2. 利水容量回復の可能性
第7章 課題と今後の対応方針

- 河川整備について、従来型から今後どのように転換すべきか

「河川を拘束、制御する」⇒「河川に生かされる」

- できるだけ自然に近い状態での河川の水量を確保しつつ、水を利用
- 渴水による（壊滅的な）被害の防止
- 既存施設の有効活用を図ったうえで、必要最小限の新規水資源開発
- 環境に配慮して河川の水量を確保
第4節 出来るだけ自然のまま流す（環境用水対応）

1. 生態系に配慮した取水の事例
2. 室生ダムでの検討
3. 利水安定度（確保水量）への影響
1. 生態系に配慮した取水の事例

従来の方法

生態系に配慮した方法
室生ダムでの検討
ケース1：中小洪水の半分を貯留、半分は流す
3. 利水安全度（確保水量）への影響

■ 既存施設活用のシミュレーション

・ケース1：中小洪水の半分を貯留、半分は放流
・ケース2：中小洪水の3/4を貯留、1/4は放流
3. 利水安定度（確保水量）への影響

現状

中小洪水を貯留

貯水池現行どうり

水位

平常期 出水期 平常期
3. 利水安全度（確保水量）への影響
近年30年間の確保可能性（現状）
3. 利水安全度（確保水量）への影響

○ ケース1：中小洪水の半分を貯留

1/2日放流
3. 利水安全度（確保水量）への影響
近年30年間の確保可能量（ケース1）

淀川水系確保水量順位（昭和34年～平成10年）

確保水量(m^3/s)
0 50 100 150

対象確保水量 30～54m^3/s
3. 利水安全度（確保水量）への影響

ケース2：中小洪水の3/4を貯留

![グラフ](image)

貯水池現行の状況

平常期 出水期 平常期
3. 利水安全度（確保水量）への影響
近年30年間の確保可能量（ケース2）

図：淀川水系確保水量順位（近30ヶ年）

淀川水系現行施設の確保可能量順位（昭和44年～平成10年）
水需要管理に向けて

◆ダム下流の維持流量の現状
項目別必要流量の検討

■ 動植物の生息地又は生育地の状況
■ 景観
■ 流水の清潔の保持
■ 舟運
■ 漁業
■ 塩害の防止
■ 河口閉塞の防止
■ 河川管理施設の保護
■ 地下水位の維持
■ 観光
■ 人と河川との豊かな触れ合いの確保
■ その他当該河川の実情に応じ考慮が必要となる項目
設定条件

① 原則として、基準地点間の代表検討地点における各検討項目の必要水量のうち最大値を「維持流量」とする。

② 基本的には①の維持流量に水利流量を加えた水量を正常流量とする。

③ ただし、かんがい期においては農業用水の還元が期待されること、支川流量も非かんがい期に比べて豊富であることを考えし、河道の水収支を考慮の上、正常流量を設定する。

④ 基準地点の確保流量は、基準地点間において維持流量を下回らないように設定する。
区間別維持流量設定図（例）

・ 動植物の生息又は生育の状況
△ 景観
□ 流水の清潔の保持

2.0（区間Aの維持流量）
5.0（区間Bの維持流量）
4.0（区間Cの維持流量）
3.0（区間Dの維持流量）
4.0（区間Eの維持流量）
生態系からの必要水量の検討

当該河川に生息する淡水魚

(本線に付随する環境に生息する魚種を選定)

注意すべき種

対象魚種

代表魚種

必要な水理条件（水深、流速）

必要流量
景観からの必要流量

①検討箇所・視点の設定
②検討箇所の特徴の把握
③評価基準の設定
④検討箇所別必要流量の設定
流水の清潔の保持からの必要量

①水質項目の検討
②検討箇所の設定
③評価基準の設定
④検討箇所別必要流量の設定
舟運からの必要量

①検討箇所の設定
②評価基準の設定
③検討箇所別必要流量の設定
塩害の防止からの必要量

①検討箇所の設定
②評価基準の設定
③検討箇所別必要流量の設定
河口閉塞の防止からの必要量

当該河川において、流量が減少した場合に土砂の堆積によって河口が閉塞することを避けるため、流量を確保することが考えられるが、流量増による対応が適切でない場合も多いことから、当該河川における河口閉塞の特性や他の代替手段を十分考慮して、必要に応じて設定する。
河川管理施設の保護からの必要量

当該河川において、他の項目から求まる必要流量から見て「河川管理施設の保護」に支障がないことを確認しておく。

なお、必要に応じて、河川管理施設の改築等代替手段を含めて適切な対処方法を検討することが必要
地下水位の維持からの必要量

当該河川において、他の項目から求まる必要流量から見て「地下水位の維持」に支障がないことを確認しておく。

なお、必要に応じて、地下水位と河川流量との関係を調査・解析し、地下水の適正利用等と併せて対策を検討することが必要である。
維持流量の設定方法
（日吉ダムの場合）
日吉ダム下流における基準地点

新町地点

tings地点
各基準地点の必要な正常流量

<table>
<thead>
<tr>
<th>検討項目</th>
<th>ダムサイト（かんがい期）</th>
<th>非かんがい期</th>
<th>殿田地点（かんがい期）</th>
<th>非かんがい期</th>
<th>新町地点（かんがい期）</th>
<th>非かんがい期</th>
<th>嵐山地点（かんがい期）</th>
<th>非かんがい期</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 生態系の保全</td>
<td>1.23</td>
<td>1.34</td>
<td>1.56</td>
<td>1.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 景観の保全</td>
<td>1.8</td>
<td>20</td>
<td>30</td>
<td>204</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. 水質の保全</td>
<td>1.05</td>
<td>1.16</td>
<td>1.66</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. 舟運</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. 塩害の防止</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. 河川閉塞の防止</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. 河川管理施設の保護</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. 地下水位の維持</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>流況</td>
<td>1/10渴水流量</td>
<td>1.36</td>
<td>1.58</td>
<td>2.36</td>
<td>1.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>平均渴水流量</td>
<td>23</td>
<td>296</td>
<td>461</td>
<td>511</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>維持流量の総合評価</td>
<td>20</td>
<td>20</td>
<td>40</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>水利流量</td>
<td>0.03</td>
<td>0.00</td>
<td>352</td>
<td>0.00</td>
<td>804</td>
<td>1.00</td>
<td>6085</td>
</tr>
<tr>
<td></td>
<td>正常流量</td>
<td>2.00</td>
<td>2.00</td>
<td>540</td>
<td>2.00</td>
<td>966</td>
<td>5.00</td>
<td>8.00</td>
</tr>
</tbody>
</table>
日吉ダム下流における正常流量

●ダムサイト: 2m³/s (通年)
●殿田地点: 5.40m³/s (5月1日～9月30日)
 : 2.00m³/s (10月1日～4月30日)
●新町地点: 9.66m³/s (5月1日～9月30日)
 : 5.00m³/s (10月1日～4月30日)
●嵐山地点: 8m³/s (通年)