< 岩倉峡の流下能力について >

2008年1月2日

自然愛·環境問題研究所 代表 浅野隆彦

[はじめに]

長年にわたり、『岩倉峡流下能力の真実』は闇の中を浮遊してきたが、その原因は昭和28年8月15日「東近畿大豪雨水害」と 40 日後の「13 号台風水害」への検証の甘さ、それに続く「河川管理の杜撰さ」や「全国総合開発」に群がった人々の「利権への思惑」などに求める事が出来よう。ただ、今はそれらを逐一挙げて、批判するつもりはない。淀川水系流域委員会がその闇へ一条の光を投げかけたからだ。

2005年「岩倉峡流下能力検討会」報告書が公表された。

全観測データの多くを捨て置いたトンデモナイ検討ではあったが、水理計算の核心となる粗度係数について『河川工学者としての立場からいえば、中央値としてのn=0.0375程度を採用するのが適切と考える。』と結論づけたのであった。

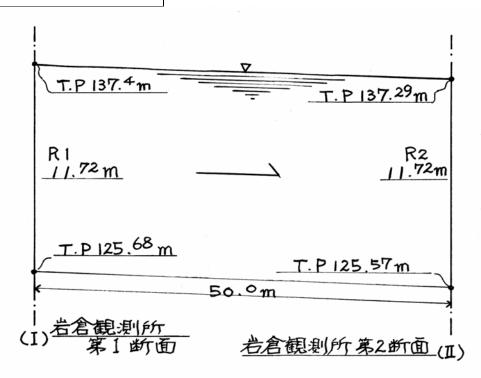
〔 流下能力というものについて 〕

流下能力と言う概念には、ある河道において堤防高さ一杯に越えないで流れる「最大流量」と、破堤も起こさず安全に流れるであろうと「河川局が保障する?」ところの「無害流量」というものがある。{治水経済マニュアル(案)参照}

河道計画は「河川砂防技術基準」に則って検討される。河川施設である堤防などの構造は「河川管理施設等構造令」という政令で決められている。その内、堤防の余裕高さの基準については下表の通りである。

夷	_	1
ax.		

計画高水流量と堤防の余裕高さ				
計画高水流量 〔㎡/S〕	余裕高さ[m]			
200 未満	0. 6			
200以上 500未満	0. 8			
500以上 2000未満	1. 0			
2000以上 5000未満	1. 2			
5000以上10000未満	1. 5			
10000以上	2. 0			

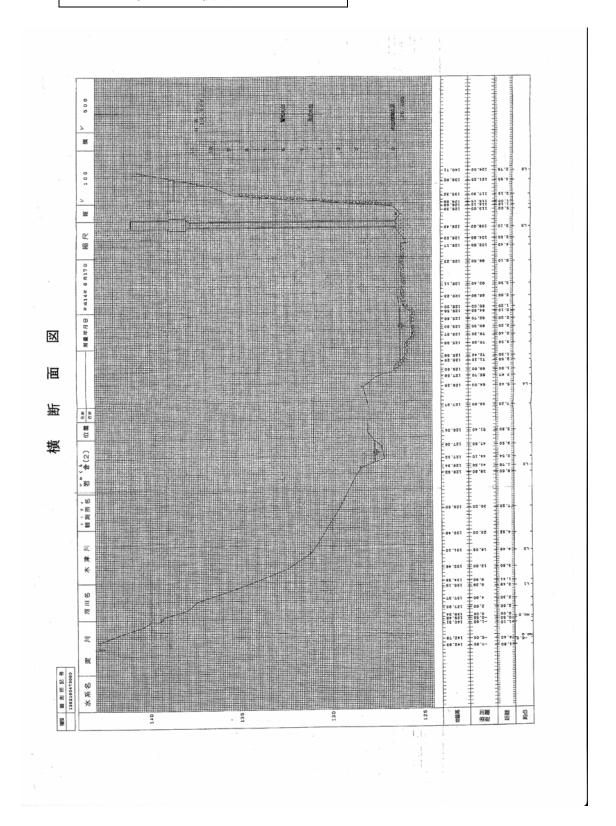

ところが木津川上流の「計画高水位」の設定がおかしい。横断測量図を見ると堤防の余裕高さは本来の1.2mを越え、2mほどの余裕があったりする。この「余裕高さ」というものが見込まれた水位を「計画高水位」(ハイウオーターレベル=HWL)と言っている。岩倉峡水位・流量観測所地点についても異常な設定であり、「山付部」であるからには訂正が必要であろう。上野遊水地及び周辺整備との関係から早期の整理が必要である。

「無害流量」とするのは本来[堤防天端高さ一余裕高さ]である。この観点から次ページからの**[岩倉峡流下能力の計算]**においては、私が主張する[堤防天端高さ

一余裕高さ〕「無害流量流下能力」と近畿地整が主張する〔計画高水位〕「無害流量流下能力」の2つの計算を示す事とする。水理計算の核心である粗度係数については、最近になって筆者の質問に答えn=0.037であることを明示したので、その数値を使い、平成14年度測量の岩倉観測所地点横断面図、H-Aテーブル表で検討するものである。

〔 岩倉峡流下能力の計算 〕その1. [「堤防天端高さ一余裕高さ」無害流量 〕

図-1 流体縦断面模式図 (1)


次ページに岩倉観測所第2断面の「横断面図」(平成14年6月17日測量)を示す。 上記の洪水流下水面での断面積は、私の分析では1,021.3m2である。また潤辺 長さは128.7mとなる。ここにおいて**径深** R=1,021.3÷128.7≒7.935である。

マニングの公式 平均流速 υ = 1/n•R¾•I½

* 注:小文字分数は指数である*

v = (1÷0.037)X7.935%X0.0022½≒5.043(m/s)
Q=1,021.3×5.043≒5,150(m3/s) このように5,150m3/sも流れるのである。

図 -2 第2断面 横断測量図

[岩倉峡流下能力の計算]

その2. [近畿地整が主張する計画高水位での「無害流量」]

その計画高水位での2断面における横断面積を次の表に示す。

表 -2 H-A テーブル表 (H14)

* 岩倉観測所 *

第1断面

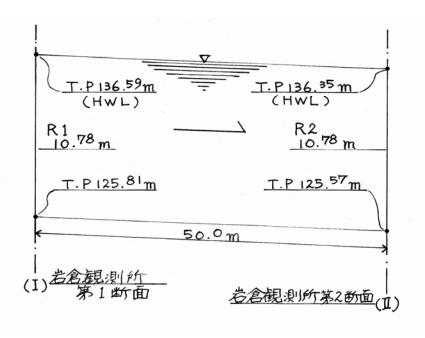
第2断面

1	<u> 17</u>	成 1	4年
→.	$\overline{}$	14X. I	

標高H (T. P. m)	断面積A (m²)	累加断面積A (m²)
126. 400	12.54	12.54
127. 400	42.18	54.72
128. 400	54.43	109.15
129. 400	82.16	191.31
130. 400	91.98	283.29
131. 400	119.14	402.43
132. 400	134.51	536.94
133. 400	142.63	679.57
134. 400	147.05	826.62
135. 400	155.04	981.66
136. 400	160.96	1142.62
136. 590	31.01	1173.63
137. 400	133.55	1307.18

4. 平成14年

4, 十灰144		
標高H (T. P. m)	断面積A (m²)	累加断面積A (m²)
126. 400	14.50	14.50
127. 400	46.51	61.01
128. 400	61.29	122.30
129. 400	77.91	200.21
130. 400	87.45	287.66
131. 400	95.74	383.40
132. 400	100.55	483.95
133. 400	103.64	587.59
134. 400	106.01	693.60
135. 400	108.25	801.85
136. 350	105.54	907.39
136. 400	5.64	913.03
137. 400	114.40	1027.43


- *第2断面の零点高+10.5=136.9は管理上の値であり、整備計画上は使用していません。
- *整備計画上のHWLについては下記の通り求めています。
- *第2断面の計画高水位については、57.4kHWLと57.2kHWLとの差を区間距離で割り、57.2kから量水標までの距離をかけて得た数値を、57.2kのHWLに足して求めています。

 $(136.59-135.85) \div 191.4 * 128.3=0.496$

135. 85+0. 496=136. 346=136. 350

第2断面HWL=136.350

図 -3 流体縦断面模式図 (2)

以下に平均流速、流量計算を示す。

潤辺長さは第2断面の横断測量図を方眼紙に展開・分析し、124.5mを得た。 第1断面計画高水位と第2断面計画位の差を洪水流の水面勾配と考えた。

動水勾配 I =(136.59-136.35)÷50.0=0.0048 径深 R =907.39÷124.5≒7.29(m) *注:小文字分数は指数である* 平均流速 $v=1/n\cdot R\%\cdot I\%=(1\div 0.037)\times 7.29\%\times 0\cdot 0048\%=7.04(m/s)$ 流量 Q=907.39×7.04≒6,388(m3/s)

以上の計算は水面勾配が 1/208. 33となり、これまでの観測実績を見れば十分存在しているが、最も多い水面勾配とは言い難い。1/455を最多の水面勾配として、修正計算を行う。

動水勾配 I =0.0022 径深 R =7.29m 平均流速 υ =(1÷0·037)×7.29%×0.0022½≒4.77(m/s) 流量 Q =907.39X4.77≒4,328(m3/s) このように岩倉峡流下能力は観 測所付近で4,300m3/s以上となっている。(6,388+4,328)÷2=5,358 5,358m3/s位が近畿地整条件に基づく「岩倉峡流下能力〔計画高水位・無害流量〕」と考えられる。〔これは「等流計算」ではあるが、非定常流の洪水における流量 計算で、マニングの公式を使い「最大流量」を求める場合は、水理学上も「近似値」を示すものと認められている。〕

以上のような結果になり、近畿地整が主張する条件を使い計算したところで、彼等が言う「岩倉峡流下能力=3,100m3/s」は全くの虚構であることがはっきりした。 3,700m3/sを越える岩倉峡の疎通量は、もともと存在していたとも言えるが、昭和28年以来43年に至る地元の「岩倉峡対策事業」によって、岩倉石工たちの岩石切り出しによって、更に流下能力を拡大していたのである。今では「上野遊水地」さえ不要ではないか!と言える。近畿地整はこれに真摯な回答を寄せなければならない。