環境は河口から河川中流部まで。</td>
<td>繁殖</td>
<td>有性繁殖</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ナガバオモダカ</td>
<td>Sagittaria</td>
<td>ナガバオモダカ科</td>
<td>生態環境は河口から河川中流部まで。</td>
<td>繁殖</td>
<td>有性繁殖</td>
<td></td>
<td></td>
</tr>
<tr>
<td>オオオナモミ</td>
<td>Zephyranthes</td>
<td>シフランザンス科</td>
<td>生態環境は河口から河川中流部まで。</td>
<td>繁殖</td>
<td>有性繁殖</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ゴカダモダカ</td>
<td>Elodea</td>
<td>ゴカダモダカ科</td>
<td>生態環境は河口から河川中流部まで。</td>
<td>繁殖</td>
<td>有性繁殖</td>
<td></td>
<td></td>
</tr>
<tr>
<td>タマダラ</td>
<td>Zephyranthes</td>
<td>シフランザンス科</td>
<td>生態環境は河口から河川中流部まで。</td>
<td>繁殖</td>
<td>有性繁殖</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ホテイモダカ</td>
<td>Elodea</td>
<td>ゴカダモダカ科</td>
<td>生態環境は河口から河川中流部まで。</td>
<td>繁殖</td>
<td>有性繁殖</td>
<td></td>
<td></td>
</tr>
<tr>
<td>キショウ</td>
<td>Iris</td>
<td>ケシ科</td>
<td>生態環境は河口から河川中流部まで。</td>
<td>繁殖</td>
<td>有性繁殖</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ニワセキショウ</td>
<td>Siryacinium</td>
<td>シーサリアシウム科</td>
<td>生態環境は河口から河川中流部まで。</td>
<td>繁殖</td>
<td>有性繁殖</td>
<td></td>
<td></td>
</tr>
<tr>
<td>デイイロモダカ</td>
<td>Siryacinium</td>
<td>シーサリアシウム科</td>
<td>生態環境は河口から河川中流部まで。</td>
<td>繁殖</td>
<td>有性繁殖</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 6.3-16 (14) 加古川大堰の管理・運用と関わりの深い外来種の選定結果

<table>
<thead>
<tr>
<th>植物名</th>
<th>国外</th>
<th>産業</th>
<th>生息環境</th>
<th>生態的特性</th>
<th>組織</th>
<th>生態的特徴</th>
<th>変化の状況</th>
<th>堰の管理・運用との関連性</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lolium x hybridum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Festuca pratensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Festuca arundinacea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dactylis glomerata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromus rigidus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthoxanthum odoratum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juncus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritonia crocosmaeflora</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andropogon virginicus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blyxa minor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromus catharticus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromus rigidus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juncus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritonia crocosmaeflora</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andropogon virginicus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blyxa minor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromus catharticus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※ 資料: 加古川市水道局水理事業課 2017年

1. ヨーロッパ原産品種で、日本では北関東一関西に分布する。生息環境が草地、森林に限られている。耐寒性と耐旱性は強いが、耐塩性は弱い。
2. ヨーロッパ原産品種で、日本では北海道一九州に分布する。生息環境が牧草地、市街地に限られている。耐寒性と耐旱性は強いが、耐塩性は弱い。
3. ヨーロッパ原産品種で、日本では本州一関東に分布する。生息環境が草地、森林に限られている。耐寒性と耐旱性は強いが、耐塩性は弱い。

※ 上記の3品種は、2017年版水理事業課資料より抜粋。
表 6.3-16（15） 加古川大堰の管理・運用に関わる深い外来種の選定結果

<table>
<thead>
<tr>
<th>種名</th>
<th>指定区分</th>
<th>確認年度</th>
<th>生態的特徴</th>
<th>変化の状況</th>
<th>管理・運用との関連性</th>
<th>順位</th>
</tr>
</thead>
<tbody>
<tr>
<td>ミックスミモウ</td>
<td>Lolium multiflorum</td>
<td>産業</td>
<td>H15/H22</td>
<td>ミックスミモウは原産地、日本では全国に分布する。生態環境は、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>国内</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>草原、道路、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>確認されているものの、法令において規制を受ける外来種ではなく、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>管理・運用との関連性は不明であるため、分析・評価の対象としない。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-×-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ソーサリー</td>
<td>Lolium perenne</td>
<td>産業</td>
<td>H15/H22</td>
<td>ソーサリーは原産地、日本では全国に分布する。生態環境は、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>国内</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>硬貨炭に付着し</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>確認されているものの、法令において規制を受ける外来種ではなく、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>管理・運用との関連性は不明であるため、分析・評価の対象としない。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-×-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>オオクサキビ</td>
<td>Panicum dichotomiflorum</td>
<td>総合（その他の産業）</td>
<td>H7</td>
<td>オオクサキビは原産地、日本では全国に分布する。生態環境は、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>国内</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>森林、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>確認されているものの、法令において規制を受ける外来種ではなく、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>管理・運用との関連性は不明であるため、分析・評価の対象としない。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-×-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>シマスズメノヒエ</td>
<td>Paspalum distichum</td>
<td>総合（その他の産業）</td>
<td>H11-H12/H15/H22/H26</td>
<td>シマスズメノヒエは原産地、日本では全国に分布する。生態環境は、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>国内</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>草原、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>確認されているものの、法令において規制を受ける外来種ではなく、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>管理・運用との関連性は不明であるため、分析・評価の対象としない。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-×-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>キシラスズメノヒエ</td>
<td>Paspalum dilatatum</td>
<td>総合（その他の産業）</td>
<td>H11-H12/H15/H22/H26</td>
<td>キシラスズメノヒエは原産地、日本では全国に分布する。生態環境は、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>国内</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>森林、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>確認されているものの、法令において規制を受ける外来種ではなく、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>管理・運用との関連性は不明であるため、分析・評価の対象としない。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-×-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>シマスズメノヒエ</td>
<td>Paspalum notatum</td>
<td>産業</td>
<td>H11-H12/H15/H22/H26</td>
<td>シマスズメノヒエは原産地、日本では全国に分布する。生態環境は、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>国内</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>森林、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>確認されているものの、法令において規制を受ける外来種ではなく、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>管理・運用との関連性は不明であるため、分析・評価の対象としない。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-×-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>タウスズメノヒエ</td>
<td>Paspalum urvillei</td>
<td>総合（その他の産業）</td>
<td>H15/H22</td>
<td>タウスズメノヒエは原産地、日本では全国に分布する。生態環境は、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>国内</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>草原、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>確認されているものの、法令において規制を受ける外来種ではなく、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>管理・運用との関連性は不明であるため、分析・評価の対象としない。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-×-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>モウソウウサギ</td>
<td>Phyllotis texana pubescens</td>
<td>産業</td>
<td>H7</td>
<td>モウソウウサギは原産地、日本では全国に分布する。生態環境は、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>国内</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>草原、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>確認されているものの、法令において規制を受ける外来種ではなく、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>管理・運用との関連性は不明であるため、分析・評価の対象としない。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-×-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>オオガマタバカ</td>
<td>Paeonia japonica</td>
<td>総合（その他の産業）</td>
<td>H11-H12/H15/H22/H26</td>
<td>オオガマタバカは原産地、日本では全国に分布する。生態環境は、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>国内</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>草原、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>確認されているものの、法令において規制を受ける外来種ではなく、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>管理・運用との関連性は不明であるため、分析・評価の対象としない。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-×-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>セイパンゴコロン</td>
<td>Sorgus halepense</td>
<td>総合（その他の産業）</td>
<td>H11-H12/H15</td>
<td>セイパンゴコロンは原産地、日本では全国に分布する。生態環境は、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>国内</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>森林、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>確認されているものの、法令において規制を受ける外来種ではなく、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>管理・運用との関連性は不明であるため、分析・評価の対象としない。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-×-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>タニタカガヤ</td>
<td>Vulpia myuros</td>
<td>産業</td>
<td>H15/H22</td>
<td>タニタカガヤは原産地、日本では全国に分布する。生態環境は、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>国内</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>草原、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>確認されているものの、法令において規制を受ける外来種ではなく、</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>管理・運用との関連性は不明であるため、分析・評価の対象としない。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-×-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 6.3-16（16） 加古川大堰の管理・運用と関わりの深い外来種の選定結果

<table>
<thead>
<tr>
<th>植物（13）</th>
</tr>
</thead>
<tbody>
<tr>
<td>種名</td>
</tr>
<tr>
<td>ボタンウキクサ Pistia stratiotes</td>
</tr>
<tr>
<td>ホソミキンガヤツリ Cyperus engelmannii</td>
</tr>
<tr>
<td>メリケンガヤツリ Cyperus eragrostis</td>
</tr>
</tbody>
</table>

注）**指定区分**
- 特定：特定外来生物
- 総合（緊急）：国内に定着が確認されており、生態系等への被害のおそれがあるため、総合的に対策が必要な外来種のうち、緊急性が高い、積極的に防除が必要な外来種。
- 総合（重点）：国内に定着が確認されており、生態系等への被害のおそれがあるため、総合的に対策が必要な外来種のうち、甚大な被害が予想される、重点的に対策が必要な外来種。
- 総合（その他）：国内に定着が確認されており、生態系等への被害のおそれがあるため、総合的に対策が必要な外来種のうち、緊急、重点に該当しない種。
- 兵Z：警戒種 兵庫県ブラックリスト2010（兵庫県,2016年11月26日変更）
- 兵Y：注意種 兵庫県ブラックリスト2010（兵庫県,2016年11月26日変更）
表 6.3-16（17） 加古川大堰の管理・運用と関わりの深い外来種の選定結果

鳥類

<table>
<thead>
<tr>
<th>種名</th>
<th>指定区分</th>
<th>確定年度</th>
<th>生態的特徴</th>
<th>変化の状況</th>
<th>堰の管理・運用との関連性</th>
<th>選定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>コジュケイ Bambusicola thoracica</td>
<td>国外</td>
<td>RS</td>
<td>中国南部が原産地。日本では本州（一部寒冷地を除く）、四国、九州、佐渡島、伊豆諸島、小笠原諸島、淡路島、瀬戸内、対馬、馬耳列島、大隅列島などに分布。生態環境は平地から山地の薮や林縁、稲作地などに生息する。繁殖生態は産仔数:1回に4-7卵、繁殖期:繁殖期は4-6月 生態的特性は非繁殖期2-3回は群で行動することが多い。繁殖期は産仔数:1回に7-8卵、繁殖期:繁殖期は4-6月 生態的特性は非繁殖期2-3回は群で行動することが多い。</td>
<td>RSのみ確認されている。</td>
<td>堰の管理・運用との関連性は不明のため、分析・評価の対象とはしない。</td>
<td>×</td>
</tr>
<tr>
<td>ドバト Columba livia var.domesticus</td>
<td>国内</td>
<td>H10、H16、H24</td>
<td>アフリカ北部、中近東、中央アジア、南アジア、中国西部が原産地。日本では島嶼域を含むほぼ全国に分布する。生態環境は農耕地、市街地、寺社、裸地、林縁、河川。繁殖生態は産仔数:1回に4-7卵、繁殖期:繁殖期は4-6月 生態的特性は非繁殖期3-4月は群で行動することが多い。繁殖期は産仔数:1回に7-8卵、繁殖期:繁殖期は4-6月 生態的特性は非繁殖期3-4月は群で行動することが多い。</td>
<td>H5に確認されている。</td>
<td>堰の管理・運用との関連性は不明のため、分析・評価の対象とはしない。</td>
<td>×</td>
</tr>
<tr>
<td>ベニスズメ Amandava amandava</td>
<td>国外</td>
<td>H5、H10</td>
<td>パキスタン、インド、ベトナム、マレー半島が原産地。日本では生息環境は草原、ヨシ原、河川敷、湿原、埋立地など。繁殖生態は産仔数:1回に4-7卵、繁殖期:繁殖期は4-6月 生態的特性は非繁殖期6-12月 生態的特性は原産地ではツツキ、小さな群で行動することが多い。繁殖期は産仔数:1回に4-7卵、繁殖期:繁殖期は4-6月 生態的特性は非繁殖期6-12月</td>
<td>RSのみ確認されている。</td>
<td>堰の管理・運用との関連性は不明のため、分析・評価の対象とはしない。</td>
<td>×</td>
</tr>
<tr>
<td>ハッカチョウ Acridotheres cristatellus</td>
<td>国外</td>
<td>H10、H16、H24</td>
<td>中国中・南部、台湾、ミャンマー、ベトナム、ラオスが原産地。日本では生息環境は草原、ヨシ原、河川敷、湿原、埋立地など。繁殖生態は産仔数:1回に4-7卵、繁殖期:繁殖期は4-6月 生態的特性は非繁殖期6-12月 生態的特性は原産地ではツツキ、小さな群で行動することが多い。繁殖期は産仔数:1回に4-7卵、繁殖期:繁殖期は4-6月 生態的特性は非繁殖期6-12月</td>
<td>RS10に確認されている。</td>
<td>堰の管理・運用との関連性は不明のため、分析・評価の対象とはしない。</td>
<td>×</td>
</tr>
</tbody>
</table>

注）指定区分
- 特定：特定外来生物
- 総合（緊急）：国内に定着が確認されており、生態系等への被害のおそれがあるため、総合的に対策が必要な外来種のうち、緊急性が高く、積極的に防除が必要な外来種。
- 総合（重点）：国内に定着が確認されており、生態系等への被害のおそれがあるため、総合的に対策が必要な外来種のうち、甚大な被害が予想される重点的に対策が必要な外来種。
- 総合（その他）：国内に定着が確認されており、生態系等への被害のおそれがあるため、総合的に対策が必要な外来種のうち、緊急、重点に該当しない種。
- 産業：産業又は公益的役割において重要であり、利用において逸失等の防止のための適切な管理に重点を置いた対策が必要な外来種。
- 兵Z：警戒種 兵庫県ブラックリスト2010（兵庫県、2016年11月26日変更）
- 兵Y：注意種 兵庫県ブラックリスト2010（兵庫県、2016年11月26日変更）
- 国外：国外外来種
6-3-16(18) 加古川大堰の管理・運用と関わりの深い外来種の選定結果

<table>
<thead>
<tr>
<th>種名</th>
<th>指定区分</th>
<th>生態的特性</th>
<th>変化の状況</th>
<th>選定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>ウシガエル Lithobates catesbeianus</td>
<td>特定</td>
<td>総合(重点)</td>
<td>兵Z</td>
<td>国外</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H7/H12/H17/H27</td>
<td>それぞれに確認され、H12、H17、H27とも引き続き確認されている。継続的に確認されているが、法令において規制を受ける外来種であり、堰の管理・運用との関連性があるため、分析・評価の対象とする。</td>
</tr>
<tr>
<td>ミシシッピアカミミガメ Trachemys scripta elegans</td>
<td>総合(緊急)</td>
<td>国外</td>
<td>H7/H12/H17/H27</td>
<td>繼続的に確認されているものの、法令において規制を受ける外来種ではないため、分析・評価の対象としない。</td>
</tr>
<tr>
<td>ハツカネズミ Mus musculus</td>
<td>特定</td>
<td>国外</td>
<td>H7/H12/H17/H27</td>
<td>繼続的に確認されているが、法令において規制を受ける外来種ではなく、堰の管理・運用との関連性がないため、分析・評価の対象としない。</td>
</tr>
<tr>
<td>ヌートリア Myocastor coypus</td>
<td>特定</td>
<td>国外</td>
<td>H7/H12/H17/H27</td>
<td>繼続的に確認されているものの、法令において規制を受ける外来種であるため、選定結果に対する対象としない。</td>
</tr>
</tbody>
</table>

- ミシシッピアカミミガメ: アメリカ合衆国南部からメキシコ北東部の国境地帯。分布域は広範で、日本では全国に分布する。生息環境は多様な水域で、底質が柔らかく、水生植物が繁茂する場所が好まれる。寒冷地や山地をのぞく国内のほとんどの地域で繁殖、産卵、幼生の育成が可能。繁殖生態: 交尾は春と秋にみられる。産卵は4月から7月にかけてなる。雌は地面に巣穴を掘り、1度に2~25個の卵形の卵を産出す。卵は長径30~42mm、短径19~29mm。孵化までの日数は65~75日程度。産仔数: 飼育下で平均25。9個という報告があるが、もっと少ない例も多いため、選定結果に対する対象としない。
- ハツカネズミ: ユーラシア・アフリカ・オセアニア全域に分布する。日本での自然分布域は判然としない。日本では日本列島のほぼ全域に分布する。生息環境: 家屋、水田、畑、積み藁、土手、草地、河川敷、荒地、砂丘地等。繁殖生態: 繁殖期: 野外では春と秋の明瞭な繁殖期を持つが、人間世界に依存する集団では、生息場所によって若干の違いはあるが年中繁殖活動をしている。産仔数: 平均5.6で秋にやや高い。生態的特性: 原野では穴居生活をする。食性: 種子、野草、花、園芸野菜、米、昆虫類等。
- ヌートリア: 南米の中~南部が原産地。日本では岐阜、愛知、三重、京都、大阪、兵庫、岡山、鳥取、広島、島根、山口、香川の各府県に定着している。他の多数の県でも確認事例がある(一部はマスクラットやミンクの誤認の可能性もある)。生息環境: 流れの緩やかな河川、湖、沼沢地。温度選好性: 寒さに弱く、冬季に流産の確率が高くなる。繁殖生態: 繁殖期: 通年繁殖可能。多回発情種(polystrus)で、年間2~3回出産。生後3~10ヶ月で性成熟。妊娠期間127~138日。産仔数: 2~9頭、平均5。87。性比は雄に偏る。若齢の雌では仔の性比は特に雄に偏り、高齢の雌では1:1。生態的特性: 夜行性。ただし、可塑性が高く、侵入地で昼間に活動することもある。食性: 水生植物を中心に、陸上のものも含めて幅広い植物を食べる。イネ及び水辺周辺の農作物、墨で地殻を作る、鳥・魚類を食べる。
表 6.3-16(19) 加古川大堰の管理・運用と関わりの深い外来種の選定結果

■両生類・爬虫類・哺乳類（2）

<table>
<thead>
<tr>
<th>種名</th>
<th>指定区分</th>
<th>確定年度</th>
<th>生態的特徴</th>
<th>変化の状況</th>
<th>選定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>アライグマ Procyon lotor</td>
<td>特定</td>
<td>H17</td>
<td>北米一帯（カナダ南部～ハワイ）が原産地。日本では生息環境が不十分であり、原種の特徴を生かした整形種のみが発生。</td>
<td>87年に確認され、H27年に引継き確認された。継続的に確認されており、法令において規制を受ける外来種であり、堰の管理・運用との関連性があるため、分析・評価の対象とする。</td>
<td>○</td>
</tr>
<tr>
<td>チョウセンイタチ Mustela sibirica</td>
<td>国外</td>
<td>H27</td>
<td>ウラル山脈西側～シベリア、モンゴル、大陸中国、パキスタン、タイ、ベトナム、朝鮮半島、台湾、対馬。ゴビ砂漠・タクラマン砂漠には分布しない。日本では福井県・岐阜県・愛知県以外の地域に分布。生息環境は山地・低地の農村周辺など。特に低地が生息適地である。繁殖生態は繁殖期:45月に交尾、68月に育児。雌は年に1回、雄は多回交尾で一夫多妻と考えられている。雌のみで育児する。産仔数:5~6。生態的特性は雌は一定の行動圏を持ち土穴等を巣とする。種は何かが雌の行動圏に進入すると行動圏を変える。春期に産まれた仔は秋には分散する。食性:ネズミ類、鳥類、カエル、昆虫類、魚類、両生類、果実類、ヤーン、イタチに比べ植物質の採食量が多い。</td>
<td>H27のみ確認されている。</td>
<td>×</td>
</tr>
<tr>
<td>ハクビシン Paguma larvata</td>
<td>国外</td>
<td>H27</td>
<td>ヒマラヤ、中国南部、台湾、マレー半島、スマトラ、ボルネオが原産地。日本では日本列島のほぼ全域。生息環境は市街地から山間地まで。樹上にも利用。繁殖生態は繁殖期:出産期:312月、産仔数:14。生理的特性は夜行性で昼間は樹洞・岩穴・人家の屋根裏等で休憩し夜になると樹上で果実や種子を採果する。基本的には母仔を中心にした家族単位で生活する。排他性は弱い。食性:雑食で果実や種子を好み、ヤカン、魚類、陸魚類も食べる。</td>
<td>H27のみ確認されている。</td>
<td>×</td>
</tr>
</tbody>
</table>

注) 指定区分
- 特定: 特定外来生物
- 総合（緊急）: 国内外に定着が確認されており、生態系等への被害の一部であるため、総合的対策が必要な外来種のうち、緊急性が高く、積極的に防除が必要な種。
- 総合（重点）: 国内外に定着が確認されており、生態系等への被害の一部であるため、総合的対策が必要な外来種のうち、甚大な被害を予想される重点的に対策が必要な外来種。
- 総合（その他）: 国内外に定着が確認されており、生態系等への被害の一部であるため、総合的対策が必要な外来種のうち、緊急、重点に該当しない種。
- 産業: 産業は公益的役割において重要であり、利用において過度の防止のための適切な管理に重点を置いた対策が必要な外来種。
- 兵Z: 警戒種（兵庫県ブラックリスト2010）
- 兵Y: 注意種（兵庫県ブラックリスト2010）
- 国外: 国外外来種
表 6.3-16(20) 加古川大堰の管理・運用と関わりの深い外来種の選定結果

<table>
<thead>
<tr>
<th>項目</th>
<th>指定地域</th>
<th>生態的特徴</th>
<th>変化の状況</th>
<th>管理・運用との関連性</th>
<th>選定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>カンタン</td>
<td>国外</td>
<td>朝鮮半島が原産地、日本では本州、四国、九州に分布する。卵越冬、化性、生息環境はクズ、ヨモギ、ススキ、カナムグラなどの多くの草木、河川の岸辺。成虫は春から晩秋にかけて出現する。</td>
<td>H4に確認され、H8、H11にも引き続き確認されている。</td>
<td>絶対的に確認されているものの、法令において規制を受け以外種ではなく、堰の管理・運用との関連性はないため、分析・評価の対象としない。</td>
<td>〇</td>
</tr>
<tr>
<td>アオマツムシ</td>
<td>国外</td>
<td>東洋熱帯が原産地とされる。日本では本州、四国、九州に分布する。卵越冬、年1化。生育環境は都市部の街路樹や庭木など。成虫は8月下旬ごろから出現する。</td>
<td>H4に確認され、H8、H13、H18、H26にも引き続き確認されている。</td>
<td>絶対的に確認されているものの、法令において規制を受け以外種ではなく、堰の管理・運用との関連性はないとため、分析・評価の対象としない。</td>
<td>〇</td>
</tr>
<tr>
<td>ヨコヅナサシガメ</td>
<td>国外</td>
<td>中国、インドシナ半島、インドが原産地。日本では関東以南の本州・四国・九州に分布する。生息環境は様々な樹木の幹周辺。繁殖生態期:67月頃産卵67月ごろに樹洞などに産卵。2030日で孵化。その後幼虫は捕食活動し、12月までに5齢幼虫まで成長。幼虫は数から数百匹で集団越冬。3月から活動し、4月末5月初旬に羽化。生態的特性は昆虫を刺して体液を吸収するため、人にも刺すことがある。食性:毛虫などの昆虫やクモ類。</td>
<td>H4のみ確認されている。</td>
<td>継続的に確認されているものの、法令において規制を受け以外種ではなく、堰の管理・運用との関連性の不明なため、分析・評価の対象としない。</td>
<td>〇</td>
</tr>
<tr>
<td>アワダチソウグンバイ</td>
<td>国外</td>
<td>ヒメイトトンボ属の種をひとまわり大きくしたような小型イトトンボ。主に平地から低山地にいたる湿地の、背丈の低い挺水植物や湿生植物が茂る浅い滞水や、水田などに生息する。日本では北海道南端から本州・四国をへて九州南部の大隈・薩摩半島にいたる各地に生息する。</td>
<td>H18に確認され、H26にも引き続き確認されている。</td>
<td>継続的に確認されているものの、法令において規制を受け以外種ではなく、堰の管理・運用との関連性はないとため、分析・評価の対象としない。</td>
<td>〇</td>
</tr>
<tr>
<td>オオミノガ</td>
<td>国外</td>
<td>中国、台湾、インド、ボルネオ、セレベスが原産地。日本では本州、四国、九州に分布する。年1回の発生。5月下旬~7月上旬に成虫となり、雄は夕暮れに飛翔し雌を探して交尾する。幼虫は各種の樹木の葉を食べる。底生営巣する。越冬態は幼虫。ミノ形は紡錘形、蛹化の際はミノの上端を細かくして小枝などにぶら下がる。雌は羽化後もミノの中に蛹の脱から中にとどまり、その中に産卵する。</td>
<td>H18のみ確認されている。</td>
<td>継続的に確認されているものの、法令において規制を受け以外種ではなく、堰の管理・運用との関連性はないとため、分析・評価の対象としない。</td>
<td>〇</td>
</tr>
<tr>
<td>モンシロチョウ</td>
<td>国外</td>
<td>日本のほぼ全土に分布している。通常年6ー7回発生。2ー3月より現れる。耕作地周辺に好んで棲息し、多くの花で吸蜜、ことに紫色系の花を好む。早春にはジンチョウゲの花で吸蜜するもののまで観察されている。食草はアブラナ科の栽培野菜(キャベツ、ハクサイ、アブラナ、ダイコン)、園芸作物ではオオアラセイトウ、セイヨウフウチョウソウ、ノウゼンハレンなど。江戸時代にはすでに全国に分布していたので、おそらく中世以前には日本に侵入してきた移入昆虫である。</td>
<td>H4に確認され、H8、H13、H18、H26にも引き続き確認されている。</td>
<td>絶対的に確認されているものの、法令において規制を受け以外種ではなく、堰の管理・運用との関連性はないとため、分析・評価の対象としない。</td>
<td>〇</td>
</tr>
<tr>
<td>シバツトガ</td>
<td>国外</td>
<td>北アメリカが原産地。日本では北海道、本州、小笠原、四国、九州、対馬、沖縄本島に分布する。芝生の害虫。</td>
<td>H8のみ確認されている。</td>
<td>単年度の確認のみで、堰の管理・運用との関連性は不明なため、分析・評価の対象としない。</td>
<td>〇</td>
</tr>
<tr>
<td>アメリカミズアブ</td>
<td>国外</td>
<td>北アメリカ、注アメリカが原産地。日本では本州、四国、九州、沖縄本島、宮古島、石垣島、西表島、父島で自然繁殖している。生育環境は平地、低山地。成虫は5-9月頃に出現し、夏から秋に多い。幼虫(蛆)は、草や果実、動物の死体や糞などの腐敗有機物を食べるため、家庭の生ごみやコンポストから発生することもある。成虫も繁殖活動のためこれらに集まると口がなく餌は食べない。</td>
<td>H4に確認され、H8、H13にも引き続き確認されている。</td>
<td>絶対的に確認されているものの、法令において規制を受け以外種ではなく、堰の管理・運用との関連性はないとため、分析・評価の対象としない。</td>
<td>〇</td>
</tr>
<tr>
<td>キイロショウジョウバエ</td>
<td>国外</td>
<td>加古川大堰が原産地で、日本では北海道、本州、四国、九州、対馬、沖縄本島に分布する。芝生の害虫。</td>
<td>H8のみ確認されている。</td>
<td>単年度の確認のみで、堰の管理・運用との関連性は不明なため、分析・評価の対象としない。</td>
<td>〇</td>
</tr>
<tr>
<td>ユメミズカシギ</td>
<td>国外</td>
<td>北アメリカが原産地で、アメリカで帰化種。生息環境は芝生の上でよく見られるという。</td>
<td>H8のみ確認されている。</td>
<td>単年度の確認のみで、堰の管理・運用との関連性は不明なため、分析・評価の対象としない。</td>
<td>〇</td>
</tr>
<tr>
<td>クロイロジウジョウバエ</td>
<td>国外</td>
<td>北アメリカが原産地で、日本では北海道、本州、四国、九州、対馬、沖縄本島に分布する。生態的特性は「雑食性」だが、花上で見られることが多い。</td>
<td>H8のみ確認されている。</td>
<td>単年度の確認のみで、堰の管理・運用との関連性は不明なため、分析・評価の対象としない。</td>
<td>〇</td>
</tr>
<tr>
<td>種名</td>
<td>指定区分</td>
<td>生態的特性</td>
<td>変化の状況</td>
<td>堰の管理・運用との関連性</td>
<td>選定結果</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>サビカクムネチビヒラ タムシ Cryptolestes ferrugineus</td>
<td>国外</td>
<td>H8</td>
<td></td>
<td></td>
<td>1.年度の確認のみで、堰の管理・運用との関係性は不明であるため、分析・評価の対象としない。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.変化の状況</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.堰の管理・運用との関連性</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.選定結果</td>
</tr>
<tr>
<td>カプジュミシ Monotoma picipes</td>
<td>国外</td>
<td>H13/H26</td>
<td></td>
<td></td>
<td>1.年度の確認のみで、堰の管理・運用との関連性は不明であるため、分析・評価の対象としない。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.変化の状況</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.堰の管理・運用との関連性</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.選定結果</td>
</tr>
<tr>
<td>クリイロデオキスイ Carpophilus marginellus</td>
<td>国外</td>
<td>H26</td>
<td></td>
<td></td>
<td>1.年度の確認のみで、堰の管理・運用との関連性は不明であるため、分析・評価の対象としない。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.変化の状況</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.堰の管理・運用との関連性</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.選定結果</td>
</tr>
<tr>
<td>ラミーカミキリ Paraglenea fortunei</td>
<td>国外</td>
<td>H8</td>
<td></td>
<td></td>
<td>1.年度の確認のみで、堰の管理・運用との関連性は不明であるため、分析・評価の対象としない。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.変化の状況</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.堰の管理・運用との関連性</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.選定結果</td>
</tr>
<tr>
<td>アズキマメゾウムシ Callosobruchus chinensis</td>
<td>国外</td>
<td>H8</td>
<td></td>
<td></td>
<td>1.年度の確認のみで、堰の管理・運用との関連性は不明であるため、分析・評価の対象としない。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.変化の状況</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.堰の管理・運用との関連性</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.選定結果</td>
</tr>
<tr>
<td>ブタクサハムシ Araecerus coffeae</td>
<td>国外</td>
<td>H13/H18/H26</td>
<td></td>
<td></td>
<td>1.年度の確認のみで、堰の管理・運用との関連性は不明であるため、分析・評価の対象としない。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.変化の状況</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.堰の管理・運用との関連性</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.選定結果</td>
</tr>
<tr>
<td>ワタミヒゲナガゾウムシ Ophraella communa</td>
<td>国外</td>
<td>H13/H18/H26</td>
<td></td>
<td></td>
<td>1.年度の確認のみで、堰の管理・運用との関連性は不明であるため、分析・評価の対象としない。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.変化の状況</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.堰の管理・運用との関連性</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.選定結果</td>
</tr>
<tr>
<td>オオタコゾウムシ Donus punctatus</td>
<td>国外</td>
<td>H18</td>
<td></td>
<td></td>
<td>1.年度の確認のみで、堰の管理・運用との関連性は不明であるため、分析・評価の対象としない。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.変化の状況</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.堰の管理・運用との関連性</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.選定結果</td>
</tr>
<tr>
<td>アルファルファタコゾウムシ Hypera postica</td>
<td>国外</td>
<td>H8/H13/H18/H26</td>
<td></td>
<td></td>
<td>1.年度の確認のみで、堰の管理・運用との関連性は不明であるため、分析・評価の対象としない。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.変化の状況</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.堰の管理・運用との関連性</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.選定結果</td>
</tr>
<tr>
<td>ヤサイゾウムシ Listroderes costirostris</td>
<td>国外</td>
<td>H4/H26</td>
<td></td>
<td></td>
<td>1.年度の確認のみで、堰の管理・運用との関連性は不明であるため、分析・評価の対象としない。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.変化の状況</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.堰の管理・運用との関連性</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.選定結果</td>
</tr>
</tbody>
</table>
表 6.3-16 (22) 加古川大堰の管理・運用と関わりの深い外来種の選定結果

陸上昆虫類等（3）

<table>
<thead>
<tr>
<th>種名</th>
<th>指定区分</th>
<th>生態的特性</th>
<th>変化の状況</th>
<th>堰の管理・運用との関連性</th>
<th>選定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>ホソクチブトサルムシ</td>
<td>H26</td>
<td>国外</td>
<td>H26のみ確認されている。</td>
<td></td>
<td>〇</td>
</tr>
<tr>
<td>サナカピタコツシウム</td>
<td>H18</td>
<td>国外</td>
<td>H18のみ確認されている。</td>
<td></td>
<td>〇</td>
</tr>
<tr>
<td>シナガナガマス</td>
<td>H13/ H18/ H26</td>
<td>国外</td>
<td>H13に確認され、H18、H26に引き続き確認されている。</td>
<td></td>
<td>〇</td>
</tr>
<tr>
<td>イラガセイボウ</td>
<td>H8</td>
<td>国外</td>
<td>H8のみ確認されている。</td>
<td></td>
<td>〇</td>
</tr>
<tr>
<td>ルリア</td>
<td>H13</td>
<td>国外</td>
<td>H13のみ確認されている。</td>
<td></td>
<td>〇</td>
</tr>
<tr>
<td>アメリカジガバチ</td>
<td>H4/ H8/ H26</td>
<td>国外</td>
<td>H4に確認され、H8、H26にも引き続き確認されている。</td>
<td></td>
<td>〇</td>
</tr>
<tr>
<td>セイヨウツバキ</td>
<td>H4/ H13/ H18/ H26</td>
<td>国外</td>
<td>H4に確認され、H13、H18、H26に引き続き確認されている。</td>
<td></td>
<td>〇</td>
</tr>
<tr>
<td>イマイツツハナバチ</td>
<td>H26</td>
<td>国外</td>
<td>H26のみ確認されている。</td>
<td></td>
<td>〇</td>
</tr>
</tbody>
</table>

注) 指定区分
- 特定: 特定外来生物
- 総合（緊急）: 国内に定着が確認されており、生態系等への被害のおそれがあるため、総合的に対策が必要でない外来種のうち、緊急性が高く、積極的に防除が必要な外来種。
- 総合（重点）: 国内に定着が確認されており、生態系等への被害のおそれがあるため、総合的に対策が必要でない外来種のうち、甚大な被害が予想される重点的に対策が必要な外来種。
- 急: 国内に定着が確認されており、生態系等への被害のおそれがあるため、総合的に対策が必要でない外来種のうち、緊急に防除が必要な種。
- 産業: 産業又は公益的役割において重要であり、利用において速やかの防止のための適切な管理に重点を置いた対策が必要な外来種。
- H26: 堰の管理・運用との関連性は不明なため、分析・評価の対象としない。
(2) 堰の管理・運用と関わりの深い外来種の確認状況

加古川大堰の管理・運用と関わりの深い外来種の確認状況を表 6.3-17 に、ブルーギル、オオクチバスの確認位置図を図 6.3-17 に、アレチウリ、オオフサモ、オオカワヂシャ、オオキンケイギクの確認位置図を図 6.3-18 に、ウシガエルの確認位置図を図 6.3-19 に、ヌートリア、アライグマの確認位置図を図 6.3-20 に示す。

分析結果の概要は、下記のとおりである。

● 魚類：ブルーギル、オオクチバス
・ブルーギルは、平成 2年度から確認されており、調査年度のうち、平成 14年度が最大の 972 個体が確認されている。最新の平成 24年度は、807 個体が確認されている。
・オオクチバスは、平成 2年度から確認されており、最新の平成 24年度が最大の 338 個体が確認されている。
・ブルーギル、オオクチバスともに、下流河川に生息数が多い傾向がみられ、魚道を利用して堰より上流側に移動している可能性があり、別途に実施している魚道遡上調査でも魚道を利用する状況が確認されている。
・経年の確認状況より、ブルーギル、オオクチバスの 2 種は、加古川大堰およびその周辺に、既に定着しているものと考えられる。

● 植物：アレチウリ、オオカワヂシャ、オオキンケイギク、オオフサモ、Azolla属
・アレチウリは、平成 7年度より 4 回の調査で連続確認されており、経年で 6 例から 14 例で推移している。
・オオカワヂシャは、平成 7年度より 4 回の調査で連続確認されており、最新の平成 22年度は 1 例のみの確認となっている。
・オオキンケイギクは、平成 15年度より 2 回の調査で連続確認されており、最新の平成 22年度は 2 例のみの確認となっている。
・オオフサモは、平成 7年度より 4 回の調査で連続確認されており、経年で 2 例から 3 例で推移している。
・Azolla属は、平成 15年度より 2 回の調査で連続確認されており、最新の平成 22年度は 3 例が確認されている。
・なお、最新の平成 22年度では、オオカワヂシャ、オオキンケイギクの 2 種は、下流河川での確認例がない状況となっている。
・経年の確認状況より、アレチウリ、オオカワヂシャ、オオキンケイギク、オオフサモ、Azolla属の 5 種は、加古川大堰およびその周辺に、既に定着しているものと考えられる。

●両生類：ウシガエル
・ウシガエルは、平成 7年度より 4 回の調査で連続確認されており、平成 7年度が最大の 105 個体が確認されている。最新の平成 27年度は、52 個体が確認されている。
・平成 17年度までの 3 回の調査では、流入河川の確認個体数が、下流河川より多い傾向が続いていたが、最新の平成 27年度になり、ほぼ同様な確認個体数になる
ている。
・なお、両生類についての個体数は、鳴き声等の確認例数を含んだ数値である。
・経年の確認状況より、ウシガエルは、加古川大堰およびその周辺に、既に定着しているものと考えられる。
●哺乳類：アライグマ、ヌートリア
・アライグマは、平成 17 年度より 2 回の調査で連続確認されており、最新の平成 27 年度は、13 個体が確認されている。
・下流河川でのアライグマの確認は、最新の平成 27 年度になり、初めて確認された。
・ヌートリアは、平成 7 年度より 4 回の調査で連続確認されており、平成 17 年度が最大の 155 個体が確認されている。最新の平成 27 年度は、24 個体が確認されている。
・なお、哺乳類についての個体数は、足跡等の確認例数を含んだ数値である。
・経年の確認状況より、アライグマ、ヌートリアの 2 種は、加古川大堰およびその周辺に、既に定着しているものと考えられる。
表 6.3-17 加古川大堰の管理・運用と関わりの深い外来種の確認状況（個体数※1）

<table>
<thead>
<tr>
<th>種名</th>
<th>選定基準</th>
<th>H2</th>
<th>H4</th>
<th>H9</th>
<th>H14</th>
<th>H19</th>
<th>H24</th>
</tr>
</thead>
<tbody>
<tr>
<td>ブルーギル</td>
<td>特定 総合(緊急)</td>
<td>4</td>
<td>11</td>
<td>270</td>
<td>972</td>
<td>416</td>
<td>807</td>
</tr>
<tr>
<td>オオクチバス</td>
<td>特定 総合(緊急)</td>
<td>1</td>
<td>13</td>
<td>54</td>
<td>161</td>
<td>103</td>
<td>338</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>種名</th>
<th>選定基準</th>
<th>H7</th>
<th>H11-12</th>
<th>H15</th>
<th>H22</th>
</tr>
</thead>
<tbody>
<tr>
<td>アレチウリ</td>
<td>特定 総合(緊急)</td>
<td>12</td>
<td>14</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>オオカワシマ</td>
<td>特定 総合(緊急)</td>
<td>8</td>
<td>12</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>オオキンケイギク</td>
<td>特定 総合(緊急)</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>オオフサモ</td>
<td>特定 総合(緊急)</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Azolla属※2</td>
<td>特定 総合(緊急)</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

※1: 植物の数値は、個体数（株数）ではなく、確認例数。
※2: Azolla属は、種まで同定することが困難な特定外来生物のアカウキクサ科に該当する。

<table>
<thead>
<tr>
<th>種名</th>
<th>選定基準</th>
<th>H7</th>
<th>H12</th>
<th>H17</th>
<th>H27</th>
</tr>
</thead>
<tbody>
<tr>
<td>ウシガエル</td>
<td>特定 総合(重点)</td>
<td>105</td>
<td>31</td>
<td>99</td>
<td>52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>種名</th>
<th>選定基準</th>
<th>H7</th>
<th>H12</th>
<th>H17</th>
<th>H27</th>
</tr>
</thead>
<tbody>
<tr>
<td>アライグマ</td>
<td>特定 総合(緊急)</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>ヌートリア</td>
<td>特定 総合(緊急)</td>
<td>17</td>
<td>11</td>
<td>155</td>
<td>45</td>
</tr>
</tbody>
</table>

【外来種の選定基準】
○a：「外来生物法」（平成 16年法律第 78号）で指定された種
　・特定：特定外来生物
○b：「生態系被害防止外来種リスト」（環境省、平成 27年 3月）
　・総合（緊急）：総合対策（緊急） 国内に定着が確認されており、生態系等への被害のおそれがあるため、総合的に対策が必要な外来種のうち、緊急性が高く、積極的に防除が必要な外来種。
　・総合（重点）：総合対策（重点） 国内に定着が確認されており、生態系等への被害のおそれがあるため、総合的に対策が必要な外来種のうち、甚大な被害が予想される重点的な対策が必要な外来種。
○c：「兵庫県 BL」（兵庫県、平成 26年 11月）
　・Z：警戒種 生物多様性への影響が大きい、または、今後影響が大きくなることが予測される種。
図 6.3-17 魚類ブルーギル、オオクチバスの経年の確認状況

流入河川

<table>
<thead>
<tr>
<th>種名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H2</td>
</tr>
<tr>
<td>ブルーギル</td>
<td>-</td>
</tr>
<tr>
<td>オオクチバス</td>
<td>-</td>
</tr>
</tbody>
</table>

堰の湛水域

<table>
<thead>
<tr>
<th>種名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H2</td>
</tr>
<tr>
<td>ブルーギル</td>
<td>1</td>
</tr>
<tr>
<td>オオクチバス</td>
<td>0</td>
</tr>
</tbody>
</table>

下流河川

<table>
<thead>
<tr>
<th>種名</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H2</td>
</tr>
<tr>
<td>ブルーギル</td>
<td>3</td>
</tr>
<tr>
<td>オオクチバス</td>
<td>1</td>
</tr>
</tbody>
</table>

単位: 個体数
図 6.3-18 植物アレチウリ、オオカワデンシャ、オオキンケイギク、オオフサモ、Azolla属の経年の確認状況

<table>
<thead>
<tr>
<th>種名</th>
<th>調査年度</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H7</td>
<td>H11-12</td>
<td>H15</td>
<td>H22</td>
<td></td>
</tr>
<tr>
<td>アレチウリ</td>
<td>8</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>オオカワデンシャ</td>
<td>6</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>オオキンケイギク</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>オオフサモ</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Azolla属</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>種名</th>
<th>調査年度</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H7</td>
<td>H11-12</td>
<td>H15</td>
<td>H22</td>
</tr>
<tr>
<td>アレチウリ</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>オオカワデンシャ</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>オオキンケイギク</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>オオフサモ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Azolla属</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
図 6.3-19 両生類ウシガエルの経年の確認状況

流入河川

<table>
<thead>
<tr>
<th>種名</th>
<th>調査年度</th>
<th>個体数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H7</td>
<td>H12</td>
</tr>
<tr>
<td>ウシガエル</td>
<td>104</td>
<td>26</td>
</tr>
</tbody>
</table>

※個体数には、足跡等のフィールドサインの確認例も含まれる。

下流河川

<table>
<thead>
<tr>
<th>種名</th>
<th>調査年度</th>
<th>個体数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H7</td>
<td>H12</td>
</tr>
<tr>
<td>ウシガエル</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

※個体数には、足跡等のフィールドサインの確認例も含まれる。

図 6.3-19 両生類ウシガエルの経年の確認状況
図 6.3-20 哺乳類アライグマ、ヌートリアの経年の確認状況
(3) 現状での外来種に対する課題や駆除対策実施の必要性について
外来種に対する課題や駆除対策実施の必要性に対する評価は、下記のとおりである。

<table>
<thead>
<tr>
<th>●魚類：ブルーギル、オオクチバス</th>
</tr>
</thead>
<tbody>
<tr>
<td>・最新の平成 24年度の調査において、確認された個体数が増加しているものの、顕著な増加傾向はみられず、加古川大堰およびその周辺に、既に広く定着しており、根絶を目的とする駆除対策の実施は困難な状況にある。</td>
</tr>
<tr>
<td>・現状においては、河川水辺の国勢調査や堰で実施する魚道調査を通じ、定期的にブルーギルおよびオオクチバスの生息状況を監視し、在来種を含む生態系に大きな変化が生じた場合は、駆除対策の有無を検討する。</td>
</tr>
<tr>
<td>・なお、調査時に採捕された個体は、殺処分し、放流しない等のも行為も、これまで通りに実施する。</td>
</tr>
<tr>
<td>・また、環境学習会を通じて、外来種の生態系への悪影響や放流に伴う拡散防止等の啓発活動もこれまで通りに継続する。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>●植物：アレチウリ、オオカワヂシャ、オオキンケイギク、オオフサモ、Azolla属</th>
</tr>
</thead>
<tbody>
<tr>
<td>・加古川大堰およびその周辺に、既に広く定着しており、根絶を目的とする駆除対策の実施は困難な状況にある。</td>
</tr>
<tr>
<td>・最新の平成 22年度の調査においては、顕著な増加傾向はみられなかったため、引き続き、河川水辺の国勢調査を通じ、定期的にこれらの種の増加状況を監視する。</td>
</tr>
<tr>
<td>・堰の管理区間内には、現在のところ、生育情報はないものの、対策が必要となった場合は、適切な処置を行う。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>●両生類：ウシガエル</th>
</tr>
</thead>
<tbody>
<tr>
<td>・加古川大堰およびその周辺に、既に広く定着しており、根絶を目的とする駆除対策の実施は困難な状況にある。</td>
</tr>
<tr>
<td>・最新の平成 27年度の調査においては、顕著な増加傾向はみられなかったため、引き続き、河川水辺の国勢調査を通じ、定期的にこれらの種の生息状況を監視する。</td>
</tr>
<tr>
<td>・調査時に捕獲した個体は、殺処分し、放流しない。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>●哺乳類：アライグマ、ヌートリア</th>
</tr>
</thead>
<tbody>
<tr>
<td>・加古川大堰およびその周辺に、既に広く定着しており、根絶を目的とする駆除対策の実施は困難な状況にある。</td>
</tr>
<tr>
<td>・最新の平成 27年度の調査においては、顕著な増加傾向はみられなかったため、引き続き、河川水辺の国勢調査を通じ、定期的にこれらの種の生息状況を監視する。</td>
</tr>
<tr>
<td>・また、対策が必要となった場合は、適切な処置を行う。</td>
</tr>
</tbody>
</table>
堰の管理区間内で確認されている特定外来生物の確認状況を図6.3-21に、特定外来生物の拡散防止啓発看板を図6.3-22に、平成28年度の環境学習会の開催案内を図6.3-23に示す。

加古川大堰の管理区間で確認されている特定外来生物は、ブルーギルとオオクチバスの2種で、堰の湛水域を中心に確認されている。

堰では、ブルーギルおよびオオクチバスに対する外来種予防三原則（入れない、捨てない、拡げない）の遵守を図ることを目的に、看板を設置し、外来種拡散防止の啓発に努めている。

また、平成25年より毎年開催している地域の小学生と保護者を対象とする環境学習会においても、外来種の生態系への悪影響や拡散防止についての啓発活動も行っているところである。

図6.3-21 管理区間内で確認されている特定外来生物の確認状況

図6.3-22 特定外来生物の拡散防止啓発看板
図 6.3-23 平成 28 年度の環境学習会の開催案内
6.4 生物の生息・生育状況の変化の評価
6.4.1 加古川大堰における現況の評価

加古川大堰における現況の評価は、下記のとおりである。

<table>
<thead>
<tr>
<th>○堰の管理・運用に関わる生物の動向のうち、堰の上流側には湛水域が形成されるため、流速が低下し、流れのある環境に生息する魚類および底生動物や河岸の植生への影響が一定区間で生じている可能性がある。</th>
</tr>
</thead>
<tbody>
<tr>
<td>○堰の管理・運用に関わる生物の動向のうち、堰の湛水域については水面の出現と安定した水位を保つ貯水池運用により、カイツブリ類、カモ類、ウ類等の水鳥の生息環境が創出されたほか、止水性魚類にとっても良好な生息環境が創出された可能性がある。</td>
</tr>
<tr>
<td>○堰の管理・運用に関わる影響を受けたと想定される重要種については、魚類のニホンウナギ、底生動物のミナミヌマエビが該当したが、堰に整備されている魚道を利用して、上流側に移動でき、両種の特徴である回遊性に影響を及ぼしてはいないものと考えられる。</td>
</tr>
<tr>
<td>○外来種は、動物では特定外来生物のブルーギル、オオクチバス、ウシガエル、アライグマ、ヌートリアの5種が、堰の周辺で確認されている。</td>
</tr>
<tr>
<td>○ブルーギル、オオクチバスおよびウシガエルは、堰の湛水域のような止水環境に生息する生物であるが、ブルーギルおよびオオクチバスは、確認状況より、既に堰の湛水域に定着しているものと考えられる。</td>
</tr>
<tr>
<td>○ウシガエルについては、堰の湛水域では調査が行われていないため、堰の湛水域での定着の有無は不明であるが、流入河川や下流河川での確認状況を踏まえると、堰の湛水域にも定着している可能性がある。</td>
</tr>
<tr>
<td>○アライグマ、ヌートリアは移動能力が高く、流入河川や下流河川での確認状況を踏まえると、堰の湛水域にも定着している可能性がある。</td>
</tr>
<tr>
<td>○ヌートリアは、水生植物を餌として利用することもあり、堰周辺の水生植物の生育状況に影響を及ぼしている可能性がある。</td>
</tr>
<tr>
<td>○植物の特定外来生物としては、アレチウリ、オオカワヂシャ、オオキンケイギク、オオフサモ、Azolla属の5種が、堰の周辺で確認されており、既に堰の周辺に定着している可能性が高く、在来種の生育状況に影響を及ぼしている可能性がある。</td>
</tr>
</tbody>
</table>
6.4.2 生物の生息・生育状況の変化の評価

生物の生息・生育状況の変化の評価一覧を表 6.4-1に示す。
「生物の生息・生育状況の変化の検証」における検証結果について、評価の視点を定めて場所ごとに評価を行い、今後の方針を整理した。
評価の視点は、「生物多様性国家戦略※1」のうち、「第三次生物多様性国家戦略※2」での記載内容を参考に、生物の生息・生育環境の視点から設定した。

視点の例は、下記のとおりである。

○種の絶滅、地域個体群の消減を回避する。
○その川(地域)がもともと有していた多様な環境の保全・復元を図る。
○連続した環境を確保する。
○その川(地域)らしい生物の生育・生息環境の保全・復元を図る。
○外来種対策による生物多様性を確保する。

※1：生物多様性国家戦略
（出典：http://www.biodic.go.jp/biodiversity/about/initiatives/）
生物多様性条約および生物多様性基本法に基づく、生物多様性の保全および持続可能な利用に関する国の基本的な計画で、平成7年に最初の生物多様性国家戦略を策定し、これまでに4度の見直しを行っている。
・「生物多様性国家戦略」平成7年10月31日決定
・「新・生物多様性国家戦略」平成14年3月27日決定
・「第三次生物多様性国家戦略」平成19年11月27日閣議決定
・「生物多様性国家戦略2010」平成22年3月16日閣議決定
・「生物多様性国家戦略2012-2020」平成24年9月28日閣議決定

※2：第三次生物多様性国家戦略
国内外の状況の変化を踏まえ、政府が「生物多様性国家戦略」の見直しを行い、平成19年11月閣議決定を行ったものである。
<table>
<thead>
<tr>
<th>検討項目</th>
<th>生物の状況</th>
<th>堰との関連の検証結果</th>
<th>評価</th>
<th>今後の方針</th>
</tr>
</thead>
<tbody>
<tr>
<td>魚類</td>
<td>生息状況の変化</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>止水性魚類</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>コイ</td>
<td>ゲンゴロウブナ Carassius 属</td>
<td>堰の獲水域内では、コウライモロコが優占しているほか、特定外来生物のブルーギルやオオクチバスも継続して確認されている。</td>
<td>止水～緩流環境に生息する魚類の一部の外来種の定着があるもの。在来種の生息状況に大きな変化はなく、特に課題はない。</td>
<td>特定外来性物に該当するブルーギル、オオクチバスが確認されており、在来種を含む止水性魚類の生息状況を河川水辺の国勢調査を通じて監視し、生息状況に大きな変化が生じた場合は、対策の有無を検討する。</td>
</tr>
<tr>
<td>ケンゴワナ Carassius 属</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ヤリタナゴ</td>
<td>タイリクパラタナゴ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>コウライモロコ</td>
<td>ブルーギル</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オオクチバス</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>回遊性魚類</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ニホンウナギ</td>
<td>ウグイ</td>
<td>回遊性魚類のうち、ハゼ科の4種を除き、堰の上下流側で連続的に確認されている。</td>
<td>回遊性魚類の構成は、加古川で、堰が供用される以前より保持されてきたと想定される魚類相であり、現状では連続性が確保できていると評価でき、概ね問題ない。</td>
<td>一部の回遊性魚類に陸封化の可能性があるものの、堰の上下流側での回遊性魚類の回遊性に概ね問題はないが、今後も回遊性魚類の生息状況を河川水辺の国勢調査、魚道の利用状況を魚道遡上調査を通じて監視し、生息状況に大きな変化が生じた場合は、対策の有無を検討する。</td>
</tr>
<tr>
<td>ウグイ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オアユ</td>
<td>サツキマス</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ウツキゴリ</td>
<td>ゴクラクハゼ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シマヨシノボリ</td>
<td>オオヨシノボリ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オオヨシノボリ</td>
<td>ニュマチチブ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>サツキマス</td>
<td>ウズキゴリ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オオヨシノボリ</td>
<td>オオヨシノボリ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オオヨシノボリ</td>
<td>ニュマチチブ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 6.4-1（2） 生物の生息・生育状況の変化の評価一覧

<table>
<thead>
<tr>
<th>検討項目</th>
<th>生物の状況</th>
<th>堰との関連の検証結果</th>
<th>評価</th>
<th>今後の方針</th>
</tr>
</thead>
<tbody>
<tr>
<td>生物多様性</td>
<td>堰周辺の植生变化は、加古川での出水による懸濁インセンスのほか、河原採取のための樹木伐採に起因するが、堰の上下流での砂礫河原となる自然裸地や河畔林となるヤナギ高木林の面積に大きな変化はなく、河岸植生の健全性や連続性が保持されていると評価できる。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生物多様性</td>
<td>堰周辺の植生変化は、加古川での出水による懸濁インセンスのほか、河原採取のための樹木伐採に起因するが、堰の上下流での砂礫河原となる自然裸地や河畔林となるヤナギ高木林の面積に大きな変化はなく、河岸植生の健全性や連続性が保持されていると評価できる。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>検討項目</td>
<td>生物の状況</td>
<td>堰との関連の検証結果</td>
<td>評価</td>
<td>今後の方針</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>----------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>鳥類</td>
<td>生息状況の変化</td>
<td>水鳥</td>
<td>カイツブリ カムリカイツブリ カワウ マガモ カルガモ コガモ ユリガモ セグロガモ等</td>
<td>既往調査では、いずれの調査年度も、カイツブリ類、ウ類、カモ類、カモ類等の多様な水鳥に継続的に利用されていく。</td>
</tr>
<tr>
<td></td>
<td>生息状況の変化</td>
<td>河原環境利用種</td>
<td>カヤネズミ</td>
<td>流入河川において、カヤネズミは、既往調査では、いずれの調査年度も生息が確認されている。</td>
</tr>
<tr>
<td></td>
<td>生息状況の変化</td>
<td>河原環境利用種</td>
<td>イサゴコモノムシオハササミムシキヘコガネ</td>
<td>流入河川において、陸上昆虫類等の河原環境利用種の確認種数は、平成18年度が35種、平成15年度が34種、平成28年度が34種と、概ね横ばいで推移している。</td>
</tr>
</tbody>
</table>

両生類・爬虫類・哺乳類	生息状況の変化	河原環境利用種	カヤネズミ	出水等の攪乱に伴う自然営力によって成立する河川らしい自然環境を維持する。	出水等の攪乱に伴う自然営力によって成立する河川らしい自然環境を維持する。
	生息状況の変化	河原環境利用種	カヤネズミ	出水等の攪乱に伴う自然営力によって成立する河川らしい自然環境を維持する。	出水等の攪乱に伴う自然営力によって成立する河川らしい自然環境を維持する。
	生息状況の変化	河原環境利用種	カヤネズミ	出水等の攪乱に伴う自然営力によって成立する河川らしい自然環境を維持する。	出水等の攪乱に伴う自然営力によって成立する河川らしい自然環境を維持する。
6.5 環境保全対策の効果の検証
加古川大堰の魚道の現況を図 6.5-1 に示す。
加古川大堰では、環境保全対策は実施していないが、大堰に設置されている魚道の機能を確認することを主な目的とした調査を実施している。
6.5.1 魚道遡上調査等の実施状況
調査の実施状況を表 6.5-1 に示す。
調査実施状況の概要は、下記のとおりである。
○加古川大堰では、魚道機能の確認を主な目的とし、平成 6 年度より魚道調査を継続して実施している。
○平成 14 年度までは左岸魚道を対象に目視と採捕の併用、平成 15 年度以降は左右岸魚道を対象に採捕のみに切り替わっている。
○平成 15 年度以降の調査時期は、アユの遡上期の 5～6 月を中心に実施している。
○平成 28 年度のみ、9 月にヨシノボリ類等の底生回遊性魚類を対象とする魚道遡上調査を実施している。

魚道遡上調査は、平成 6 年度より実施する目視を中心とする定性的な調査方法から、平成 15 年度以降より採捕を中心とする定量的な調査方法に切り替わっている。
本稿では、平成 15 年度以降の調査結果を対象に整理した。
この他にも、堰下流部で滞留する魚類等の状況を把握するために、堰下流滞留状況調査を平成 12 年度より実施しており、本稿では、魚道遡上調査と同様に平成 15 年度以降の調査結果を対象に整理した。

表 6.5-1 魚道遡上調査の実施状況
6.5.2 魚道遡上調査等の結果整理

(1) 魚道遡上調査の結果整理

魚道を利用した魚類等の確認状況を表 6.5-2 に、魚道を利用した回遊種と淡水種の経年での推移を図 6.5-2 に示す。

調査結果の概要は、下記のとおりである。

○ 平成 24 年度から平成 28 年度は、各年度で 15～25 種のコイ科を中心とする魚類や甲殻類が魚道内を利用しており、種構成に大きな変化はない。

○ 経年では、ニホンウナギ、アユ、モクズガニ等の回遊性の種のみならず、コイ、オイカワ、スジエビ等の多くの淡水性の種も魚道を利用し、堰より上流へ遡上している。

<table>
<thead>
<tr>
<th>表 6.5-2 魚道を利用した経年の確認種一覧</th>
</tr>
</thead>
<tbody>
<tr>
<td>分類群</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>魚類</td>
</tr>
</tbody>
</table>

注1: 種名はH28生物リストに準拠した。
注2: 青字は重要種、赤字は外来種。
注3: 諸表例、分類（オニブナ、Carassius属が該当）、テナガエビ、ヒラテテナガエビ、スジエビ等、魚道を利用した魚種で、漁協による放流実績がある。
注4: 前記種類として確認した個体数は、ミネラルの可能性高く、重要種とした。
注5: Neocaridina属は、在来種のミネラルのほか、外来種の数種に該当する可能性がある。
図 6.5-2 魚道を利用した回遊種と淡水種の経年での推移

図 6.5-2 魚道を利用した回遊種と淡水種の経年での推移

調査未実施:

4月下旬〜5月 : 5月中旬〜6月中旬 : 6月中旬〜7月中旬 : 12月〜3月
参考：魚道を利用する確認種の構成について

調査年別の魚道を利用する確認種の構成を図6.5-3に示す。

魚道を利用する魚類は、いずれの調査年度もコイ科の魚類の確認種数が多い状況で、近5ヵ年でも種構成に大きな変化はない。
■参考：魚道を利用する主要な確認種について

魚道遡上調査で採捕された魚類等の個体数の経年の一覧を表 6.5-3 に示す。

魚道遡上調査は、原則として、アユが遡上している時期に実施しており、個体数が多い種は、アユに加え、魚類はオイカワ、甲殻類はテナガエビである。

表 6.5-3 魚道を利用する主要な確認種の一覧

<table>
<thead>
<tr>
<th>分類群</th>
<th>科名</th>
<th>種名</th>
<th>生活型</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>魚類</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
<td>未実施</td>
</tr>
<tr>
<td></td>
<td>ニホンウナギ科</td>
<td>ニホンウナギ</td>
<td>回遊</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>コイ科</td>
<td>コイ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>ケンゴロウブナ</td>
<td>ケンゴロウブナ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>ニゴロブナ</td>
<td>ニゴロブナ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>オオキンブナ</td>
<td>オオキンブナ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>ギンブナ</td>
<td>ギンブナ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>Carassius属</td>
<td>Carassius属</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>カネヒラ</td>
<td>カネヒラ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>タイリクバラタナゴ</td>
<td>タイリクバラタナゴ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>ハス</td>
<td>ハス</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>オイカワ</td>
<td>オイカワ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>カワムツ</td>
<td>カワムツ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>ヌマムツ</td>
<td>ヌマムツ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>アブラハヤ</td>
<td>アブラハヤ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>ウグイ</td>
<td>ウグイ</td>
<td>回遊</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>モツゴ</td>
<td>モツゴ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>カワヒガイ</td>
<td>カワヒガイ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>タモロコ</td>
<td>タモロコ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>セゼラ</td>
<td>セゼラ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>カマツカ</td>
<td>カマツカ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>ヌガガニ</td>
<td>ヌガガニ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>コウライニゴイ</td>
<td>コウライニゴイ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>Hemibarbus属</td>
<td>Hemibarbus属</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>ドジョウ科</td>
<td>ドジョウ科</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>ギギ科</td>
<td>ギギ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>ナマズ科</td>
<td>ナマズ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>アユ科</td>
<td>アユ</td>
<td>回遊</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>サケ科</td>
<td>サケ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>サツキマス(アマゴ)</td>
<td>サツキマス(アマゴ)</td>
<td>回遊</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>メダカ科</td>
<td>メダカ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>サンフィッシュ科</td>
<td>サンフィッシュ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>ハゼ科</td>
<td>ハゼ</td>
<td>回遊</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>カワヨシノボリ</td>
<td>カワヨシノボリ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>オオヨシノボリ</td>
<td>オオヨシノボリ</td>
<td>回遊</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>シマヒレヨシノボリ</td>
<td>シマヒレヨシノボリ</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>旧トウヨシノボリ類</td>
<td>旧トウヨシノボリ類</td>
<td>不明</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>タイワンドジョウ科</td>
<td>タイワンドジョウ科</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>ヌマエビ科</td>
<td>ヌマエビ科</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>Neocaridina属</td>
<td>Neocaridina属</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>センチメンタル</td>
<td>センチメンタル</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>アメリカザリガニ科</td>
<td>アメリカザリガニ科</td>
<td>淡水</td>
<td>H28</td>
</tr>
<tr>
<td></td>
<td>モクズガニ科</td>
<td>モクズガニ科</td>
<td>回遊</td>
<td>H28</td>
</tr>
</tbody>
</table>

注1: 種名はH28生物リストに準拠した。
注2: 未実施は漁協による加古川での放流実績あり。
注3: ニホンウナギ、フナ類(ギンブナ、Carassius属が該当)、タモロコ、アユ、ニジマス、サツキマス(アマゴ)、モクズガニは、漁協による放流実績あり。
注4: 表中の種数は、個体数の多かった上位3番目までの数値を示す。
注5: センチメンタルは、西川町の生息地である。
(2) 秋季の魚道遡上調査の結果整理
秋季（9月）に魚道を利用した確認種の一覧を表6.5-4に示す。
調査結果の概要は、下記のとおりである。

平成28年9月に実施された調査では、対象魚のオオヨシノボリの遡上が確認されている。

既往調査のアユの遡上時期で確認されているハゼ科等の遊泳力の弱い魚類は、ウキゴリ、カワヨシノボリ、オオヨシノボリ、シマヒレホシノボリ、旧ヨシノボリ類である。このうち、ウキゴリとオオヨシノボリが回遊性の魚類に該当し、これら2種は、魚道を利用することで、回遊性を維持しているものと考えられる。

表6.5-4 秋季（9月）に魚道を利用した確認種の一覧

<table>
<thead>
<tr>
<th>分類群</th>
<th>科名</th>
<th>種名</th>
<th>生活型</th>
<th>個体数</th>
</tr>
</thead>
<tbody>
<tr>
<td>魚類</td>
<td>ウナギ科</td>
<td>ニホンウナギ</td>
<td>回遊</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>コイ科</td>
<td>ゲンゴロウブナ</td>
<td>淡水</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>キンブナ</td>
<td>淡水</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>オイカワ</td>
<td>淡水</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td></td>
<td>カワウ</td>
<td>淡水</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>クロジロコ</td>
<td>淡水</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>カマウ</td>
<td>淡水</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ガラスモリ</td>
<td>淡水</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hemibarbus属</td>
<td>淡水</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td></td>
<td>コウライモロコ</td>
<td>淡水</td>
<td>2,100</td>
</tr>
<tr>
<td></td>
<td>鯉科</td>
<td>キイ</td>
<td>淡水</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>その他科</td>
<td>アユ</td>
<td>回遊</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>サケ科</td>
<td>ニジマス</td>
<td>淡水</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>日本サケ科</td>
<td>アオウシギ</td>
<td>淡水</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>オオサケ科</td>
<td>オオサケ</td>
<td>淡水</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>カワノスズ鲤科</td>
<td>カワノスズ鲤</td>
<td>淡水</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>甲殻類</td>
<td>ミツルヤリモリ</td>
<td>回遊</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>カタクチイカ科</td>
<td>カタクチイカ</td>
<td>回遊</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>シラスメジカ科</td>
<td>シラスメジカ</td>
<td>回遊</td>
<td>1,116</td>
</tr>
<tr>
<td></td>
<td>モクノガニ科</td>
<td>モクノガニ</td>
<td>回遊</td>
<td>8</td>
</tr>
</tbody>
</table>

注1:種名はH28生物リストに準拠した。
注2: 青字は重要種、赤字は外来種。
注3: ニホンウナギ、ゲンゴロウブナ、クロジロコ、アユ、ニジマス、モクノガニは、漁協による加古川での放流実績あり。
※: 青文字のオオヨシノボリが、調査対象種に該当。
(3) 回遊履歴調査の結果整理

回遊履歴調査の結果を図 6.5-2 に示す。

回遊履歴調査の結果は、下記のとおりである。

○平成 28 年度は魚道を遡上中のオオヨシノボリの耳石の Sr/Ca 比分析により、オオヨシノボリに回遊履歴があることも確認している。

回遊履歴は、魚類の耳石が含有する Sr/Ca 比分析により確認している。耳石の Sr/Ca 比分析の基本的な考え方は下記のとおりである。

- 海水の成分である Sr 濃度は河川水の約 100 倍である。
- 海水に生息する魚類は、成長過程で平衡器官の耳石に Sr を取り込む。
- 河川で採捕された魚類の耳石に含まれる Sr が多ければ、海域に生息した履歴をもつと判断できる。
- 分析は、Ca に対する Sr 濃度で標準化する。

回遊履歴を分析した 3 種のうち、シマヒレヨシノボリは淡水性であることから、魚道を利用することで堰の上下游に分布しているものと考えられる。

オオヨシノボリは、既往調査においても魚道の利用が確認されており、耳石の Sr/Ca 比分析により、魚道を遡上する個体の回遊歴が科学的に明瞭となり、回遊性に問題はないと示された。

ゴクラクハゼは、堰の下流側で採捕された個体について、耳石の Sr/Ca 比分析を行い、回遊歴を有することが示された。河川水辺の国勢調査では、堰より上流側での生息情報がある一方で、これまでの魚道遡上調査においては、魚道を利用した報告はない。よって、堰より上流側に生息する個体の回遊歴については不明確な部分が存在する。
図 6.5-4 回遊履歴分析結果（耳石の Sr/Ca 比分析）
堰下流滞留状況調査の結果整理

堰下流滞留状況調査における経年の確認種の一覧を表 6.5-5 に示す。

堰下流滞留状況調査のうち、アユの遡上時期に実施される魚道遡上調査と同時に実施された調査結果のみを整理している。

堰下流滞留状況調査の調査範囲は、平成 15年度から平成 19年度までは堰の直下から草谷川合流部付近まで、平成 22年度以降は堰の直下のみを対象としている。

平成 20年度および 21年度は、調査を実施していない。

これまでの調査において、堰の直下に大量の魚類等の個体が蝟集する状況は確認されておらず、魚道を利用して堰より上流に円滑に移動しているものと考えられる。

なお、堰の下流部で確認されている魚種は、これまでに 55 種であり、魚道遡上調査で確認できていない種は、下記のとおりである。

<table>
<thead>
<tr>
<th>淡水性種</th>
</tr>
</thead>
<tbody>
<tr>
<td>アブラボテ、ワタカ、タカハヤ、ドジョウ、アカザ、カジカ、ドンコ、タイワンドジョウ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>回遊性種</th>
</tr>
</thead>
<tbody>
<tr>
<td>スミウキゴリ、シマヨシノボリ、ゴクラクハゼ、ヌマチチブ</td>
</tr>
</tbody>
</table>

淡水性魚のうち、ワタカ、タカハヤ、カジカの 3 種は、既往の河川水辺の国勢調査で確認されており、加古川大堰周辺での生息数は、極めて少ないものと推測される。

アブラボテ、ドジョウ、アカザ、ドンコ、タイワンドジョウの 5 種は、既往の河川水辺の国勢調査において、加古川大堰の上下流でも確認されており、堰の存在に伴う生息分布に大きな変化はない状況である。

回遊性魚のスミウキゴリ、シマヨシノボリ、ヌマチチブは、既往の河川水辺の国勢調査においても、堰より下流側でのみ確認されており、堰下流滞留状況調査の結果と合致している。
表 6.5-5 堰下流滞留状況調査における経年の確認種の一覧

<table>
<thead>
<tr>
<th>分類群</th>
<th>科名</th>
<th>種名</th>
<th>生活型</th>
<th>調査年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>魚類</td>
<td>ウナギ科</td>
<td>ニホンウナギ</td>
<td>回遊</td>
<td>H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 H28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H29 H30 H31 H32 H33 H34 H35 H36 H37 H38 H39 H40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H41 H42 H43 H44 H45 H46 H47 H48 H49 H50 H51 H52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H53 H54 H55 H56 H57 H58 H59 H60 H61 H62 H63 H64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H65 H66 H67 H68 H69 H70 H71 H72 H73 H74 H75 H76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H77 H78 H79 H80 H81 H82 H83 H84 H85 H86 H87 H88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H89 H90 H91 H92 H93 H94 H95 H96 H97 H98 H99 H100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H101 H102 H103 H104 H105 H106 H107 H108 H109 H110 H111 H112</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H113 H114 H115 H116 H117 H118 H119 H120 H121 H122 H123 H124</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H125 H126 H127 H128 H129 H130 H131 H132 H133 H134 H135 H136</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H137 H138 H139 H140 H141 H142 H143 H144 H145 H146 H147 H148</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H149 H150 H151 H152 H153 H154 H155 H156 H157 H158 H159 H160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H161 H162 H163 H164 H165 H166 H167 H168 H169 H170 H171 H172</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H173 H174 H175 H176 H177 H178 H179 H180 H181 H182 H183 H184</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H185 H186 H187 H188 H189 H190 H191 H192 H193 H194 H195 H196</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H197 H198 H199 H200 H201 H202 H203 H204 H205 H206 H207 H208</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H209 H210 H211 H212 H213 H214 H215 H216 H217 H218 H219 H220</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H221 H222 H223 H224 H225 H226 H227 H228 H229 H230 H231 H232</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H233 H234 H235 H236 H237 H238 H239 H240 H241 H242 H243 H244</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H245 H246 H247 H248 H249 H250 H251 H252 H253 H254 H255 H256</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H257 H258 H259 H260 H261 H262 H263 H264 H265 H266 H267 H268</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H269 H270 H271 H272 H273 H274 H275 H276 H277 H278 H279 H280</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H293 H294 H295 H296 H297 H298 H299 H300 H301 H302 H303 H304</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H305 H306 H307 H308 H309 H310 H311 H312 H313 H314 H315 H316</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H317 H318 H319 H320 H321 H322 H323 H324 H325 H326 H327 H328</td>
</tr>
</tbody>
</table>

注1: 種名はH28生物リストに準拠した。
注2: 青字は重要種、赤字は外来種。
注3: ニホンウナギ、フナ類(ギンブナ、Carassius属が該当)、ツナ、シラス、サギス(アマゴ)、ムラサギ、シラスの生活型が未実施である。

※：魚類として確認種類は、ニシン科の可能性が高く、重要種とした。
※2: Neocaridina属は、外来種のトウヒユメのほか、外来種の数種に該当する可能性がある。

種数
| 26種 | 31種 | 30種 | 34種 | 40種 | 一 | 13種 | 17種 | 20種 | 25種 | 21種 |
■参考：堰直下流での主要な確認種について
堰下流滞留状況調査で採捕された魚類等の個体数の経年の一覧を表 6.5-6 に示す。
堰下流滞留状況調査は、原則として、アユが遡上している時期に実施しており、個
体数が多い種は、アユに加え、魚類はオイカワ、コウライモロコである。アユとオイ
カワは、魚道遡上調査でも個体数の多い種であり、コウライモロコの個体数も比較的
に多いことから、堰下流滞留状況調査と魚道遡上調査の確認個体数が多い魚類は、概
ね合致している。

表 6.5-6

堰直下流での主要な確認種の一覧
（個体数）

分類群

科名

種名

生活型

ｳﾅｷﾞ科
ｺｲ科

H16
H17
4
23
8
27
67
44
893 1,105 1,190

6-251

H18

H19

H20

調査年度
H21
H22

H28
ﾆﾎﾝｳﾅｷﾞ
回遊
9
6
1
3
7
4
ｺｲ
淡水
16
66
1
2
1
20
1
ｹﾞﾝｺﾞﾛｳﾌﾞﾅ
淡水
83
120
24
4
27
9
24
33
1
ﾆｺﾞﾛﾌﾞﾅ
淡水
1
ｵｵｷﾝﾌﾞﾅ
淡水
1
ｷﾞﾝﾌﾞﾅ
淡水
182
437
15
29
42
6
1
14
Carassius属
淡水
5
2
5
4
ｱﾌﾞﾗﾎﾞﾃ
淡水
6
ｶﾈﾋﾗ
淡水
2
2
ﾀｲﾘｸﾊﾞﾗﾀﾅｺﾞ
淡水
5
22
10
10
8
ﾜﾀｶ
淡水
1
ﾊｽ
淡水
5
1
1
ｵｲｶﾜ
淡水
664 1,271 3,168
858 1,629
7
430
84
315
71
53
224
ｶﾜﾑﾂ
淡水
13
2
3
14
3
5
18
4
ﾇﾏﾑﾂ
淡水
2
13
1
1
1
Candidia属
淡水
1
ｱﾌﾞﾗﾊﾔ
淡水
22
1
ﾀｶﾊﾔ
淡水
1
ｳｸﾞｲ
回遊
12
2
ﾓﾂｺﾞ
淡水
17
56
24
55
78
7
14
1
ｶﾜﾋｶﾞｲ
淡水
2
3
3
2
ﾀﾓﾛｺ
淡水
7
5
6
11
1
24
8
ｾｾﾞﾗ
淡水
2
2
1
1
調
ｶﾏﾂｶ
淡水
236
202
195
25
64
1
15
7
7
18
14
5
ｽﾞﾅｶﾞﾆｺﾞｲ
淡水
1
ｺｳﾗｲﾆｺﾞｲ
淡水
251
87
70
222
318
4
60 1,132
1
25
Hemibarbus属
淡水
949
284
40
査
ｺｳﾗｲﾓﾛｺ
淡水 3,173 3,470 2,981 1,655 3,700
99
260
135
128
197
218
270
ｽｺﾞﾓﾛｺ類
淡水
4
ｺｲ科
淡水
6
ﾄﾞｼﾞｮｳ科
ﾄﾞｼﾞｮｳ
淡水
1
2
未
ﾁｭｳｶﾞﾀｽｼﾞｼﾏﾄﾞｼﾞｮｳ 淡水
14
15
1
9
2
1
ｷﾞｷﾞ科
ｷﾞｷﾞ
淡水
3
135
20
14
15
1
3
ﾅﾏｽﾞ科
ﾅﾏｽﾞ
淡水
19
24
19
4
2
1
1
ｱｶｻﾞ科
ｱｶｻﾞ
淡水
4
1
1
実
ｱﾕ科
ｱﾕ
回遊
198
126
956
163
133
2
56
172
31
46
296
247
ｻｹ科
ﾆｼﾞﾏｽ
淡水
3
1
1
1
ｻﾂｷﾏｽ(ｱﾏｺﾞ)
回遊
3
ﾒﾀﾞｶ科
淡水
10
2
1
ﾒﾀﾞｶ類 ※1
施
ｶｼﾞｶ科
ｶｼﾞｶ
淡水
1
ｻﾝﾌｨｯｼｭ科
ﾌﾞﾙｰｷﾞﾙ
淡水
694 2,227
217
345
322
15
39
6
7
5
ｵｵｸﾁﾊﾞｽ
淡水
38
265
94
64
68
54
8
3
26
5
24
ﾄﾞﾝｺ科
ﾄﾞﾝｺ
淡水
1
4
5
ﾊｾﾞ科
ｽﾐｳｷｺﾞﾘ
回遊
5
ｳｷｺﾞﾘ
回遊
4
4
10
1
ｶﾜﾖｼﾉﾎﾞﾘ
淡水
205
406
866
126
306
29
14
29
19
63
19
42
ｼﾏﾖｼﾉﾎﾞﾘ
回遊
2
3
24
1
29
3
ｵｵﾖｼﾉﾎﾞﾘ
回遊
3
1
1
ｺﾞｸﾗｸﾊｾﾞ
回遊
2
7
3
7
1
11
2
7
1
4
旧ﾄｳﾖｼﾉﾎﾞﾘ類
不明
16
Rhinogobius属
不明
2
36
ﾇﾏﾁﾁﾌﾞ
回遊
1
ﾀｲﾜﾝﾄﾞｼﾞｮｳ科 ﾀｲﾜﾝﾄﾞｼﾞｮｳ
淡水
2
ｶﾙﾑﾁｰ
淡水
2
1
甲殻類 ﾇﾏｴﾋﾞ科
ﾐｿﾞﾚﾇﾏｴﾋﾞ
回遊
114
5
1
1
淡水
77
143
4
3
8
Neocaridina属 ※2
ﾇﾏｴﾋﾞ科
不明
22
ﾃﾅｶﾞｴﾋﾞ科
ﾋﾗﾃﾃﾅｶﾞｴﾋﾞ
回遊
2
6
ﾃﾅｶﾞｴﾋﾞ
回遊
10
165
11
6
10
3
48
92
15
ｽｼﾞｴﾋﾞ
淡水
29
551
154
24
1
53
2
36
6
ｱﾒﾘｶｻﾞﾘｶﾞﾆ科 ｱﾒﾘｶｻﾞﾘｶﾞﾆ
淡水
4
10
ﾓｸｽﾞｶﾞﾆ科
ﾓｸｽﾞｶﾞﾆ
回遊
22
38
3
14
13
21
6
種数
－
26種 31種 30種 34種 40種
13種 13種 21種 17種 26種 20種 21種
注1：種名はH28生物リストに準拠した。
注2：青字は重要種、赤字は外来種。
注3：ﾆﾎﾝｳﾅｷﾞ、ﾌﾅ類（ｷﾞﾝﾌﾞﾅ、Carassius属が該当）、ﾀﾓﾛｺ、ｱﾕ、ﾆｼﾞﾏｽ、ｻﾂｷﾏｽ(ｱﾏｺﾞ)、ﾓｸｽﾞｶﾞﾆは、漁協による加古川での放流実績あり。
注4：
は調査年度で個体数の多かった上位3番目までの数値を示す。
※1：ﾒﾀﾞｶ類とした確認個体は、ﾐﾅﾐﾅﾀﾞｶの可能性が高く、重要種とした。
※2：Neocaridina属は、在来種のﾐﾅﾐﾇﾏｴﾋﾞのほか、外来種の数種に該当する可能性がある。

魚類

H15

H23

H24

H25

H26

H27


6.5.3 魚道遡上調査等の結果に対する評価

魚道遡上調査等の結果に対する評価を表6.5-7に示す。

表 6.5-7 魚道遡上調査等の結果に対する評価

<table>
<thead>
<tr>
<th>項目</th>
<th>目的</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>・加古川大堰に設置された左右両岸に設置された魚道の機能、特にアユ遡上に対する障害の有無を確認することを目的とする。</td>
</tr>
</tbody>
</table>
| 結果 | ・アユの遡上は、年毎の調査で確認されており、問題ない。
・アユ以外の回遊性種として、ニホンウナギ、ウグイ、サツキマス（アマゴ）、ウキゴリ、オオヨシノボリ、ミゾレヌマエビ、ミナミテナガエビ、ヒラテテナガエビ、テナガエビ、モクズガニの遡上が確認されているほか、多くの淡水性種の遡上も確認されている。
・回遊性ハゼ科魚類のうち、オオヨシノボリについては、耳石のSr/Ca分析比より、回遊歴を保持することが確認されている。
・同じく、回遊性ハゼ科魚類のゴクラクハゼについても、堰下流に生息する個体については回遊歴を保持することが確認された。ただし、本種については、既往調査における魚道を遡上する状況が未確認である。 |
| 評価 | ・魚道の当初の設計目的にある有用魚のアユの遡上への有効性は、継続して維持されている。
・また、回遊性種のみならず、多くの淡水性種も魚道を利用して上下流を移動しており、加古川の水域生態系の種多様性の保持に貢献しているものと考えられる。
・なお、一部の回遊性ハゼ科魚類について、魚道を遡上する状況が確認されておらず、引き続き、確認に留意する必要がある。 |
6.6 まとめと今後の方針

6.6.1 まとめ
生物の分析・評価に対するまとめは、下記のとおりである。

○加古川大堰周辺の植生は、草本植生が中心で、木本植生、特に主な河道内樹木のヤナギ類の植生に係る面積増加傾向はみられない。
○堰の湛水域内は、魚類は在来性のコウライモロコの生息数が多いものの、ブルーギルやオオクチバスといった外来種も生息している。
○魚道は利用し、ニホンウナギやアユ等のほか、ハゼ科のオオヨシノボリも海と河川を往来し、回遊性が維持されている。

6.6.2 今後の方針
今後の方針は、下記のとおりである。

○今後も、堰の湛水域を含む加古川の管理区間周辺の環境および生物の生息・生育状況を把握し、必要に応じて地域や関係機関等と連携を図りつつ、環境の保全に資する堰の管理・運用に取り組んでいく。
○外来種については、毎年開催している環境学習会等を通じて、外来種の生態系への悪影響や拡散防止等の啓発活動に取り組んでいく。
6.7 文献リスト

定期報告書を作成するにあたって、使用した文献・資料の一覧を表 6.7-1 に示す。

表 6.7-1 (1) 生物に係る文献・資料の一覧

<table>
<thead>
<tr>
<th>区分</th>
<th>No.</th>
<th>報告書またはデータ名</th>
<th>発行者または著者名</th>
<th>発行年月/発行年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>河川水辺の国勢調査 (河川版)</td>
<td>6-1</td>
<td>加古川・揖保川魚類相調査業務報告書（河川水辺の国勢調査）</td>
<td>建設省姫路工事事務所</td>
<td>平成 3 年 3 月</td>
</tr>
<tr>
<td>河川水辺の国勢調査</td>
<td>6-2</td>
<td>加古川水系魚介類調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成 4 年度</td>
</tr>
<tr>
<td>河川水辺の国勢調査</td>
<td>6-3</td>
<td>加古川水系底生動物調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成 4 年度</td>
</tr>
<tr>
<td>河川水辺の国勢調査</td>
<td>6-4</td>
<td>加古川水系陸上昆虫類等調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成 4 年度</td>
</tr>
<tr>
<td>河川水辺の国勢調査</td>
<td>6-5</td>
<td>加古川水系河川調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成 4 年度</td>
</tr>
<tr>
<td>河川水辺の国勢調査</td>
<td>6-6</td>
<td>加古川水系鳥類調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成 5 年度</td>
</tr>
<tr>
<td>河川水辺の国勢調査</td>
<td>6-7</td>
<td>加古川水系両生類・爬虫類・哺乳類調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成 7 年度</td>
</tr>
<tr>
<td>河川水辺の国勢調査</td>
<td>6-8</td>
<td>加古川水系植物調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成 7 年度</td>
</tr>
<tr>
<td>河川水辺の国勢調査</td>
<td>6-9</td>
<td>加古川水系陆上昆虫類等調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成 8 年度</td>
</tr>
<tr>
<td>河川水辺の国勢調査</td>
<td>6-10</td>
<td>加古川水系底生動物調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成 9 年度</td>
</tr>
<tr>
<td>河川水辺の国勢調査</td>
<td>6-11</td>
<td>加古川水系底生動物調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成 10 年度</td>
</tr>
<tr>
<td>河川水辺の国勢調査</td>
<td>6-12</td>
<td>加古川水系魚介類調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成 10 年度</td>
</tr>
<tr>
<td>河川水辺の国勢調査</td>
<td>6-13</td>
<td>加古川水系植物調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成 11 年度/平成 12 年度</td>
</tr>
<tr>
<td>河川水辺の国勢調査</td>
<td>6-14</td>
<td>加古川水系両生類・昆虫類・哺乳類調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成 12 年度</td>
</tr>
<tr>
<td>河川水辺の国勢調査</td>
<td>6-15</td>
<td>加古川水系底生動物調査報告書</td>
<td>国土交通省姫路工事事務所</td>
<td>平成 13 年度</td>
</tr>
<tr>
<td>河川水辺の国勢調査</td>
<td>6-16</td>
<td>加古川水系魚介類調査報告書</td>
<td>国土交通省姫路工事事務所</td>
<td>平成 15 年 3 月</td>
</tr>
<tr>
<td>河川水辺の国勢調査</td>
<td>6-17</td>
<td>加古川水系底生動物調査報告書</td>
<td>国土交通省姫路工事事務所</td>
<td>平成 15 年 3 月</td>
</tr>
<tr>
<td>河川水辺の国勢調査</td>
<td>6-18</td>
<td>加古川水系植物調査報告書</td>
<td>国土交通省姫路工事事務所</td>
<td>平成 15 年度</td>
</tr>
<tr>
<td>河川水辺の国勢調査</td>
<td>6-19</td>
<td>加古川水系底生動物調査報告書</td>
<td>国土交通省姫路工事事務所</td>
<td>平成 17 年 3 月</td>
</tr>
<tr>
<td>河川水辺の国勢調査</td>
<td>6-20</td>
<td>加古川水系魚介類調査報告書</td>
<td>国土交通省姫路工事事務所</td>
<td>平成 17 年度</td>
</tr>
<tr>
<td>河川水辺の国勢調査</td>
<td>6-21</td>
<td>加古川水系底生動物調査報告書</td>
<td>国土交通省姫路工事事務所</td>
<td>平成 17 年度</td>
</tr>
<tr>
<td>河川水辺の国勢調査</td>
<td>6-22</td>
<td>加古川水系底生動物調査報告書</td>
<td>国土交通省姫路工事事務所</td>
<td>平成 18 年度</td>
</tr>
<tr>
<td>河川水辺の国勢調査</td>
<td>6-23</td>
<td>加古川水系底生動物調査報告書</td>
<td>国土交通省姫路工事事務所</td>
<td>平成 20 年度/平成 21 年 3 月</td>
</tr>
<tr>
<td>区分</td>
<td>No.</td>
<td>報告書またはデータ名</td>
<td>発行者または著者名</td>
<td>発行年月</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>---------------------</td>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>河川水辺の国勢調査(河川版)</td>
<td>6-24</td>
<td>平成 22年度 加古川・揖保川河川水辺の国勢調査業務（加古川水系 河川情報基図作成調査編）報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 23年 2月</td>
</tr>
<tr>
<td></td>
<td>6-25</td>
<td>平成 22年度 加古川・揖保川河川水辺の国勢調査業務（加古川水系 植物調査編）報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 23年 2月</td>
</tr>
<tr>
<td></td>
<td>6-26</td>
<td>加古川・揖保川河川水辺現地調査（魚類・鳥類）業務報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 25年 3月</td>
</tr>
<tr>
<td></td>
<td>6-27</td>
<td>水辺の現地調査（底生動物）調査業務報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 26年 3月</td>
</tr>
<tr>
<td></td>
<td>6-28</td>
<td>加古川・揖保川河川水辺の国勢調査（河川環境基図作成調査等）業務報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 27年 3月</td>
</tr>
<tr>
<td></td>
<td>6-29</td>
<td>加古川・揖保川河川水辺の国勢調査（両生類・爬虫類・哺乳類）業務報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 28年 3月</td>
</tr>
<tr>
<td></td>
<td>6-30</td>
<td>加古川・揖保川河川水辺の国勢調査（陸上昆虫類等）業務報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 29年 3月</td>
</tr>
<tr>
<td>河川水辺の国勢調査(淡水版)</td>
<td>6-31</td>
<td>平成 10年度 加古川大堰河川水辺の国勢調査（動植物プランクトン）業務報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成 10年度</td>
</tr>
<tr>
<td></td>
<td>6-32</td>
<td>平成 15年度 加古川大堰河川水辺の国勢調査（動植物プランクトン）業務報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 16年 3月</td>
</tr>
<tr>
<td></td>
<td>6-33</td>
<td>平成 19年度 河川水辺の国勢調査（魚類）業務報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 20年 3月</td>
</tr>
<tr>
<td></td>
<td>6-34</td>
<td>H20 加古川大堰河川水辺の国勢調査（動植物プランクトン）業務報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 21年 3月</td>
</tr>
<tr>
<td></td>
<td>6-35</td>
<td>加古川大堰河川水辺現地調査（動植物プランクトン）業務報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 26年 3月</td>
</tr>
<tr>
<td>魚道調査</td>
<td>6-36</td>
<td>平成 6年度 加古川大堰魚道調査作業報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成 6年 8月</td>
</tr>
<tr>
<td></td>
<td>6-37</td>
<td>平成 7年度 加古川大堰魚道調査作業報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成 7年 8月</td>
</tr>
<tr>
<td></td>
<td>6-38</td>
<td>平成 8年度 加古川大堰魚道調査作業報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成 8年 8月</td>
</tr>
<tr>
<td></td>
<td>6-39</td>
<td>平成 9年度 加古川大堰魚道調査作業報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成 9年 8月</td>
</tr>
<tr>
<td></td>
<td>6-40</td>
<td>平成 10年度 加古川大堰魚道調査作業報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成 10年 8月</td>
</tr>
<tr>
<td></td>
<td>6-41</td>
<td>平成 11年度 加古川大堰魚道調査作業報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成 11年 7月</td>
</tr>
<tr>
<td></td>
<td>6-42</td>
<td>平成 12年度 加古川大堰魚類調査業務報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成 12年 9月</td>
</tr>
<tr>
<td></td>
<td>6-43</td>
<td>平成 13年度 加古川大堰魚類調査業務報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 13年 9月</td>
</tr>
<tr>
<td></td>
<td>6-44</td>
<td>平成 14年度 加古川大堰魚類調査業務報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 14年 9月</td>
</tr>
<tr>
<td></td>
<td>6-45</td>
<td>平成 15年度 加古川大堰魚類調査業務</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 15年 9月</td>
</tr>
<tr>
<td></td>
<td>6-46</td>
<td>平成 16年度 加古川大堰魚類調査業務</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 16年 9月</td>
</tr>
<tr>
<td></td>
<td>6-47</td>
<td>平成 17年度 加古川大堰魚類調査業務</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 17年 9月</td>
</tr>
<tr>
<td></td>
<td>6-48</td>
<td>平成 18年度 加古川大堰魚類調査業務</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 18年 9月</td>
</tr>
<tr>
<td>区分</td>
<td>No.</td>
<td>報告書またはデータ名</td>
<td>発行者または著者名</td>
<td>発行年月</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-------------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>水生生</td>
<td>6-49</td>
<td>加古川水生生物簡易調査報告書</td>
<td>国土交通省姫路工事事務所</td>
<td>平成13年9月</td>
</tr>
<tr>
<td>生物簡</td>
<td>6-50</td>
<td>通り</td>
<td></td>
<td>平成14年11月</td>
</tr>
<tr>
<td>易調査</td>
<td>6-51</td>
<td>加古川水生生物簡易調査報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成15年9月</td>
</tr>
<tr>
<td></td>
<td>6-52</td>
<td>加古川水生生物調査結果報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成17年10月</td>
</tr>
<tr>
<td>その他の調査</td>
<td>6-53</td>
<td>加古川生物調査報告書</td>
<td>近畿技術事務所</td>
<td>昭和49年3月</td>
</tr>
<tr>
<td></td>
<td>6-54</td>
<td>加古川環境調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>昭和51年3月</td>
</tr>
<tr>
<td></td>
<td>6-55</td>
<td>加古川環境調査（その2）報告書</td>
<td>建設省姫路工事事務所</td>
<td>昭和52年2月</td>
</tr>
<tr>
<td></td>
<td>6-56</td>
<td>加古川流域環境調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>昭和53年3月</td>
</tr>
<tr>
<td></td>
<td>6-57</td>
<td>加古川生物調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>昭和54年3月</td>
</tr>
<tr>
<td></td>
<td>6-58</td>
<td>加古川大堰環境調査概要書</td>
<td>建設省姫路工事事務所</td>
<td>昭和54年11月</td>
</tr>
<tr>
<td></td>
<td>6-59</td>
<td>加古川大堰環境調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>昭和54年11月</td>
</tr>
<tr>
<td></td>
<td>6-60</td>
<td>加古川流域環境調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>昭和54年12月</td>
</tr>
<tr>
<td></td>
<td>6-61</td>
<td>加古川流域環境調査報告書 参考資料</td>
<td>建設省姫路工事事務所</td>
<td>昭和54年12月</td>
</tr>
<tr>
<td></td>
<td>6-62</td>
<td>加古川大堰生物環境調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>昭和55年3月</td>
</tr>
<tr>
<td></td>
<td>6-63</td>
<td>加古川生物環境調査業務報告書</td>
<td>建設省姫路工事事務所</td>
<td>昭和56年3月</td>
</tr>
<tr>
<td></td>
<td>6-64</td>
<td>加古川大堰生物環境調査（その2）写真集</td>
<td>建設省姫路工事事務所</td>
<td>昭和57年3月</td>
</tr>
<tr>
<td></td>
<td>6-65</td>
<td>加古川大堰生物環境調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>昭和58年3月</td>
</tr>
<tr>
<td></td>
<td>6-66</td>
<td>加古川大堰生物環境調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>昭和63年3月</td>
</tr>
<tr>
<td></td>
<td>6-67</td>
<td>加古川維持流量検討業務報告書</td>
<td>建設省姫路工事事務所</td>
<td>昭和63年3月</td>
</tr>
<tr>
<td></td>
<td>6-68</td>
<td>昭和63年度有害動物生態調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>昭和63年3月</td>
</tr>
<tr>
<td></td>
<td>6-69</td>
<td>加古川魚類相生態環境調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>昭和元年3月</td>
</tr>
<tr>
<td></td>
<td>6-70</td>
<td>平成2年度加古川大堰周辺魚類・水生生物調査業務報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成2年3月</td>
</tr>
<tr>
<td></td>
<td>6-71</td>
<td>加古川・揚水工房魚類相調査業務報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成3年3月</td>
</tr>
<tr>
<td></td>
<td>6-72</td>
<td>平成3年度加古川水系陸上昆虫類等調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成4年3月</td>
</tr>
<tr>
<td></td>
<td>6-73</td>
<td>多様性ある河川環境検討業務 加古川市神領町・上 荘町先（距離標9.5k～11.5k）報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成5年3月</td>
</tr>
<tr>
<td></td>
<td>6-74</td>
<td>平成7年度 加古川河川環境調査作業 加古川大堰 下流報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成7年度</td>
</tr>
<tr>
<td></td>
<td>6-75</td>
<td>平成8年度 加古川河川環境調査作業 加古川大堰 下流報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成8年度</td>
</tr>
<tr>
<td>区分</td>
<td>No.</td>
<td>報告書またはデータ名</td>
<td>発行者または著者名</td>
<td>発行年月/発行年度</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>その他の調査</td>
<td>6-76</td>
<td>加古川大堰周辺底質・底生生物調査報告書</td>
<td>建設省姫路工事事務所</td>
<td>平成 11 年 3 月</td>
</tr>
<tr>
<td></td>
<td>6-77</td>
<td>加古川フォローアップ</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 19 年 11 月</td>
</tr>
<tr>
<td></td>
<td>6-78</td>
<td>平成19年度河川水辺の国勢調査（魚類）業務（週上調査編）報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 20 年 3 月</td>
</tr>
<tr>
<td></td>
<td>6-79</td>
<td>平成19年度加古川大堰魚類調査検討業務報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 19 年 9 月</td>
</tr>
<tr>
<td></td>
<td>6-80</td>
<td>平成20年度加古川大堰魚類調査検討業務報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 21 年 3 月</td>
</tr>
<tr>
<td></td>
<td>6-81</td>
<td>H22 加古川大堰環境等調査業務報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 22 年 9 月</td>
</tr>
<tr>
<td></td>
<td>6-82</td>
<td>H23 加古川大堰環境調査業務報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 23 年 9 月</td>
</tr>
<tr>
<td></td>
<td>6-83</td>
<td>加古川大堰環境調査業務報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 24 年 8 月</td>
</tr>
<tr>
<td></td>
<td>6-84</td>
<td>加古川大堰管理総合評価業務報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 25 年 3 月</td>
</tr>
<tr>
<td></td>
<td>6-85</td>
<td>加古川大堰環境調査業務報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 25 年 8 月</td>
</tr>
<tr>
<td></td>
<td>6-86</td>
<td>加古川大堰環境調査業務報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 26 年 9 月</td>
</tr>
<tr>
<td></td>
<td>6-87</td>
<td>加古川大堰環境調査業務報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 27 年 11 月</td>
</tr>
<tr>
<td></td>
<td>6-88</td>
<td>加古川大堰環境調査業務報告書</td>
<td>国土交通省姫路河川国道事務所</td>
<td>平成 28 年 11 月</td>
</tr>
</tbody>
</table>
7. 堰と周辺地域との関わり
7.1 堰周辺地域の概要

(1) 概要

加古川大堰周辺の概況を図 7.1-1に示す。

加古川はその源を丹波、但馬、播磨の境界に連なる丹波市青垣町の粟鹿山(962m)に発し、遠阪川、葛野川、柏原川、牧山川、岩屋谷川等を合わせてながら氷上低地、柏原盆地を南流し、丹波市山南町井原において、加古川水系の支川としては最大の流域面積を有する篠山川と合流する。さらに、その後、杉原川、野間川等を合わせ、西脇市と加東市の市界付近より国土交通大臣管理区間に流れて東条川、万願寺川、美嚢川等を合わせ、加古川市、高砂市の市界において播磨灘に注ぐ一級河川である。

その流域面積は、約 1,730km²で兵庫県内の 11 市 3 町を包含する。

加古川の河口から約 12km 上流にある加古川大堰は、洪水の安全な流下と利水補給を目的としており、堰及びその貯水池は加古川市内に位置している。

加古川大堰へのアクセスは、公共交通機関を使用する場合、最寄駅は JR 加古川線「厄神駅」（加古川大堰より約 1.5km）と「神野駅」（加古川大堰より約 1.5km）となる。公共交通機関を使用しない場合、自動車では最寄の山陽自動車「三木小野 IC」より約 8km、国道 2 号「加古川ランプ」より約 8km となる。

図 7.1-1 加古川大堰周辺の概況
（2）人口

加古川大堰の流域に関連する自治体として加古川市及び高砂市の人口および世帯数の経年の推移を図 7.1-2に示す。

加古川市および高砂市は、大阪市より 100km 圏内、神戸市より 50km 圏内、姫路市より 20km 圏内に位置し、昭和年代から大阪都市圏の通勤圏として人口が急速に増加した。両市とも平成7 年をピークに、以降は横ばいに転じており、最新の平成27 年の国勢調査によると加古川市は267,435 人、高砂市は 91,030 人となっている。

一方で、両市とも、世帯数は平成7 年以降も増加傾向に鈍化はみられず、平成27 年の国勢調査によると加古川市は103,495 世帯、高砂市は 36,340 世帯となっている。

人口や世帯数の経年の推移を踏まえると、堰の流域に関連する自治体は核家族化が進み、これに伴い加古川大堰より補給する水道用水の世帯個数は、増加傾向にあるものと考えられる。
(3) 産業

加古川市および高砂市の産業別就業人口の経年の推移を図 7.1-3に示す。

産業別では、両市とも、昭和年代より全体に占める第 1 次産業の就業人口は極端に少なく、第 3 次産業の就業人口が最も高くなっている。両市とも、第 3 次産業の就業人口は、平成 17 年をピークに、平成 22 年に僅かに減少したものの、最新の平成 27 年では再び増加し、加古川市が 79,825 人、高砂市が 25,761 人となっている。

加古川大堰から工業用水を補給されている第 2 次産業は、管理開始以降、平成 7 年をピークに、以降は減少傾向に転じ、平成 27 年では、加古川市が 39,169 人、高砂市が 14,857 人となっている。

よって、地域の産業別就業人口動態より、大堰より補給する工業用水の需要は減少傾向にあるものと考えられる。

【加古川市】

【高砂市】

图 7.1-3 加古川市、高砂市の産業別就業人口の推移

(出典: 資料 7-1)
加古川大堰周辺の小地域の人口動態について

加古川大堰周辺の小地域単位の概況を図 7.1-4 に示す。

加古川大堰を中心に小地域単位を形成する区分は、加古川市的一部分を形成する八幡町、上荘町、平荘町、新神野町が該当する。これらの小地域の人口等の経年の状況を、堰を中心とした人口動態等を参考資料として整理した。

図 7.1-4 加古川大堰周辺の小地域区分の概況

1）人口

加古川大堰周辺の小地域の人口の経年の推移を図 7.1-5 に示す。

国勢調査の結果のうち、一般に統計局ホームページ (http://www.stat.go.jp/) 上で公開されている平成 7 年以降のデータを整理した。

小地域区分のうち、上荘町、平荘町、新神野は人口が調査データのある平成 7 年以降は減少傾向であり、八幡町は平成 22 年でピークに平成 27 年は減少、神野町は平成 17 年をピークに減少しており、堰を中心に減少傾向にあった。

世帯数については、上荘町、平荘町、新神野で横ばいに推移、八幡町、神野町では僅かに増加傾向にあり、世帯数あたりの人口減が進んでいることが示された。

加古川市全体では、人口は横ばいに推移しているものの、世帯数は経年で増加傾向にあり、堰周辺の小地域は人口動態に違いがみられた。堰周辺の小地域は、加古川市の中核部とは、若干の隔たりもあり、加古川市の中心部への人口の集中傾向があるものと考えられた。

堰周辺の小地域の人口減少は、堰周辺の様々な地域活動に影響を及ぼす可能性が考えられる。

図 7.1-5 加古川大堰周辺の小地域の経年の人口

※下図は「国土地理院地図」を使用。
2) 産業

加古川大堰周辺の小地域の就業人口の経年の推移を図 7.1-6に示す。

国勢調査の結果のうち、一般に統計局ホームページ（http://www.stat.go.jp/）上で公開されている平成 7 年以降のデータを整理した。

小地域区分のうち、新神野では第 2 次及び第 3 次産業の就業人口は、統計データのある平成 7 年より顕著な減少傾向であり、平荘町は緩やかな減少傾向、上荘町は平成 12 年以降で減少傾向、八幡町は横ばいに推移しており、小地域区分毎に違いがあった。

神野町は、平成 17 年 10 月 18 日に、新たに石守 1 丁目~3 丁目、福留 1 丁目が追加（「加古川市例規集」を参照）され、平成 22 年に大幅に人口が増加しているが、概して、第 2 次及び第 3 次産業は、緩やかな減少傾向であると推測される。

一方で、いずれの小地域区分も第 1 次産業については、極めて人口を少ないものの、経年で大きな変化はなかった。

よって、堰周辺の小地域区分の就業人口動態からも、大堰より補給する工業用水の需要は減少傾向にあるものの、農業用水については、需要に大きな変化はないと考えられる。

![図 7.1-6 加古川大堰周辺の小地域の経年の就業人口](出典:資料 7-1)
7.2 堰の立地特性

(1) アクセス性

加古川大堰周辺の交通網を図 7.2-1に示す。

加古川市は、大阪市より100km圏内に位置し、神戸市街より西約50km、姫路市街より東約20kmに位置し、加古川は加古川市のほぼ中心部を貫流する河川である。

加古川大堰は、加古川の河口から12kmの地点に位置している。

加古川市は、兵庫県の瀬戸内側に位置することから、主要な交通網である山陽新幹線や山陽自動車道が、加古川市を挟むように海岸線に平行に整備されている。また、加古川沿いにはJR加古川線と県道18号線が整備されており、堰へのアクセス路としての機能も有する。

加古川大堰へのアクセスは、電車ではJR加古川線「厄神」駅から約1.5km、「神野」駅から約1.5kmとなっている。

自動車では、加古川バイパス加古川ランプより北へ約8km、山陽自動車道「三木小野」インターチェンジより約8kmとなっている。

図 7.2-1 加古川大堰周辺の交通網
(2) 周辺の観光施設（スポット）等の状況
加古川流域の観光施設の概要を表 7.2-1、観光施設の位置図を図 7.2-2に示す。
加古川大堰よりアクセスが容易な観光施設としては、加古川市内の「鶴林寺」、加古川河口部の「高砂海浜公園」などがある。

表 7.2-1 観光地等の概要

<table>
<thead>
<tr>
<th>観光地等名称</th>
<th>所在地</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>薬草薬樹公園</td>
<td>丹波市</td>
<td>園内には約 250 種類の薬草薬樹が栽培されている。オリジナルの薬草風呂、薬膳料理などを堪能できる。</td>
</tr>
<tr>
<td>水分れ公園</td>
<td>丹波市</td>
<td>降った雨が日本海側と瀬戸内海側に分れ、両方で川を形成する特殊な場所。園内には「水分れ資料館」もある。</td>
</tr>
<tr>
<td>ガルテン八千代</td>
<td>多可町</td>
<td>フランス料理レストランを備えたレクリエーションエリア。各種スポーツや特産物の加工体験などができる。</td>
</tr>
<tr>
<td>五百羅漢</td>
<td>加西市</td>
<td>羅漢寺の境内には、様々な顔をした 400 体以上の石仏がひしめいている。いつ誰がなぜ制作したのか、全てが謎となっている。</td>
</tr>
<tr>
<td>高砂海浜公園</td>
<td>高砂町</td>
<td>白砂青松の高砂の浜を再現した公園。釣りや潮干狩り、人口島の散策などに四季を通じて多くの人が訪れている。</td>
</tr>
<tr>
<td>鶴林寺</td>
<td>加古川市</td>
<td>聖徳太子ゆかりの太子堂は、国宝に指定された県下最古の木造建築。平安時代に描かれた壁画が発見されている。</td>
</tr>
<tr>
<td>浄土寺</td>
<td>小野市</td>
<td>堂内の阿弥陀三尊像は、鎌倉時代の有名な仏師、快慶の作。本堂、三尊像のいずれも国宝に指定されている。</td>
</tr>
<tr>
<td>グリーンピア三木（NESTA RESORT KOBE）</td>
<td>三木市</td>
<td>大規模な保養エリアには、レーサーや料理が味わえるグランプリカーなど、多種多彩な設備がそろっている。（平成 27 年 12 月 15 日に営業終了し、平成 28 年 7 月 1 日をもって、運営団体が変わり、新たにリニューアルオープンしている。）</td>
</tr>
<tr>
<td>日本へそ公園</td>
<td>西脇市</td>
<td>日本の“へそ”（中心）に位置する公園。美術館、科学館などの知的アミューズメント施設がある。</td>
</tr>
<tr>
<td>春日神社</td>
<td>箕山市</td>
<td>春日神社境内に建てられた、全国屈指の野外能舞台。春の春日能をはじめ、年 3 回、雅びな能が演じられている。</td>
</tr>
</tbody>
</table>

(出典：資料 7-2)
図 7.2-2 加古川流域の観光地等の位置

（出典: 資料 7-2）
参考：統計データを用いた堰周辺の観光者の動態

近5ヶ年の加古川大堰周辺の観光地への観光客の動態を把握するため、兵庫県が実施する観光客動態調査の公表データ（https://web.pref.hyogo.lg.jp）のうち、堰の周辺に位置する「東播磨地域」、「北播磨地域」、「中播磨地域」、「丹波」の4地域を整理した。

地域別の動態については、公表データのある平成17年度より整理した。
なお、地域別の動態データについても、平成22年度より新たな「観光入込客統計に関する共通基準」に基づく算出法に切り替えられており、平成21年度までと、平成22年度以降では入込客数に算出法の違いに基づく差異が存在する。
観光地別の動態については、平成21年度から平成22年度に統計の対象となる観光地に大きな変更があるため、平成22年度以降の公表データのみを整理した。

1) 東播磨地域
平成22年度以降に統計の対象となっている「東播磨地域」の主要な観光地を表7.2-2、主要観光地における経年観光客入込数の推移を図7.2-3、東播磨地域全体の経年観光客入込数の推移を図7.2-4に示す。

「東播磨地域」の主要な観光地としては、「明石公園」、「大蔵海岸」、「魚の棚商店街」等が挙げられた。特に、加古川大堰の流域に関連する自治体である加古川市が対象となっているものでは、「加古川まつり」、「日岡神社」、同じく加古川大堰の流域に関連する自治体である高砂市が対象となっているものでは、「鹿島神社」が該当した。

「東播磨地域」において、平成22年度以降では、いずれの年でも最も観光客入込数が多い観光地は「明石公園」で、全体の50%以上を占めていた。加古川大堰の流域に関連する自治体の加古川市では、「加古川まつり」は、年毎に観光客入込数にバラツキがあり、開催日の天候の影響を受けていないものと考えられた。「日岡神社」は、年毎に観光客入込数は、概ね横ばいに推移しており、「東播磨地域」においては、「明石公園」に次ぐ観光客入込数の多い観光地であった。高砂市の「鹿島神社」の年毎の観光客入込数も、平成23年度を除けば、概ね横ばいに推移しており、当該地域の代表的な参拝寺社となっていた。
なお、明石市に位置する「柿本神社」については、最初の平成27年度では、統計の対象外となっている。

表7.2-2(1) 東播磨地域の主要な観光地

<table>
<thead>
<tr>
<th>観光地名称</th>
<th>所在地</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>明石公園</td>
<td>明石市</td>
<td>赤松台地にのこる明石城跡を中心につくられた都市公園。堀は周辺の自然環境と調和して美しく、春は桜、初夏は新緑、秋は紅葉で市街地にありながら野趣ゆたか。</td>
</tr>
<tr>
<td>大蔵海岸</td>
<td>明石市</td>
<td>明石海峡を望む絶好のロケーション。夏は海水浴やバーベキューができるほか、併設の多目的広場ではサッカーやゴルフを楽しむことができる。</td>
</tr>
<tr>
<td>魚の棚商店街</td>
<td>明石市</td>
<td>明石鯛、明石ダコ等の鮮魚、本場の「明石焼き」が人気の商店街。「まちかどコミュニケーションスペース」では、年間を通じて様々なイベントや催しが行われている。</td>
</tr>
<tr>
<td>加古川まつり</td>
<td>加古川市</td>
<td>市制施行3周年の昭和28年から始まり、今年で46回を迎える花火大会。今では加古川の夏の一大イベントとして、最大級の規模と人気を誇る花火大会となっている。</td>
</tr>
</tbody>
</table>
表 7.2-2(2) 東播磨地域の主要な観光地

<table>
<thead>
<tr>
<th>観光地名称</th>
<th>所在地</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>日岡神社</td>
<td>加古川市</td>
<td>天平の時代（約1300年前）の創祀といわれている神社。古来より安産の神様として崇敬されており、播州地区の各地からたくさんの人々がお参りに訪れている。</td>
</tr>
<tr>
<td>鹿島神社</td>
<td>高砂市</td>
<td>播磨の国、国分寺の東院として大日寺が建立された時の鎮護の神として奉祀された神社。心を込めてお参りすると、その願いは必ずかなえられるといわれている。</td>
</tr>
</tbody>
</table>

![図 7.2-3 東播磨地域の主要観光地における経年観光客入込数の推移](出典:資料 7-3)

![図 7.2-4 東播磨地域の経年観光客入込数の推移](出典:資料 7-3)
北播磨地域

平成22年度以降に統計の対象となっている「北播磨地域」の主要な観光地を表7.2-3、主要観光地における経年観光客入込数の推移を図7.2-5、「北播磨地域」全体の経年観光客入込数の推移を図7.2-6に示す。

「北播磨地域」の主要な観光地としては、「三木市内ゴルフ場」、「加東市内ゴルフ場」、「三木総合防災公園」等が挙げられた。

「北播磨地域」において、平成22年度以降では、いずれの年も最も観光客入込数が多い観光地は、毎年1,000千人を超えていている「三木市内ゴルフ場」であった。ただし、「三木総合防災公園」も、平成27年度については、1,000千人を超える状況であった。「三木総合防災公園」の観光客入込数は、平成22年度と平成27年度の数値を比較すると、約30％増加しており、地域の中では、最も大きな伸びを示していた。

なお、「東播磨地域」は、平成22年度は統計の対象外となっています。

「北播磨地域」全域での日帰りと宿泊の観光客入込数では、合計値が、いずれの年も1,200万人を超える状況で推移し、経年で大きな変化はないが、平成21年度以前と平成22年度以後では、前述したように観光客入込数の算出法が変更になっている。平成22年度以降は、約1,300万人以上の横ばいで推移しており、大きな変化はない。日帰りと宿泊の割合をみると、日帰りの観光客入込数の割合が、大部分の約95％を占めていた。

「北播磨地域」の観光客動態の整理結果を踏まえると、「東播磨地域」にある観光地への訪問者は、遠隔地の人々よりも、比較的に地域の地元の人々が多く、全体の数値が横ばいに推移している状況を踏まえると、リピーターとして利用している可能性が高いと考えられる。

表7.2-3 北播磨地域の主要な観光地

<table>
<thead>
<tr>
<th>観光地名称</th>
<th>所在地</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>三木市内ゴルフ場</td>
<td>三木市</td>
<td>三木市は西日本一のゴルフ場数を誇り、約25箇所ある。六甲山や丹波の山々を望むことができ、プレーしながらさまざまな景色を楽しむことができる。</td>
</tr>
<tr>
<td>加東市内ゴルフ場</td>
<td>加東市</td>
<td>大阪・神戸から車で1時間以内のため、年間約80万人もののゴルファーが訪れ、プロゴルフトーナメントも毎年開催されている。</td>
</tr>
<tr>
<td>三木総合防災公園</td>
<td>三木市</td>
<td>災害時には全県の広域防災拠点として機能する県立の広域公園。通常は県民のスポーツ・レクリエーションの拠点となっている。</td>
</tr>
<tr>
<td>播磨中央公園</td>
<td>加東市</td>
<td>緑の樹林に囲まれた丘や大小の池が散在する自然豊かな県立公園。野外ステージや運動施設だけでなく、四季の庭、子どもの森等の諸施設が整っている。</td>
</tr>
<tr>
<td>三木山森林公園</td>
<td>三木市</td>
<td>三木市の中心部にある、甲子園球場のおよそ20倍、80万平方メートルの広大な公園。四季折々の豊かな自然の中で、森の大切さを肌で感じられる場所。</td>
</tr>
<tr>
<td>東条湖おもちゃ王国</td>
<td>加東市</td>
<td>子どもがワクワクするものを集めた「おもちゃ王国」。ウォーターパークのほか、約20種のアトラクション、9館のおもちゃのお部屋と3つの遊び場が揃っている。</td>
</tr>
</tbody>
</table>
図 7.2-5 北播磨地域の主要観光地における経年観光客入込数の推移

図 7.2-6 北播磨地域の経年観光客入込数の推移

（出典：資料 7-3）
3) 中播磨地域
平成 22 年度以降に統計の対象となっている「中播磨地域」の主要な観光地を表 7.2-4、主 要観光地における経年観光客入込数の推移を
図 7.2-7、「中播磨地域全体の経年観光客入込数の推移を
図 7.2-8に示す。
「中播磨地域」の主要な観光地としては、「姫路城」、「姫路市立動物園」、「姫路セントラルパーク」等が挙げられた。
「中播磨地域」において、平成 22 年度以降では、いずれの年も最も観光客入込数が多い観光地は、世界遺産にも指定されている「姫路城」で、特に平成 27 年度に「平成の修理」が終 わり、城内の内部公開が再開されてため、前年度の 919 千人に対し、2,867 千人と約 3.1 倍 の数値の増加がみられた。「姫路城」近くにある「姫路市立動物園」も、前年度の 487 千人対 し、759 千人と約 1.6 倍、「好古園」も、前年度の 198 千人に対し、前年度の 523 千人と約 2.6 倍と相乗効果がみられた。
「中播磨地域」全域での日帰りと宿泊の観光客入込数では、合計値が、平成 21 年度の 1,083 万人から平成 22 年度の 866 万人と大きく減少しているが、前述したように観光客入込数の算出法が変更に起因するものと考えられる。平成 22 年度以降は、平成 26 年度までは、僅かず つの増加傾向であるが、平成 27 年度に顕著に増加しており、「姫路城」の「平成の修理」後 の内部公開の影響が大きく表れているものと考えられる。
「中播磨地域」の日帰りと宿泊の割合をみると、日帰りの観光客入込数が大部分の約 95% を占めていた。
合計値が、いずれの年も 1,200 万人を超える状況で推移し、経年で大きな変化はないが、 平成 21 年度以前と平成 22 年度では、前述したように観光客入込数の算出法が変更にでている。平成 22 年度以降は、約 1,300 万人以上の横ばいで推移しており、大きな変化はな い。日帰りと宿泊の割合をみると、平成 22 年度以降では日帰りの観光客入込数の割合が 65.5％から 91.6％と、他の地域と比べ低く、遠隔地からの訪問者も多いことを示唆していた。
「中播磨地域」の観光客動態の整理結果を踏まえると、「中播磨地域」にある観光地への訪 問者は、地域の地元の人々に加え、遠隔地の人々も比較的に多く、当該地区を訪問しており、 特に、地域の観光状況には、世界遺産である「姫路城」の存在が非常に大きいと考えられた。

表 7.2-4 中播磨地域の主要な観光地

<table>
<thead>
<tr>
<th>観光地名称</th>
<th>所在地</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>姫路城</td>
<td>姫路市</td>
<td>平成 5 年 12 月奈良の法隆寺とともに日本で初の世界文化遺産となった。「平成の修理」が終わった今、多くの観光客を集める。</td>
</tr>
<tr>
<td>姫路市立動物園</td>
<td>姫路市</td>
<td>「お城の中の動物園」として年配の方から子どもまで親しまれている。子どもを対象とした遊戯施設も設置されている。</td>
</tr>
<tr>
<td>姫路セントラルパーク</td>
<td>姫路市</td>
<td>サファリパークと遊園地の複合施設。園内にはプールやアイススケート場もあり、様々な楽しみ方ができるレジャー施設となっている。</td>
</tr>
<tr>
<td>グリーンエコーリッキー</td>
<td>神河町</td>
<td>キャンプ場やウィドハイウス、コテージ、多目的グランウェンダード、体育館のほか、光明石温浴施設が整備された施設。四季折々のアウトドアイベントで賑わう。</td>
</tr>
<tr>
<td>姫路科学館</td>
<td>姫路市</td>
<td>たくさんのオリジナル展示装置で「体験学習」という、実物資料で「本物体験」ができる科学館。世界最大級直径 27m のドームをもつプラネタリウムで満天の星も楽しめる。</td>
</tr>
<tr>
<td>好古園</td>
<td>姫路市</td>
<td>世界遺産・姫路城を借景にした本格的な日本庭園。江戸期の情緒を残し出すそのたたずまいは時代劇や大河ドラマのロケ地としても使われている。</td>
</tr>
</tbody>
</table>
図 7.2-7 中播磨地域の主要観光地における経年観光客入込数の推移

図 7.2-8 中播磨地域の経年観光客入込数の推移
4）丹波

平成 22 年度以降に統計の対象となっている「丹波地域」の主要な観光地を表 7.2-5、主要観光地における経年観光客入込数の推移を
図 7.2-9、「丹波地域」全体の経年観光客入込数の推移を
図 7.2-10に示す。

「丹波地域」の主要な観光地としては、「丹波年輪の里」、「丹波の森公苑」、「道の駅丹波おばあちゃんの里」等が挙げられた。

「丹波地域」においては、「道の駅丹波おばあちゃんの里」が、平成 24 年度以降、統計の対象となり、以降、いずれの年も観光客入込数が340 千人を超える状況で推移しており、当該地域内では最も高い数値であった。平成 23 年度以前では、「丹波の森公苑」が当該地域内では 240 千人を超える状況で、数値は最も高い数値であった。また、平成 24 年度以降も、「丹波の森公苑」の観光客入込数に大きな変化はない。

「丹波地域」全域での日帰りと宿泊の観光客入込数では、合計値が平成 17 年度から平成 21 年度では 500 万人を超える観光客入込数で推移していたが、平成 22 年度は約 430～440 万人となり、約 60～70 万人の減少となったが、前述したように観光客入込数の算出法が変更になったことに起因すると考えられる。平成 23 年度以降では、約 430 万人以上の横ばいで推移しており、大きな変化はない。日帰りと宿泊の割合をみると、日帰りの観光客入込数の割合が、大部分の約 95％を占めていた。

「丹波地域」の観光客動態の整理結果を踏まえると、「丹波地域」にある観光地への訪問者は、遠隔地の人々よりも、比較的に地域の地元の人々が多く、全体の数値が横ばいに推移している状況を踏まえると、リピーターとして利用している可能性が高いと考えられる。

表 7.2-5 丹波地域の主要な観光地

<table>
<thead>
<tr>
<th>観光地名称</th>
<th>所在地</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>丹波年輪の里</td>
<td>丹波市</td>
<td>木とのふれあえるクラフトなどの文化活動や、スポーツ・レクリエーション活動のできる場。他、兵庫県と交流のあるロシアのハバロフスク地方の資料等を展示。</td>
</tr>
<tr>
<td>丹波の森公苑</td>
<td>丹波市</td>
<td>兵庫県が設置した広域拠点で、アトリエや生活創造センターなど真の豊かさの実現に向けたライフスタイルの創造や地域づくりを支援している。</td>
</tr>
<tr>
<td>道の駅丹波おばあちゃんの里</td>
<td>丹波市</td>
<td>癒し、健康・環境がテーマの丹波市の玄関口の施設。「来る人に安らぎを、住む人にうるおいを」与える、誰もが親しめる賑わいの場となっている。</td>
</tr>
<tr>
<td>丹波篠山味まつり</td>
<td>篠山市</td>
<td>毎年「丹波篠山黒大豆」がみる時期に開催する、篠山の味覚を堪能できるイベント。味覚だけでなく、歴史が色濃く残る町なりに緑あふれる景色が楽しめます。</td>
</tr>
<tr>
<td>デカンショ祭</td>
<td>篠山市</td>
<td>毎年 8 月に開催される約 60 年続いている祭。祭りの際に歌われる「デカンショ節」の緒踊りが特徴。</td>
</tr>
<tr>
<td>むくもりの郷</td>
<td>篠山市</td>
<td>源泉掛け流しのこだわった薬師温泉に農業公園を併設している施設。農業公園は無料で利用することができ、ハイキングやピクニックを楽しむことができる。</td>
</tr>
</tbody>
</table>
5）まとめ
加古川大堰周辺では、姫路市に位置する世界遺産の「姫路城」が最大の観光地であり、「平成の改修」を終えた平成27年以降は、地域の人々のみならず、遠隔地の人々も多く集客しており、周辺への影響も大きいものと考えられる。ただし、加古川大堰の流域自治体である加古川市や高砂市までへの影響は及んでいない可能性が高い。

加古川大堰の流域自治体である加古川市および高砂市が含まれる「東播磨地域」の観光地は、地域の人々を中心に集客しており、観光地への訪問者数にも大きな変化はないため、観光地を訪問する人々には、リピーターも多い状況である可能性が高い。

加古川大堰周辺の広域での観光客数は、基本的には減少傾向はなく、「中播磨地域」を除き、日帰り可能な広域地域内での往来に限定される傾向がみられる。
7.3 堰事業と地域社会情勢の変遷

加古川大堰事業が地域社会情勢の変遷の概況を表7.3-1に示す。

加古川市の社会基盤整備は、昭和40年代頃までに急速に進められ、加古川大堰の建設も昭和50年代より開始している。

平成元年に加古川大堰が管理を開始してからは、貯水池を利用した漕艇利用（レガッタなど）や加古川河川敷を利用したイベント活動（マラソン大会、ウォーキング大会等）も盛んに行われている。

表 7.3-1（1） 加古川大堰事業と地域（加古川市）社会情勢の変遷

<table>
<thead>
<tr>
<th>年</th>
<th>加古川大堰関連事業</th>
<th>住民活動・交流活動</th>
<th>その他</th>
</tr>
</thead>
<tbody>
<tr>
<td>S25</td>
<td>6月 加古川市市制施行</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S27</td>
<td>7月 *豪雨による水害（床上・床下浸水2,918戸）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S28</td>
<td>8月 第1回川まつり開催</td>
<td>4月 上水道の供給はじまる</td>
<td></td>
</tr>
<tr>
<td>S33</td>
<td>4月 山陽本線、明石海峡大桥電化完成</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S35</td>
<td>4月 上座橋竣工</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S40</td>
<td>8月 第1回川まつり開催</td>
<td>4月 上水道の供給はじまる</td>
<td></td>
</tr>
<tr>
<td>S41</td>
<td>7月 加古川工業用水道平荘湖竣工</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S42</td>
<td>1月 障害者の保護事業</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S43</td>
<td>3月 予備策定実施</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S45</td>
<td>3月 環境省（加古川バイパス）開通</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S50</td>
<td>12月 加古川河川敷公園内のテニス、バレーコート開放</td>
<td></td>
<td>11月 大堰本体工事着手</td>
</tr>
<tr>
<td>S51</td>
<td>12月 第1回農業祭</td>
<td></td>
<td>11月 大堰本体工事着手</td>
</tr>
<tr>
<td>S52</td>
<td>2月 実施計画調査</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S53</td>
<td>11月 工事用道路工事を開始</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S56</td>
<td>3月 基本計画告示</td>
<td></td>
<td>10月 本体工事着手</td>
</tr>
<tr>
<td>S59</td>
<td>11月 大堰本体工事着手</td>
<td></td>
<td>10月 美濃川落差工事着工</td>
</tr>
<tr>
<td>S60</td>
<td>11月 草谷川水門築造工事に着手</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S61</td>
<td>11月 五ヶ所堰の撤去工事に着手</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S62</td>
<td>4月 試験灌漑を開始</td>
<td></td>
<td>11月 草谷川水門築造工事に着手</td>
</tr>
<tr>
<td>H1</td>
<td>4月 加古川大堰管理開始</td>
<td></td>
<td>7月 竣工式</td>
</tr>
<tr>
<td>H2</td>
<td>2月 第1回加古川マラソン大会を開催</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>11月 第1回加古川ツーダーマラソン大会を開催</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td>11月 第1回関西学生・加古川レガッタを開催</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H6</td>
<td>11月 第1回関西学生・加古川レガッタを開催</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H7</td>
<td>8月 「全国川サミットin加古川」を開催</td>
<td></td>
<td>1月 阪神・淡路大震災が発生</td>
</tr>
<tr>
<td>H8</td>
<td>4月 加古川大堰右岸に加古川市立漕艇センター開設</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H12</td>
<td>6月 牧野ネス都市を宣言</td>
<td></td>
<td>6月 加古川河口付近の土砂採取工事開始</td>
</tr>
<tr>
<td>H13</td>
<td>1月 2世紀マラソンを開催</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H17</td>
<td>3月 JR山陽本線等の加古川駅周辺の高架化が完成</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7-17
| 年 | 加古川大堰関連事業 | 住民活動・交流活動
地域の出来事 | その他 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H24</td>
<td>4月 「曇川排水機場」を新築移転</td>
<td>8月 「加古川まつり花火大会」を開催。</td>
<td>7月 「加古川みなもロード」活用に期間限定の助成金を初めて支給</td>
</tr>
<tr>
<td>H26</td>
<td></td>
<td>6月 加古川上流から下流にかけてウナギを800匹放流 12月 加古川上流でヘラブナを2万匹放流</td>
<td></td>
</tr>
<tr>
<td>H28</td>
<td>8月 新「曇川排水機場」が完成 12月 城山排水池を更新 3月 土砂の採掘工事のため、加古川大堰放流</td>
<td>11月 「加古川BBQフェス」が初開催</td>
<td></td>
</tr>
</tbody>
</table>

※近5年（平成24年度以降の内容は、新聞記事等を参考に整理した。)

（出典：資料7-4,7-5）
7.4 堰と地域の関わりに関する評価
7.4.1 地域における堰の位置づけに関する整理

(1) 加古川市総合計画（平成28年版）

加古川市では、平成32年を目標年次とした「加古川市総合計画」を平成22年3月に策定し、その後の平成28年3月に、人口減少社会の到来や少子高齢化の進行等の重要な課題を踏まえ、見直しを行い、「後期総合基本計画」を策定している。

加古川大堰に関わる内容として、「安全で良質な水道水の供給」、「スポーツ・レクリエーション活動の推進」が挙げられており、加古川および加古川大堰が、今後の加古川市にとって重要な役割を担っていると考えられる。

1) 安全で良質な水道水の供給

加古川市総合計画における「安全で良質な水道水の供給」に係る該当ページを図7.4-1に示す。

加古川大堰から取水した水を水源の一部として市内に水供給を行う「中西条浄水場」を含む水道施設について、水道施設の更新や耐震化など計画的な施設整備や効率的な事業経営を推進することで、安全で良好な水道水の供給をめざしている。

また、後期総合基本計画での大きな改正点は、まちづくりの指標が、前期は数値目標が設定されていたのに対し、数値目標が設定されていない点である。
2) スポーツ・レクリエーション活動の推進

加古川総合計画における「スポーツ・レクリエーション活動の推進」に係る該当ページを図7.4-2に示す。

「心豊かに暮らせるまちをめざして」の各論のうち、スポーツや文化・芸術の振興に関する計画において、加古川大堰周辺や貯水池が利用される「加古川ツーデーマーチ」、「加古川マラソン」、「加古川市民レガッタ」などのイベントの開催を通じ、市民の健康づくりや余暇活動の充実に努めていることが述べられている。

今後もスポーツ・レクリエーション活動の普及・促進やスポーツ・レクリエーション施設の整備・活用が施策として掲げられており、加古川大堰は、今後も地域におけるスポーツ拠点として重要な役割を担い、憩いの場、交流の場として活用されることが期待されている。

また、後期総合基本計画での大きな改正点は、まちづくりの指標が、前期は指標が2項目設定されていたのに対し、後期は1項目になっている。目標値の変更はない。

図 7.4-2 スポーツ・レクリエーション活動の推進に関する計画（総合計画より転記）
(2) わがまち加古川 60 選

加古川観光協会ホームページ（http://kako-navi.jp/selection）で紹介されている加古川大堰の紹介の様子を図 7.4-3 に示す。

加古川市では、「わがまち加古川 60 選」として、市民が自慢できる自然や街角、うるおいやすらぎを感じられる場所を選んだ場所の一つとして、加古川大堰を選定している。加古川観光協会が公開するホームページ（http://kako-navi.jp/）で、加古川市の観光地（スポット）案内の中で、「加古川大堰」が紹介されている。

加古川大堰は、地域の観光資源としても認識、位置付けられている。

【ホームページでの加古川大堰の紹介】
一級河川「加古川」は流域面積 1,730km²、幹川流路延長 96km の県下最大の川で、8 市 17 町をうるおしています。大堰は長さ 422.5m で、加古川の左岸八幡町から右岸上荘町に渡っています。治水と水需要に対処するため、9 年の歳月を経て平成元年 3 月に完成しました。大堰上流の水面を利用して、レガッタの大会など各種行事が行われています。左岸にある大堰の事務所（建設省大堰詰所）の南側には「大堰記念公園」があり、加古川の流れを望む憩いの空間となっています。

図 7.4-3 加古川観光協会ホームページにおける加古川大堰の紹介の様子

(出典：資料 7-6)
地域における堰の位置づけに関する整理

地域における加古川大堰の位置づけの概念図を図 7.4-4 に示す。

加古川市は、平成 28 年に策定した「加古川市総合計画」の中で、基本理念について、従来の「ひと・まち・自然を大切にし、ともにはぐくむまちづくり」から、将来の都市像を踏まえ、「いつまでも住み続けたいウェルネス都市 加古川」へと位置付けている。

「加古川市総合計画」の中で、加古川大堰に係る具体的な記載はないものの、総合計画の主旨より、安全で良質な水道水の供給やスポーツ・レクリエーション活動の推進では、大堰は重要な役割を担っており、地域への貢献が要望されるものと考えられる。

よって、加古川大堰は、地域への重要な水供給源として機能するだけでなく、河川敷や湖面など地域の憩いの場、交流の場としての役割を果たすべく、日常の管理を通じ貢献してゆく必要がある。

図 7.4-4 地域における加古川大堰の位置づけ
7.4.2 地域と堰管理者の関わり

(1) イベントの開催・協力

近 5 年の加古川大堰周辺でのイベントの開催状況の表 7.4-1 に、堰周辺で実施されたイベントの様子を図 7.4-5 に示す。

加古川大堰周辺では、毎年多くのイベントが開催されており、堰の貯水池を利用した漕艇のイベントも数多く開催されている。漕艇のイベントとして、代表的なのは、加古川市を含む一般市民団体が参加する「加古川市民レガッタ」や学生の選手権大会である「加古川レガッタ」等が挙げられる。

堰管理者は、イベント会場を提供するだけでなく、運営協力、安全管理などを行い、主催者や地域との連携を図っている。

表 7.4-1 加古川大堰貯水池を利用したイベント実施状況（平成 24 〜 28 年度実績）

<table>
<thead>
<tr>
<th>開催年</th>
<th>開催日</th>
<th>イベント名</th>
<th>参加人数</th>
<th>主催</th>
</tr>
</thead>
<tbody>
<tr>
<td>H24</td>
<td>6/19</td>
<td>兵庫県体育大会・市長杯大会（一部）</td>
<td>250人</td>
<td>兵庫県バスケットボール協会</td>
</tr>
<tr>
<td>8/6〜8/7</td>
<td>加古川市民レガッタ</td>
<td>2,000人</td>
<td>加古川レガッタ事業実行委員会</td>
<td></td>
</tr>
<tr>
<td>9/11</td>
<td>8月28日加古川市民レガッタ大会</td>
<td>410人</td>
<td>加古川市立漕艇センター</td>
<td></td>
</tr>
<tr>
<td>10/1</td>
<td>神戸製鋼選手権レガッタ大会</td>
<td>230人</td>
<td>神戸製鋼労働組合</td>
<td></td>
</tr>
<tr>
<td>11/4〜11/6</td>
<td>11月11日加古川レガッタ（関西学生秋季選手権）</td>
<td>2,100人</td>
<td>加古川レガッタ事業実行委員会</td>
<td></td>
</tr>
<tr>
<td>12/3</td>
<td>第24回加古川市民レガッタ</td>
<td>5,034人</td>
<td>加古川ボート協会</td>
<td></td>
</tr>
<tr>
<td>3/20</td>
<td>第1回加古川どんぐりマラソン</td>
<td>2,450人</td>
<td>加古川レガッタ事業実行委員会</td>
<td></td>
</tr>
<tr>
<td>H25</td>
<td>4/2〜4/4</td>
<td>第67回兵庫県民体育大会（少年の部）</td>
<td>237人</td>
<td>兵庫県・県体育協会・県教育委員会</td>
</tr>
<tr>
<td>4/21</td>
<td>第3回加古川市民レガッタ大会</td>
<td>250人</td>
<td>加古川市立漕艇センター</td>
<td></td>
</tr>
<tr>
<td>5/12</td>
<td>第15回加古川市長杯競技大会</td>
<td>248人</td>
<td>加古川ボート協会</td>
<td></td>
</tr>
<tr>
<td>6/22〜6/23</td>
<td>第21回加古川市民レガッタ</td>
<td>52人</td>
<td>兵庫県・県体育協会・県教育委員会</td>
<td></td>
</tr>
<tr>
<td>8/3〜8/4</td>
<td>第20回加古川市民レガッタ</td>
<td>2,000人</td>
<td>加古川レガッタ事業実行委員会</td>
<td></td>
</tr>
<tr>
<td>9/22</td>
<td>第24回加古川市民レガッタ大会</td>
<td>252人</td>
<td>加古川市立漕艇センター</td>
<td></td>
</tr>
<tr>
<td>11/1〜11/3</td>
<td>第24回関西学生秋季選手権加古川レガッタ</td>
<td>2,550人</td>
<td>加古川レガッタ事業実行委員会</td>
<td></td>
</tr>
<tr>
<td>11/9〜11/10</td>
<td>第24回加古川レガッタ大会</td>
<td>9,006人</td>
<td>加古川レガッタ事業実行委員会</td>
<td></td>
</tr>
<tr>
<td>12/1</td>
<td>第27回加古川マラソン</td>
<td>1,250人</td>
<td>兵庫県・県体育協会・県教育委員会</td>
<td></td>
</tr>
<tr>
<td>12/23</td>
<td>第25回加古川マラソン</td>
<td>5,399人</td>
<td>加古川市立漕艇センター</td>
<td></td>
</tr>
<tr>
<td>H26</td>
<td>4/2〜4/4</td>
<td>第68回兵庫県民体育大会（少年の部）</td>
<td>261人</td>
<td>兵庫県・県体育協会・県教育委員会</td>
</tr>
<tr>
<td>4/20</td>
<td>第16回加古川市民レガッタ大会</td>
<td>250人</td>
<td>加古川市立漕艇センター</td>
<td></td>
</tr>
<tr>
<td>5/11</td>
<td>第16回加古川市民レガッタ大会</td>
<td>230人</td>
<td>加古川レガッタ協会</td>
<td></td>
</tr>
<tr>
<td>6/21〜6/22</td>
<td>第21回加古川市民レガッタ</td>
<td>224人</td>
<td>兵庫県・県体育協会・県教育委員会</td>
<td></td>
</tr>
<tr>
<td>7/26〜7/27</td>
<td>第21回加古川市民レガッタ</td>
<td>1,200人</td>
<td>加古川市レガッタ事業実行委員会</td>
<td></td>
</tr>
<tr>
<td>9/28</td>
<td>第1回加古川市民レガッタ大会</td>
<td>180人</td>
<td>加古川市立漕艇センター</td>
<td></td>
</tr>
<tr>
<td>10/4</td>
<td>第10回加古川市長杯競技大会</td>
<td>2,500人</td>
<td>加古川市立漕艇センター</td>
<td></td>
</tr>
<tr>
<td>12/23</td>
<td>第26回加古川レガッタ</td>
<td>5,639人</td>
<td>加古川ボート協会</td>
<td></td>
</tr>
<tr>
<td>H27</td>
<td>4/19</td>
<td>第26回加古川市民レガッタ大会</td>
<td>300人</td>
<td>加古川市立漕艇センター</td>
</tr>
<tr>
<td>5/24</td>
<td>第1回加古川市民レガッタ大会</td>
<td>280人</td>
<td>加古川ボート協会</td>
<td></td>
</tr>
<tr>
<td>6/20〜6/21</td>
<td>第21回兵庫県民体育大会</td>
<td>100人</td>
<td>兵庫県・県体育協会・県教育委員会</td>
<td></td>
</tr>
<tr>
<td>7/25〜7/26</td>
<td>第22回加古川市民レガッタ</td>
<td>1,250人</td>
<td>兵庫県・県体育協会・県教育委員会</td>
<td></td>
</tr>
<tr>
<td>8/22</td>
<td>第9回加古川レガッタ大会</td>
<td>600人</td>
<td>関西体育協会（株）</td>
<td></td>
</tr>
<tr>
<td>9/6</td>
<td>第3回加古川市民レガッタ大会</td>
<td>200人</td>
<td>加古川市立漕艇センター</td>
<td></td>
</tr>
<tr>
<td>11/6〜11/8</td>
<td>第6回加古川市民レガッタ大会with加古川市民レガッタ</td>
<td>300人</td>
<td>加古川市立漕艇センター</td>
<td></td>
</tr>
<tr>
<td>11/14〜11/15</td>
<td>第26回加古川レガッタ大会</td>
<td>2,600人</td>
<td>加古川市立漕艇センター</td>
<td></td>
</tr>
<tr>
<td>12/23</td>
<td>第27回加古川レガッタ</td>
<td>7,465人</td>
<td>加古川市立漕艇センター</td>
<td></td>
</tr>
<tr>
<td>H28</td>
<td>4/24</td>
<td>第28回加古川レガッタ大会</td>
<td>350人</td>
<td>兵庫県・県体育協会・県教育委員会</td>
</tr>
<tr>
<td>6/5</td>
<td>第10回加古川市民レガッタ大会</td>
<td>180人</td>
<td>加古川市立漕艇センター</td>
<td></td>
</tr>
<tr>
<td>6/18〜6/19</td>
<td>いわて国体選手権大会</td>
<td>60人</td>
<td>兵庫県・県体育協会・県教育委員会</td>
<td></td>
</tr>
<tr>
<td>7/30〜7/31</td>
<td>第23回加古川市民レガッタ</td>
<td>960人</td>
<td>兵庫県・県体育協会・県教育委員会</td>
<td></td>
</tr>
<tr>
<td>8/27</td>
<td>第10回加古川レガッタ大会</td>
<td>500人</td>
<td>関西体育協会（株）</td>
<td></td>
</tr>
<tr>
<td>9/11</td>
<td>第7回KAGOGAWAレガッタ大会with加古川市民レガッタ</td>
<td>230人</td>
<td>加古川市立漕艇センター</td>
<td></td>
</tr>
<tr>
<td>11/4〜11/6</td>
<td>第21回関西学生秋季選手権加古川レガッタ</td>
<td>2,450人</td>
<td>加古川市立漕艇センター</td>
<td></td>
</tr>
<tr>
<td>11/12〜11/13</td>
<td>第23回加古川レガッタ</td>
<td>3,258人</td>
<td>加古川市立漕艇センター</td>
<td></td>
</tr>
<tr>
<td>12/23</td>
<td>第28回加古川レガッタ</td>
<td>5,161人</td>
<td>兵庫県・県体育協会・県教育委員会</td>
<td></td>
</tr>
</tbody>
</table>

(出典:資料 7-7)
■加古川市民レガッタ

参考）平成28年度の加古川漕艇センターの利用状況
・年7回のイベントで約4730人が利用。
・主なイベントは、「第22回 加古川市民レガッタ」、「第27回 関西学生秋季選手権加古川レガッタ」等。

■加古川マラソン

参考）平成28年度の実施状況
・加古川マラソンは28回目で、5,516人が参加。
※数値は、「平成28年度版 加古川市統計書」を参照。

■加古川ツーデーマーチ

参考）平成28年度の実施状況
・加古川ツーデーマーチは27回目で、8,258人が参加。
※数値は、「平成28年度版 加古川市統計書」を参照。
・ツーデーマーチは、加古川河川敷マラソンコース（加古川みなもロード）を活用したウォーキングイベント。

図7.4-5（1） 加古川大堰周辺でのイベントの様子（平成28年度）

（出典：資料7-7）
○加古川ツーデーマーチ

○加古川マラソン

○環境学習会

○環境学習会の概要

- 加古川水系河川整備計画に基づく、地域連携プログラムによる加古川市在住の小学生とその保護者、NPO法人「播磨ウェットランドリサーチ」、加古川市、国土交通省の合同の水生生物調査。
- 加古川大堰下流やその支流の草谷川で実施。

※「広報かこがわ 平成29年1月」より掲載。
※「広報かこがわ 平成29年2月」より掲載。
※「広報かこがわ 平成28年9月」より掲載。

図 7.4-5（2） 加古川大堰でのイベントの様子

（出典：資料7-8）
(2) 見学会の実施

加古川大堰への見学者数等の経年の推移を図 7.4-6 に、見学会の様子を図 7.4-7 に示す。

加古川大堰周辺にある小中学校では、堰への見学会を、総合学習の一環と位置付けており、毎年、多くの生徒の訪問を受け入れている。平成 28 年度では、平岡小学校、陵北小学校、尾上小学校等の 14 学校に対して、見学会を受け入れており、年毎の延べ見学者数は、年により人数に増減はあるものの、1,000 人以上を超える状況が続いている。

加古川大堰では、見学者の年齢に応じて、「利水・治水」としての役割や機能、地域における位置付け等をわかりやすく説明するよう心掛けている。堰が「水の大切さ」、「環境の大切さ」を学ぶ地域の場として機能することが重要と考えている。

図 7.4-6 加古川大堰の見学者数の推移（平成 19 年～平成 28 年）

図 7.4-7 加古川大堰での見学会の様子
(3) 環境学習会の実施
環境学習会開催の案内例を図 7.4-8 に、環境学習会の様子を図 7.4-9 に示す。

加古川大堰では、平成 25 年度より、大堰周辺の環境把握において地域と連携した調査を実施することにより、地域の環境学習の推進と協働した環境調査の実施、地域の河川への関心と啓発及び環境情報の蓄積への寄与を目的に、環境学習会を開催している。

環境学習会の対象は、堰周辺の小学校に通う小学 4 年生から 6 年生及びその保護者または引率者としている。

環境学習会では、調査項目と下記の項目を設定し、学習会参加者と協働で実施している。
- 水生生物採捕：投網、タモ網、定置網等による採捕（種の同定等）
- 物理環境：水温、透視度、水深、川底の状態、流速、濁り、臭い等

環境学習会の場所は、大堰の下流付近と下流の支川である草谷川合流部付近としている。
平成 28 年度までに 4 回の環境学習会を実施しており、平成 25 年度は 12 名、平成 26 年度は 26 名、平成 27 年度は 60 名、平成 28 年度は 22 名が参加している (前掲の図 7.4-6 を参照)。
平成 28 年度の参加者数が、前年度と比較し、大幅に減少した原因としては、開催日が「加古川市民レガッタ」の開催日と重複したことが挙げられる。

今後も、継続的に環境学習会を実施することで、地域の河川への関心と啓発及び環境情報の共有を図る場、加えて、外来種対策等の啓発の重要性を理解する場を提供することが重要と考えている。
調査の概要
加古川水系河川整備計画に基づく、地域連携プログラムによる加古川市在住の小学生とその保護者、NPO法人「播磨ウェットランドリサーチ」、加古川市、国土交通省の合同の水生生物調査で、加古川大堰下流やその支流の草谷川で実施。

図 7.4-9 環境学習会の様子
(4) 地域への情報提供

加古川大堰の広報資料等を図 7.4-10 に、ダムカードの配布状況を図 7.4-11 に示す。

加古川大堰では、パンフレット、ダムカードのほか、姫路河川国道事務所のホームページ（https://www.kkr.mlit.go.jp/himeji/index.php）を通じて、地域や来訪者に向けた情報提供を行っている。

加古川大堰でも、他ダムと同様にダムカードの配布を平成 22 年 2 月より実施している。平成26年度以降、年間の配布枚数は500枚以上と顕著に増加し、累計配布枚数は平成28年度までに2,466枚に達している。

今後も広報資料等を活用しつつ、地域や来訪者に適切かつ丁寧な情報提供を行うことが重要と考えている。

■パンフレット等

■ホームページ（姫路河川国道事務所）

■ダムカード

図 7.4-10 加古川大堰の広報資料等

（出典：資料7-10）
図 7.4-11 加古川大堰のダムカードの配布状況
(5) 記念イベントの開催
加古川大堰での記念イベントである完成20周年の状況を図7.4-12に示す。
加古川大堰では、平成20年7月26日に、地域にこれまでの管理報告を行うとともに、今後、地域の財産としてより一層の堰に対する関心の向上を期待して参加型の学習の場となる完成20周年の記念イベントを開催している。
次年の平成30年度でも、加古川大堰は完成30周年を迎えるため、記念イベントを企画しており、記念イベントを通じて、地域との交流や地域の堰への関心の向上を図ることが重要と考えている。
(6) 地域の声を反映した塗装色の変更

加古川大堰の塗装色の変更の様子を図 7.4-13 に示す。

加古川大堰本体ゲートの石板色の塗装作業は、平成 21 年に完了し、引き続き、管理橋等の塗り替え（砂色）作業が進められ、平成 24 年に完了している。明度を抑えた色調は、落ち着いた様相を呈しており、大規模構造物でありながら周辺景観になじむよう配慮されている。

塗装色については、平成 13 年に地元住民の意見を反映するため、平成 14 年 7 月～8 月にアンケート調査を実施し、地域から寄せられた意見を踏まえ、平成 15 年度に学識者（東京大学大学院工学系研究科篠原修教授（当時）ほか）や加古川市都市計画部、加古川市景観専門委員、河川管理者からなる「加古川大堰堰柱塗装検討会」を開催し、塗装色の検討を行っている。

塗装色は、加古川市の「加古川市景観まちづくり条例」の基準を考慮しつつ、大規模構造物である加古川大堰の明度、彩度が、ある程度落ち着いて周辺景観と調和したものとなるよう配慮している。色調の選定に際しては、実際に色見本を現場の管理棟等に部分的に設置し、その調和状況を確かめながら検討を進めている。

また、加古川大堰の魚道は、有用魚種であるアユが遡上しており、明度、色彩による忌避行動が生じないよう配慮する必要があったため、姫路水族館、兵庫県内水面漁業センターとの協議を経て、景観だけでなく、アユへの影響等についても考慮している。

なお、アユが忌避行動をとる色は橙色、赤色、色に対する反応が低い色は青紫、赤紫色で黄、緑、青色はその中間といわれており、「加古川大堰堰柱塗装検討会」で提案された石板色はアユの遡上には問題ないとの結論を得ている。

今後も、施設の維持管理においては、周辺の景観や自然環境に配慮し、地域の合意を得ながら進めることが重要と考えている。

■塗装色検討のための現地視察の様子

■塗装前後の様子（左：塗装前、右：塗装後）

図 7.4-13 加古川大堰の塗装色の変更
7.5 堰周辺の状況

7.5.1 周辺環境整備等の状況

加古川大堰周辺の整備状況を図 7.5-1 に示す。

加古川大堰では、堰の建設時に堰の左岸側の「管理棟周辺」及び「大堰記念公園」の 2 箇所の周辺環境の整備を実施した。

(1) 管理棟周辺

管理棟周辺は、加古川下流部の流水管理の中心にふさわしい環境整備として、以下の基本方針で整備を行った。

- 大堰の維持管理機能を損わないこと。
- 周辺の河川、地域空間とマッチした“みどりの空間”を創出すること。
- 季節感が感じられ、豊かな情景のある植栽計画とすること。
- 地形変化をつけ、スケール感のある空間とすること。

ゾーニング計画にあたって、管理棟及び周辺の施設の本来の機能に十分に配慮するとともに、管理用の大型トレーラー、見学バス等の大型車両の通行、並びに調和のとれた修景が確保出来るよう配慮した。

(2) 大堰記念公園

大堰管理棟下流部左岸 (11.6k 付近) の面積約 0.42ha の敷地を加古川大堰記念公園として整備した。公園内には、大堰事業で撤去される五ヶ井堰、上部井堰にまつわる施設、モニュメントを建設した。

大堰記念公園は以下の基本方針で整備を行った。

- 記念公園の名にふさわしい修景、植栽計画とする他、撤去される堰にまつわる事柄をイメージするモニュメントを計画する。
- 周辺住民の日常的な利用ならびに将来の加古川大堰周辺河川緑地の中心的な部分となるよう計画する。
- 広域的な利用を考慮して駐車スペースも計画する。
図 7.5-1 加古川大堰周辺環境整備の状況
7.5.2 堰周辺の施設の利用状況

加古川大堰の堰上流部にある「加古川市立漕艇センター」の経年の利用状況を図 7.5-2 に、加古川マラソンの経年の参加者数を図 7.5-3 に示す。

加古川大堰の堰上流部の水面は、川幅 200m、水深 2～5m、直線 2,000m 等の諸条件がボート競技に適しており、日本漕艇協会から公認コース B 級（1,000m×5 レーン）の認定を受けている。大堰の水面を利用し、市内外から多数の参加者がある夏の加古川市民レガッタ、秋の加古川レガッタ（関西学生リーグ）等の多くの漕艇のイベントが開催されている。また、漕艇の利用者の窓口、ボートの貸し出し、宿泊施設の提供等のため、堰の上流部に「加古川市立漕艇センター」が設置されている。漕艇センターの利用者数は、年により変動はあるものの、平成 28 年度も 10,000 人を超えている。

加古川に整備される緊急用河川敷道路は、「加古川みなもトロード 県立加古川河川敷マラソンコース」として利用されており、コースには加古川大堰の管理用道路も含まれている。マラソンコースでは、市内外から多数の参加者がある「加古川マラソン」が、毎年 12 月 23 日には開催されている。「加古川マラソン」の参加者数は、徐々に増加し、平成 24 年度以降は 5,000 人を超えており、平成 28 年度は 5,516 人となっている。

（出典: 資料 7-7）
■参考：平成29年度に実施された浚渫工事について

平成29年3月〜5月に、堰の貯水池容量確保を目的に実施された浚渫工事により、2,000mコースも使用可能となっている。平成29年7月29日〜30日に開催された「加古川レガッタ」では、「漕ぎ初め」の記念セレモニーも実施されている。
7.6 河川水辺の国勢調査（河川空間利用実態調査）結果
7.6.1 河川空間利用実態調査
(1) 「河川空間利用実態調査」の概要
「河川空間利用実態調査」とは、国土交通省が管理する一級河川（水系）において、河川空間の利用状況の実態を把握し、良好な河川空間の保全・整備に資することを目的に実施するもので、平成 22 年度からは 5 年に 1 回の間隔で、全国一斉に指定された計 7 日の調査日に河川利用者数を把握するための調査である。調査実施日は下記のとおりである。

- 春季: 4 月 29 日（昭和の日）、5 月 5 日（こどもの日）、5 月の第 3 月曜日（平日）
- 夏季: 7 月最終日曜日（休日）、7 月最終日曜日の翌日（平日）
- 秋季: 11 月 3 日（文化の日）
- 冬季: 1 月の成人の日に指定された休日

詳細の調査方法は、「平成 16 年度版 河川水辺の国勢調査マニュアル（案）（河川空間利用実態調査編）」に示されており、概要は下記のとおりである。

- 河川を数ブロックに分割する。
- ブロック内を自然的利用区域と施設的利用区域に区分する。
- ブロックの利用区域毎に平均的利用状況を代表する定点（1km 程度の距離）を設定する。
- 定点観測：定点において、日の出から日没までの間を 2 時間毎に区切り、利用者数の観測を行う。
- 区間観測：定点以外の区間については、1 日 1 回、調査員が移動しながら、利用者数を観測する。定点とその他の区間との 1 日の利用者数の時間区分が同じ考え、区間観測した時刻と同時刻帯の定点観測の値との比より、区間観測 1 日の利用者数総数を推計する。
- その他、他の区域に比べて、特に利用者の多い特定利用区域や有料施設区域については、それぞれ 1 日の利用者数を集計する。
- 以上の定点観測、区間観測の調査結果の値を合計し、各ブロックの利用者数を求める。

(2) 経年の調査結果
加古川大堰周辺での河川空間利用実態調査における年間利用者数の推計値の経年の状況を図 7.6-1 に示す。

加古川大堰周辺の年間利用者数の推計値は、堰を含む 10km～16km の区間の各調査日の利用者数の計算値で、「平成 16 年度版 河川水辺の国勢調査マニュアル（案）（河川空間利用実態調査編）」に準じた計算式に基づき、算出している。年間の天気については、日積算降水量 5mm 未満の日を「晴」、5mm 以上を「雨」として計算している。

年間利用者数の推計値は、平成 15 年度が 80 万 1 千人、平成 18 年度が 71 万 5 千人、平成 21 年度が 49 万 9 千人、平成 26 年度が 38 万 3 千人と徐々に減少傾向であった。平成 21 年度と平成 26 年度を比較すると、高水敷でのスポーツや散策での利用者数の減少が顕著であった。加古川大堰下流の高水敷には、両岸にスポーツや散策で利用できる河川敷緑地が整備されている。平成 26 年度は、平成 21 年度と比較し、「雨」の日が 6 日多く、年間を通じて、天候が不順な日が多かったことから、河川敷緑地の利用者が減少したことに起因する可能性がある。
加古川大堰周辺の利用者数の特徴としては、水面のスポーツでの割合が多いことに挙げられる。平成26年度も全体の利用者の8.1%を占めており、大堰の湛水域の水面をレガッタ等の艦艇で楽しむ利用者が多い状況がうかがえる。

また、平成26年度は堤防利用の割合が、平成21年度の6.3%から14.7%と顕著に増加しており、近年の健康志向により、歩きやすい堤防の管理用道路を散策やジョギング等で利用する人が増加している状況がうかがえる。加古川の河川敷道路は、「加古川みなもトロード 県立加古川河川敷マラソンコース」として、地域の人々にも福祉にも役立っている可能性があるものと考えられる。

■年間利用者数の推計値の推移

![利用者数の推移](出典:資料7-15)

■年間利用者数の推計値割合の推移

![利用者数の推計値割合の推移](出典:資料7-15)

図7.6-1 加古川大堰周辺の利用状況
7.6.2 川の通信簿

(1) 「川の通信簿」の概要

「川の通信簿」は、河川内で利用が想定される箇所を選定し、市民と河川管理者が、現地において共同して河川の利用のしやすさを5段階で評価したもので、平成15年度に第1回目の調査が行われている。

目的と点検項目は以下のとおりである。

○「川の通信簿」の目的

全国の河川空間の親しみやすさや快適性などを現地において市民と共同でアンケート調査を実施した結果から、良い点・悪い点を把握し、河川整備計画や日常の維持管理等に反映することにより、良好な河川空間の保全、整備、管理を図る。

○「川の通信簿」の点検項目

15の点検項目があり、それらの重要度、良い悪いなどの状態、整備の必要性を点検し、最後に5段階評価を行っている。（下図参照）

※この通信簿は、点検者が主観的に評価するものであり、川の優劣をつけるものではない。

（出典：資料7-15）

図 7.6-2 川の通信簿の点検項目
(2) 経年の点検結果

加古川大堰周辺の川の通信簿の対象調査地区を図 7.6-3 に、平成 26 年度の点検結果となる通信簿を図 7.6-4 に、経年の点検評価一覧を表 7.6-1 に示す。

加古川大堰周辺の川の通信簿の調査地区は、堰下流の高水敷の両岸に整備された「加古川河川敷緑地（両荘地区）」と「加古川河川敷緑地（新神野地区）」の 2 郵所が該当する。

平成 26 年度の点検結果となる通信簿について、「加古川河川敷緑地（両荘地区）」は、「かなり良い部分があり、一定の満足感を味わえる」と「☆☆☆（三つ星）」の評価となっている。良い点としては、「施設が利用しやすい」、「除草等、手入れが行き届いている」、「開放的で子供たちもいっぱい体を動かすことができる」等の意見を頂いている。また、悪い点としては、「ベンチなどに屋根が欲しい」、「休憩施設が少ない」等の意見もいただいている。課題として、木陰やベンチ等の休憩施設やトイレの整備、水辺の安全確保のための工夫等が上げられている。

「加古川河川敷緑地（新神野地区）」は、「かなり良い部分があり、一定の満足感を味わえる」と「☆☆☆（三つ星）」の評価となっている。良い点としては、「駐車場や広場が良く整備してある」、「広く、景色がよい」、「遊びやすい」等の意見を頂いている。また、悪い点としては、「ゴミが多く汚い」、「利用者のマナーが悪い」、「ベンチなどの休憩施設が欲しい」等の意見を頂いている。

経年の点検結果の成績表では、両地区とも、評価は「☆☆☆（三つ星）: かなり良い部分があり、一定の満足感を味わえる」、もしくは「☆☆☆☆（四つ星）: 相当良い、満足感を味わえる」と、概ね良好な成績となっており、地域のスポーツや散策を楽しむ場として機能しているものと考えられる。

図 7.6-3 「川の通信簿」点検箇所位置
川の通信簿

箇所名：加古川河川敷緑地（両荘地区）

豊かな自然の中でスポーツができる河川敷緑地

■加古川河川敷緑地（両荘地区）はこんな所

<table>
<thead>
<tr>
<th>河川名</th>
<th>加古川河川敷緑地（両荘地区）</th>
</tr>
</thead>
<tbody>
<tr>
<td>所在地</td>
<td>兵庫県加古川市平荘町里～上荘町都染地先</td>
</tr>
<tr>
<td>面積</td>
<td>241,857.80m²</td>
</tr>
<tr>
<td>管理者</td>
<td>加古川市</td>
</tr>
</tbody>
</table>

特徴
本緑地は、地理的条件から自動車で訪れる利用者が多くため駐車場の整備が十分になされており、また、野球場や陸上競技場などが整備され、休日には各種スポーツ愛好家などによく利用されています。

主な利用者
散策、野球、ソフトボール、ジョギング、バーベキュー

点検参加人数
25名

■平成26年現在の成績表

総合的な成績：☆☆☆（三つ星）
かなり良い部分があり、一定の満足感を味わえる

<table>
<thead>
<tr>
<th>No.</th>
<th>点検項目</th>
<th>現在の状況</th>
<th>設備必要</th>
<th>重度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>良い</td>
<td>普通</td>
<td>悪い</td>
</tr>
<tr>
<td>1</td>
<td>豊かな自然を感じますか</td>
<td>○</td>
<td>28%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>水はきれいですか</td>
<td>○</td>
<td>32%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>流れている水の量は十分ですか</td>
<td>〇</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ごみがなくきれいですか</td>
<td>〇</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>危険な場所がなく安全ですか</td>
<td>〇</td>
<td>36%</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>景色はいいですか</td>
<td>〇</td>
<td>16%</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>歴史・文化を感じますか</td>
<td>〇</td>
<td>16%</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>堤防や河川敷には近づきやすいですか</td>
<td>〇</td>
<td>28%</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>水辺へ入りやすいですか</td>
<td>〇</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>広場は利用やすいですか</td>
<td>〇</td>
<td>16%</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>休暇施設や木陰は十分ですか</td>
<td>〇</td>
<td>52%</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>駐車場は使いやすいですか</td>
<td>〇</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>バンクは使いやすいですか</td>
<td>〇</td>
<td>68%</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>駐車場は使いやすいですか</td>
<td>〇</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>駐車場は使いやすいですか</td>
<td>〇</td>
<td>28%</td>
<td></td>
</tr>
</tbody>
</table>

■特に良い点
・施設が利用しやすい。
・除草、手入れが行き届いている。
・開放的で子供たちはもっぱら自由に動かすことができる。
・とても広くて使いやすい。

■特に悪い点
・ベンチなどに座者がいる。
・休暇施設が少ない。
・水道が少ない。
・トイレを使いやすく、数も増やして欲しい。
・子供が川に入りやすいのが危険。

■総合コメント
広々とした高水敷に陸上競技場や野球場などスポーツ施設が整備しており、スポーツには最適な緑地で、除草などの手入れも行き届いています。
5つ星にするためには、木陰やベンチなどの休暇施設やトイレの整備、水辺の安全確保のための工夫が必要です。

（出典：資料7-15）
川の通信簿

箇所名：加古川河川敷緑地 (新神野地区)

■加古川河川敷緑地（新神野地区）はこんな所

河川名：1級河川加古川水系加古川左岸9.4K～11.2K+135m
所在地：兵庫県加古川市新神野地先
アクセス：JR神野駅より徒歩20分
面積：101,439.33m²
管理者：加古川市

特徴

本緑地は、加古川を代表する河川公園で、散策等で多くの市民に利用されています。特に、犬の散歩場所として利用されることが多い公園です。

主な利用

つり、散策、ジョギング、バーベキュー

点検参加人数：24名

■平成26年現在の成績表

総合的な成績：☆☆☆（三つ星）かなり良い部分があり一定の満足感を味わえる

<table>
<thead>
<tr>
<th>No.</th>
<th>点検項目</th>
<th>現在の状況</th>
<th>良い</th>
<th>普通</th>
<th>悪い</th>
<th>設備必要</th>
<th>重要度</th>
<th>不要</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>豊かな自然を感じますか</td>
<td>○</td>
<td>17%</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>水はきれいですか</td>
<td>○</td>
<td>38%</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>流れている水の量は十分ですか</td>
<td>○</td>
<td>17%</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ゴミがなくきれいですか</td>
<td>○</td>
<td>42%</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>危険な場所がなく安全ですか</td>
<td>○</td>
<td>25%</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>景色はいいですか</td>
<td>○</td>
<td>17%</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>歴史・文化を感じますか</td>
<td>○</td>
<td>21%</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>堤防や河川敷には近づきやすいですか</td>
<td>○</td>
<td>25%</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>水辺へ入りやすいですか</td>
<td>○</td>
<td>33%</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>広場は利用しやすいですか</td>
<td>○</td>
<td>17%</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>休憩施設や木陰は十分ですか</td>
<td>○</td>
<td>50%</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>散歩はしやすいですか</td>
<td>○</td>
<td>8%</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>トイレは使いやすいですか</td>
<td>○</td>
<td>75%</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>室内看板はわかりやすいですか</td>
<td>○</td>
<td>17%</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>駐車場は使いやすいですか</td>
<td>○</td>
<td>21%</td>
<td>○</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

■特に良い点

・広々とした緑いっぱいの河川敷緑地です。
・駐車場や広場が良く整備している。
・広く、景色がよい。
・遊びやすい。

■特に悪い点

・ゴミが多く汚い。
・利用者のマナーが悪い。
・ベンチなどの休憩施設が欲しい。

■総合コメント

広々として緑が多く、利用しやすい河川敷緑地となっています。
5つ星にするためには、休憩施設の整備に加え、利用者のマナーを向上させる工夫が必要です。

（出典：資料 7-15）

図 7.6-5（2） 平成26年度の通信簿
■参考：水辺の関わるご意見について

川の通信簿での点検者の水辺に関するご意見の一覧を表 7.6-2 に示す。

加古川大堰の直下流に位置する河川敷緑地に、地域住民が親子で水辺に親しむ環境や要望に係る状況を把握するため、川の通信簿で実施されている点検者の既往のご意見を確認し、水辺に関わるご意見を参考資料として、整理した。

水辺に関する主なご意見の概要は、次のとおりである。

1) 両荘地区

両荘地区の河川敷緑地は、ご意見を総合すると、水辺へ近づくことができる状況にあるものと考えられる。ただし、逆に水辺に近づきやすい状況が危険とするご意見や、もっと近づきやすい整備を望むご意見もあった。

2) 新神野地区

新神野地区の河川敷緑地は、ご意見を総合すると、両荘地区に比べ、水辺に近づきにくい状況にあるものの、水辺に近づける親水護岸は整備されている状況と考えられる。両荘地区に比べ、水辺に近づきにくい状況を反映し、ご意見にも水辺に近づきやすい状況を創出す整備を望むご意見が多い状況であった。

表 7.6-1 経年での点検評価一覧（川の通信簿 成績表）

<table>
<thead>
<tr>
<th>No.</th>
<th>点検項目</th>
<th>両荘地区（右岸）</th>
<th>新神野地区（左岸）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>豊かな自然を感じますか</td>
<td>H15 H15 H15 H15</td>
<td>H15 H15 H15 H15</td>
</tr>
<tr>
<td>2</td>
<td>水はきれいですか</td>
<td>○ ○ ○ ○</td>
<td>○ ○ ○ ○</td>
</tr>
<tr>
<td>3</td>
<td>流れている水の量は十分ですか</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ゴミがなくてきれいですか</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>危険な場所がなく安全ですか</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>景色はいいですか</td>
<td>○ ○ ○ ○</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>原林・文化を感じますか</td>
<td>×</td>
<td>○ ○</td>
</tr>
<tr>
<td>8</td>
<td>場面や河川数には気づきやすいですか</td>
<td>○ ○ ○ ○</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>水辺へ入りやすいですか</td>
<td>× × × ×</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>広場は利用しやすいですか</td>
<td>○ ○ ○ ○</td>
<td>○ ○ ○ ○</td>
</tr>
<tr>
<td>11</td>
<td>休憩施設や木陰は十分ですか</td>
<td>× × × ×</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>散歩はしやすいですか</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○</td>
</tr>
<tr>
<td>13</td>
<td>トイレは使いやすいですか</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>14</td>
<td>案内看板はわかりやすいですか</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>駐車場は使いやすいですか</td>
<td>○ ○ ○ ○ ○ ○</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>総合評価</td>
<td>☆☆☆ ☆☆☆ ☆☆☆☆ ☆☆☆☆</td>
<td>☆☆☆☆☆ ☆☆☆☆☆ ☆☆☆☆☆ ☆☆☆☆☆</td>
</tr>
<tr>
<td>-</td>
<td>点検者数</td>
<td>n=21 n=20 n=20 n=20</td>
<td>n=20 n=20 n=22 n=22</td>
</tr>
</tbody>
</table>

注 1) □：調査年で、「現在の状況＝良い」+「重要度＝非常に重要 or 重要」と評価された項目を示す。
注 2) ×：調査年で、「現在の状況＝悪い」+「整備必要＝50%以上」+「重要度＝非常に重要 or 重要」と評価された項目を示す。
注 3) 総合評価：点検者各自による定性的な 5 段階評価の平均値。点検項目にある○×の数に相関性はない。
注 4) ☆☆☆☆：総合的な成績に基づき、「かなり良い部分があり、一定の満足感が味わえる」という評価となったことを示す。
注 5) ☆☆☆：総合的な成績に基づき、「かなり良い部分があり、一定の満足感が味わえる」という評価となったことを示す。

出典：資料 7-15
3）まとめ
両荘地区および新神野地区ともに、公園内には、水辺のアクセスに係る場の整備は、これまでに行われていない。
よって、地域住民が水辺の親しむ自然的な場はあるものの、現状は子供が遊びには危険な状況と見なす方が多い状況にあると考えられる。整備を実施する場合は、子供が水辺に近づきやすいような目線でのアクセス路やバリアフリーの親水護岸の設置案等が挙げられる。
なお、両荘地区では、ワンド再生に係る自然再生事業が実施されており、親水に係る整備を実施するには、自然再生事業との連携を図る必要がある。

<table>
<thead>
<tr>
<th>地区名</th>
<th>調査年度</th>
<th>水辺に係るご意見</th>
</tr>
</thead>
<tbody>
<tr>
<td>両荘</td>
<td>H15</td>
<td>・川の中が汚い。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・水の流れがあるところでは子供が危険。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・もっと川べりを散歩したい</td>
</tr>
<tr>
<td></td>
<td>H18</td>
<td>・河畔林をきれいに整備してほしい。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・水辺に近づけるよう河畔林内に通路を設置してほしい。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・水辺で遊べるよう河畔林の間引きをしてほしい。</td>
</tr>
<tr>
<td></td>
<td>H21</td>
<td>・川にゴミが浮いている。</td>
</tr>
<tr>
<td></td>
<td>H26</td>
<td>・子供が河川に入りやすいのが危険。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・危険なので、子供が川辺に入れないように対策が必要。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・川の増水が多いので、気になる。</td>
</tr>
<tr>
<td>新神野</td>
<td>H15</td>
<td>・川の遊び場所が少ない。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・水辺に入りにくい。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・夏と冬は堰の下に水が少ない。</td>
</tr>
<tr>
<td></td>
<td>H18</td>
<td>・川の水量が少ない時は、悪臭がすることがある。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・子供が河畔林の中に入って遊んでいるが、柵などで安全に対する注意をすべきではないか。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・水辺に近づけるよう河畔林内に通路を設置してほしい。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・水辺で釣りなどができるよう河畔林の間引きをしてほしい。</td>
</tr>
<tr>
<td></td>
<td>H21</td>
<td>・堰のおかげで、河川の氾濫がなくなった。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・水辺の簡単に降りられる階段が子供にとっては危険。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・水辺に柵がなく危険。</td>
</tr>
<tr>
<td></td>
<td>H26</td>
<td>・川に近づけない。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・川が臭い。</td>
</tr>
</tbody>
</table>

（出典：資料7-15）
7.7 まとめと今後の方針

7.7.1 堰と周辺地域との関わりのまとめ

堰の湛水域は、「加古川市立漕艇センター」が整備され、漕艇場として市民に親しまれている。

堰周辺では多くのイベントが開催されており、加古川市民レガッタ、加古川マラソン、加古川ツーマーチ等が毎年開催されており、特に漕艇イベントでは、会場を提供するだけでなく、運営協力・安全管理等についても、地域や主催者と連携している。

堰では、地域の小中学校に総合学習の一環として、見学会を積極的に受け入れており、また、地域連携プログラムとして、年1回の環境学習会を開催している。

7.7.2 今後の方針

引き続き、地域の社会環境の変化を把握していくとともに、堰周辺の環境について地域のイベントや漕艇等の場として利用に配慮し、快適な利用が継続されるよう維持管理を行っていく。

地域における堰の役割等について、これまでと同様な活動を通じて、地域に広報・PRする取り組みを継続する。
7.8 文献リスト

<table>
<thead>
<tr>
<th>NO.</th>
<th>文献・資料名</th>
<th>発行者</th>
<th>発行年月</th>
<th>引用ページ・箇所</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-1</td>
<td>国勢調査結果(加古川市、高砂市の産業別就業人口)</td>
<td>総務省統計局</td>
<td>7.1堰周辺地域の概況 (2)人口 (3)産業</td>
<td></td>
</tr>
<tr>
<td></td>
<td>http://www.stat.go.jp/index.htm</td>
<td></td>
<td></td>
<td>堤周辺の小地域単位の人口動態について</td>
</tr>
<tr>
<td>7-2</td>
<td>パンフレット「加古川」</td>
<td>姫路河川国道事務所</td>
<td>7.2堰の立地特性 (2)周辺の観光施設(スポット)等の状況</td>
<td></td>
</tr>
<tr>
<td>7-3</td>
<td>観光客動態調査</td>
<td>兵庫県</td>
<td>7.2堰の立地特性 (2)周辺の観光施設(スポット)等の状況</td>
<td></td>
</tr>
<tr>
<td></td>
<td>https://web.pref.hyogo.lg.jp</td>
<td></td>
<td></td>
<td>■参考:統計データを用いた堰周辺の観光者の動態</td>
</tr>
<tr>
<td>7-4</td>
<td>加古川大堰工事誌</td>
<td>近畿地方建設局姫路工事事務所</td>
<td>7.3堰事業と地域社会情勢の変遷 7.5.1堰周辺環境整備等の状況</td>
<td></td>
</tr>
<tr>
<td>7-5</td>
<td>加古川市総合計画[2016-2020]</td>
<td>加古川市</td>
<td>7.4.1地域における堰の位置づけに関する整理 (1)加古川市総合計画(平成28年度版)</td>
<td></td>
</tr>
<tr>
<td>7-6</td>
<td>加古川観光協会ホームページ</td>
<td>加古川観光協会</td>
<td>7.4.1地域における堰の位置づけに関する整理 (2)わがまち加古川60選</td>
<td></td>
</tr>
<tr>
<td></td>
<td>http://kako-navi.jp/</td>
<td></td>
<td></td>
<td>(3)統計データを用いた観光者の動態</td>
</tr>
<tr>
<td>7-7</td>
<td>加古川大堰年次報告書</td>
<td>姫路河川国道事務所</td>
<td>7.4.2地域と堰管理者の関わり (1)イベントの開催・協力 (2)見学会の実施</td>
<td></td>
</tr>
<tr>
<td>7-8</td>
<td>広報かこがわ</td>
<td>加古川市</td>
<td>7.4.2地域と堰管理者の関わり (4)地域への情報提供</td>
<td></td>
</tr>
<tr>
<td>7-9</td>
<td>加古川大堰環境調査業務報告書</td>
<td>姫路河川国道事務所</td>
<td>7.4.2地域と堰管理者の関わり (3)環境学習クラブの実施</td>
<td></td>
</tr>
<tr>
<td>7-10</td>
<td>姫路河川国道事務所ホームページ</td>
<td>姫路河川国道事務所</td>
<td>7.4.2地域と堰管理者の関わり (4)地域への情報提供 (5)記念イベントの開催</td>
<td></td>
</tr>
<tr>
<td></td>
<td>http://www.himeji.kkr.mlit.go.jp/</td>
<td></td>
<td></td>
<td>7.5.2堰周辺の施設の利用状況</td>
</tr>
<tr>
<td>7-11</td>
<td>事務所提供資料</td>
<td>姫路河川国道事務所</td>
<td>7.4.2地域と堰管理者の関わり (4)地域への情報提供</td>
<td></td>
</tr>
<tr>
<td>7-12</td>
<td>平成24年度加古川大堰管総合評価業務報告書</td>
<td>姫路河川国道事務所</td>
<td>7.4.2地域と堰管理者の関わり (5)記念イベントの開催</td>
<td></td>
</tr>
<tr>
<td>7-13</td>
<td>加古川大堰残棒塗装検討会資料及び議事録等</td>
<td>姫路河川国道事務所</td>
<td>7.4.2地域と堰管理者の関わり (6)地域の声を反映した塗装色の変更</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.5.2堰周辺の施設の利用状況</td>
</tr>
<tr>
<td>7-14</td>
<td>パンフレット「加古川大堰電気通信施設の概要」</td>
<td>姫路河川国道事務所</td>
<td>7.5堰周辺の状況 7.5.1堰周辺環境整備等の状況</td>
<td></td>
</tr>
<tr>
<td>7-15</td>
<td>河川空間利用実態調査結果</td>
<td>姫路河川国道事務所</td>
<td>7.6河川水辺の国勢調査(河川空間利用実態調査結果)</td>
<td></td>
</tr>
</tbody>
</table>