No.	対象	壮	壮华瓶 亜	活用理由		——— 活	用回	 数			
NO.	構造物	技術名	技術概要	冶用连田	R4	R5	R6	R7	合計		今回
1	橋梁	<u>橋梁点検支援ロボット(視る診る・スタンダード・ハイグレード・mini)+</u> 橋梁点検調書作成支援システム(ひ びわれ)	梁定期点検を支援する技術である。	低減される。 ・高所作業が不要となるため安全性		0	1	1	4		
2	橋梁	<u>魚群探知機を用いたダム貯水池 3 D</u> マッピング技術「Nソナー」 <u>(NETIS)</u>	ダム湖等の深浅測量に関する技術である。魚群探知機をダム堆砂状況調査に応用した技術であり、これで航行して水深でした調査船で航行して水深で処理を収集したのち、市販ソフトで処理して3次元地形モデルを作成し、水が地形の3次元での成果図を得ることができる。	河床全面の地形(水深)を計測できるため、点検工程を短縮できる。 ・従来技術(ボート)による点検と 比較し、点検コストの縮減が図れる。※1	1	0	0	0	1		Nソナー画面
3	橋梁	光波測量機「KUMONOS」及び高解像度 カメラを組み合わせた高精度点検シ ステム「シン・クモノス」	ことで、構造物表面の変状確認が可能な技術である。	会的影響が低減される。 ・高所作業が不要となるため安全性	1	0	0	0	1		
4	橋梁	コンクリ-ト構造物変状部検知システ <u>ム「BLUE DOCTOR」</u>	(空隙)の有・無及び深さを、リアルタイムに判定して結果をLED表示することが可能な技術である。	・損傷状況を自動判定するので誰にでも定量的に判定できる。 ・コンパクトなスティックタイプの ため規制が不要で社会的影響を低減 できる。	7	2	0	0	9	据录名 小井柏(下) 理图 / 田付 部 起点 依及② PT3落kc状况	
5	橋梁	水中自航型ロボットカメラ(水中ド ローン)による水中設置物の保全点検 技術 (NETIS)		に潜水士が不要であり、操作者は地 上から操作するため、安全面に優れ	10	4	15	4	33		地上から点検可能

No.	対象	壮	壮华 榧 亜	活用理由		活	用回	 数		 点検状況		
INO.	構造物	技術名	技術概要	/ // // // // // // // // // // // // /	R4	R5	R6	R7	合計	 今回		
6	橋梁	スキャニングソナーとレーザース キャナによる橋梁基礎形状計測技術	(レーザースキャナー)で対象物の形状を計測し、3次元座標として形状をデータ化する技術である。水中部は水底に機材を沈めて水中の地形や構造物の	る。 ・地上部と水中部にて形状計測した ものを合成表示(3次元データ)する		5	0	0	7			
7	橋梁	<u>橋梁等構造物の点検ロボットカメラ</u>		が低減される。 ・高所作業が不要となるため安全性が向上する。 ・従来技術(橋梁点検車)による点検と比較し、点検コストの縮減及び点検工程の短縮が図れる。※1	68	20	23	16	127			
8	橋梁	水面フローターと360°カメラを搭載 したドローンによる溝橋の点検	したドローンにより、溝橋の中を滑	・360°動画撮影により、撮影後に任意の方向の確認が可能。	2	6	4	2	14			
9		全方向衝突回避センサーを有する小型ドローン技術	る技術であり、飛行中、画像処理によって構造物をリアルタイムで3次元空間として把握し、画像処理の機能によって障害物との離隔を確保することで衝突を自動的に回避する。	・高所作業が不要となるため安全性が向上する。		36	53	23	159			
10	橋梁	全方向水面移動式ボート型ドローン を用いた橋梁点検支援技術	上面に4つのプロペラを有したボート型のドローン。ソナーを搭載しており、橋脚の周りを計測することで、河床状況を確認できる。計測できれた画像は手元のモニターで確認できる他、機体上のSDカードに保存され	・人力と同様、基礎や河床形状観測	1	2	4	0	7			

No.	対象	技術名	技術概要	活用理由		活	用回	数		点椅	点検状況		
NO.	構造物	投侧石	投删概安	/ // // // // // // // // // // // // /	R4	R5	R6	R7	合計	従来	今回		
11	橋梁	<u>社会インフラ画像診断サ−ビス「ひび</u> <u>みっけ」</u>	からコンクリートに発生する「ひびわれの自動検出」と「ひびわれ幅の	・ドローンを用いた画像撮影により 交通規制が不要となり社会的影響が 低減される。 ・同様に高所作業が不要となるため 安全性が向上する。 ・AIでの画像解析によってひびわれ 幅が検出されるため、人的要因によ る誤差が少ない。		1	6	0	7		ドローン撮影		
12	橋梁	360度周囲を認識するドローンを用い た橋梁点検支援技術 (Skydio)	動および手動で損傷の状態を記録することが出来るドローン技術である。自動飛行では構造物の形状を認識し一定の離隔を保ち撮影すること	・高所作業が不要となるため安全性が向上する。 ・従来技術(橋梁点検車)による点 検と比較し、点検コストの縮減及び	0	25	6	2	33		ドローン(Skydio)		
13	橋梁	無人航空機(マルチコプター)を利用 した橋梁点検システム	ンサデジタルカメラにより、損傷の 状態把握に使用する部材表面のデジタルカラー画像を撮影する技術である。ドローンに搭載されたステレオ	・高所作業が不要となるため安全性が向上する。 ・従来技術(橋梁点検車)による点検と比較し、点検コストの縮減及び点検工程の短縮が図れる。※1	0	3	0	1	4		マルチコブター		
14	橋梁	<u>ひび検</u>	面のひびわれをAIで自動検出し、CAD図(dxf)に変換する技術である。画像は正対撮影画像、合成画像、オルソ画像にも適用できる。画像に距離情報を与えることで、ひびわれの長	・同様に高所作業が不要となるため		1	2	0	3		EN CHERRO () () () () () () () () () (
15	橋梁	<u>ドローン・AIを活用した橋梁点検・</u> 調書作成支援技術	又はグリッド写真撮影した映像に対して、AIによる画像解析を行い、ひびわれを抽出する。ひびわれが持つ局所的な形状特徴をパターン化して抽出。機械学習によりパターン(ベクトル)識別を行う。	・高所作業が不要となるため安全性 が向上する。 ・損傷(ひびわれ等)を画像解析す	0	0	2	0	2		m20 0 m67 0 m67 0 m68 0 m68 0 m68 0 m68 1 m68		

No.	対象	技術名	技術概要	活用理由		活	用回	数			令和/年9月末現在
INO.	構造物	汉则石			R4	R5	R6	R7	合計		今回
16	橋梁	<u>鋼材表面探傷システム</u>	部)を検出する渦電流探傷技術。鋼部材に渦電流を発生させ、表面にきずがある場合に発生する渦電流の乱れによる磁束変化を検出する。塗装された鋼材部であっても探傷が可能な高感度プローブを採用。塗膜割れ部	・小型で運搬容易であり、探傷器本体は電池、PCはバッテリー駆動のため(小型発電機不要)、移動、機器設定の時間を短縮できる。	0	0	1	0	1		
17	橋梁	赤外線調査トータルサポートシステ ムJシステムEvolution	て、鉄筋腐食に伴い発生する剥離や うき(コンクリート内部の剥離ひび われ)を、遠望非接触にて赤外線法 により検出する技術である。 第三者被害防止の橋梁点検におい	・高所作業の時間が短縮されるので、安全性向上が期待できる。 ・交通規制が縮小され社会的影響が	0	0	1	0	1		
18	橋梁	<u>非破壊塩分検査装置「RANS-μ」</u>	し、即発ガンマ線のエネルギースペ	・非破壊であることから、多数箇所 の検査測定が可能となる。	0	0	17	0	17	A Modern Control of the Control of t	
19	橋梁	スマートフォンによる3次元モデルを 活用した点検支援技術	み合わせ、3次元モデルと画像を組み合わせたモデルにより、画像だけでなく	・従来工法(ローリングタワー)と 比較し、点検コストの縮減及び点検 工程の短縮が図れる。※1	0	0	0	1	1		形型計列 通数方向明記 3モデルと写真の種づけモデル
20	橋梁	ポータブルレーザスキャナによる形 状計測・地盤面抽出技術	して斜面の点群データと動画を自動 的に取得する。そのデータを自動解 析し、植生を除去した斜面形状や橋 梁背面・側方にある崩土や袖壁下部	・将来的な斜面崩壊を予見し、今後	0	0	0	1	1		

No.	対象	技術名	技術概要	活用理由		活	用回	回数 点検状況				
NO.	構造物	投侧石	汉 侧似安	/ / / / / / / / / / / / / / / / / / /	R4	R5	R6	R7	合計		今回	
21	トンネル	<u>走行型高速3Dトンネル点検システム</u> MIMM-R (ミーム・アール)	高精度3次元レーザー計測、非接触レーダー探査の各システムを車両に搭載し、覆工表面ひび割れや漏水等の変状、トンネル断面形状、巻厚、背面空洞等を計測し、計測結果より	・車両走行による画像撮影のため規制が不要であり、社会的影響が低減される。 ・点検前の計測結果を用いたスクリーニングにより、近接目視・打音検査の効率化に繋がり、外業および安全費の面でコスト低減が期待できる。※1		19	34	18	115			
22	トンネル	<u>レーザースキャナー計測によるトン</u> <u>ネル変状の進行性判別システム</u>	群データの計測、AIによる変状の自動抽出と結果のCAD出力が可能で、変状展開図作成や点検調書作成に利用できる技術。	・覆工全周を計測することにより、 点検漏れや誤記を防止できる。	30	26	8	0	64			
23	トンネル	モービルインスペクションシステム GT-8K	する8 Kエリアセンサカメラおよび高精度レーザ測距装置を車両に搭載し、通常走行でトンネル覆エ面や道路周辺等の計測を行う技術。	・車両走行による画像撮影のため規制が不要であり、社会的影響が低減される。 ・点検前の計測結果を用いたスクリーニングにより、近接目視・打音検査の効率化に繋がり、外業及び安全費の面でコスト低減が期待できる。※1	37	26	28	22	113			
24	トンネル	<u>AIを用いた打音検査解析によるコン</u> クリートの診断システム	検査において、打音ハンマーによる 打撃波形をAIによって解析し、コン クリートの状態を自動判定する技	・打撃力を計測し診断の定量化および記憶が可能。 ・技術者のスキル不足による誤診 断、力量による診断のバラツキ防止 が期待できる。		25	28	4	94	通常の打音検査	SIGNATURE	
25	トンネル	<u>コンクリート打音診断システム</u>	のうき、はく離、内部空洞などの変 状を打音情報から自動検出するス	・通常の打音検査では判定し難い軽 微な異常に対し濁音の有無を定量化 することで、判定精度および判定速 度の向上が期待できる。	0	24	28	0	52	通常の打音検査	日日 - 東京校知 1000年 114-715/左行1/上段 東京校記 日日 - 東京校知 日日 - 東京校 日日 - 東京校 日本	

No.	対象	技術名	技術概要活用理由	活用回数			数			点検状況	
NO.	構造物	נוון גל	1X 闸 枫 女	冶用理田	R4	R5	R6	R7	合計	従来	今回
26	トンネル		用いて計測する技術。	・機器の小型化によりトンネル点検車への搭載・設置が可能。 ・トンネル点検との同時実施により、規制による社会的影響の低減と 人員削減によるコスト低減が図れる。※1	0	15	3	1	19	Isueu	
27	トンネル	PDD(Photo Deformation Drawing)システム	高解像度の一眼カメラと高輝度フラッシュを用いて、現地点検時に撮影された写真をCAD上の変状展開図寸法に合うように変形補正して1スパンの写真として専用プログラムを用いて合成する技術。	漏れや誤記を防止でき、高精度な変状展開図を作成することができる。	0	0	0	38	38		