第15回新都市社会技術セミナー

【新都市社会技術融合創造研究会】

道路事業における3次元データの利活用に関する研究

道路事業における3次元データの利活用に関する研究

(大阪経済大学情報社会学部 教授 中村健二)

CIM·i-Construction等の推進による恩恵と着眼点

コンピュータリーダブルなデータ

2次元CADデータ、3次元CADデータ TS出来形管理データ、基盤地図情報 ・・・

点群データ

航空レーザ測量、レーザスキャナ MMS、UAV

データの着実な蓄積・流通!利活用への期待! しかし、複数時期の点群データの処理は大変

- 用途に即して膨大な量のデータを賢く使える仕掛けづくりの必要性
 - ライフサイクルデータ管理
 - <u>施工時のデータを蓄積</u>することで維持管理の効率化支援
- コンピュータリーダブルなデータと、点群データとを関連付けると、 構造物の部材や地物単位で点群データを扱えるのでは?に着眼!

本研究の全体計画 施工中に生成される3次元情報の活用範囲の拡大

- 本研究では、施工中に生成される3次元情報を道路工事完成図書に関連付けて保持し、その後の維持管理にて活用するための技術開発を目的
 - 下流工程にあたる完成図書の作成や検査、さらに維持管理に展開すると、発現効果が一層大きくなることを期待

体制図

官

近畿地方整備局

iシステムリサーチ株式会社 西川 啓一 大林道路株式会社 有賀公則 大林道路株式会社 石川 義人

- 実験フィールドと蓄積データの提供
- ヒアリング

- 施工現場・定期的なデータ計測
- ヒアリング

産

学

【研究代表者】

•大阪経済大学 教授 中村健二

【共同研究者】

•関西大学 教授 田中成典

•関西大学 准教授 窪田諭

•東京都市大学 准教授 今井龍一

- 関西大学 特命助教 山本雄平

•岩手県立大学 講師 塚田義典

本研究の成果

- I. 道路工事完成図書の完成平面図を用いた<mark>道路地物の点群</mark> データの自動取得手法の開発
 - 膨大な点群データから、<mark>約20地物</mark>を対象に、道路地物単位の点群データ を<mark>約8割の精度で自動的に抽出</mark>する技術を開発

II. 点群データの属性管理仕様に準拠したデータの作成

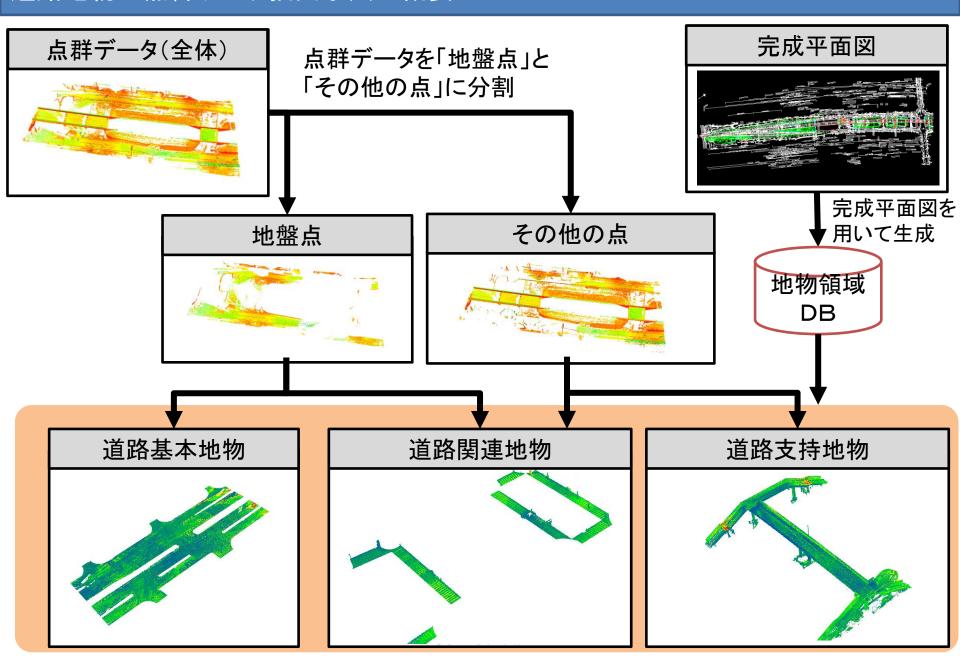
- <mark>様々な点群データへ適用</mark>するため,道路工事完成図書の完成平面図と 点群データを用いて,<mark>領域データ</mark>を自動生成する技術を開発
- 一 点群データの属性管理仕様に準拠した領域データを用いた道路地物単位の点群データの抽出技術の開発

III. 道路地物単位の点群データを用いた差分検出技術の開発

- 領域データと複数時期の点群データを用いることで、<mark>道路地物の大きな</mark>変化を検出可能
 - 新設道路の検出や道路地物の移動など,点群データの<u>差分から自動的に判</u> <u>読可能</u>

本研究の成果

- I. 道路工事完成図書の完成平面図を用いた<u>道路地物の点群</u> <u>データの自動取得手法</u>の開発
 - 膨大な点群データから、<u>約20地物</u>を対象に、道路地物単位の点群データ を<u>約8割の精度で自動的に抽出</u>する技術を開発


II. 点群データの属性管理仕様に準拠したデータの作成

- <u>様々な点群データへ適用</u>するため,道路工事完成図書の完成平面図と 点群データを用いて,<mark>領域データ</mark>を自動生成する技術を開発
- 点群データの属性管理仕様に準拠した領域データを用いた道路地物単位の点群データの抽出技術の開発

III. 道路地物単位の点群データを用いた差分検出技術の開発

- 領域データと複数時期の点群データを用いることで、<u>道路地物の大きな</u>変化を検出可能
 - 新設道路の検出や道路地物の移動など、点群データの<u>差分から自動的に判</u> 読可能

I. 道路工事完成図書の完成平面図を用いた道路地物の点群データの自動取得手法の開発 道路地物の点群データ抽出手法の概要

I. 道路工事完成図書の完成平面図を用いた道路地物の点群データの自動取得手法の開発 道路地物の点群データの抽出結果

I. 道路工事完成図書の完成平面図を用いた道路地物の点群データの自動取得手法の開発 道路地物の点群データの抽出結果

【考察】

条件の異なる点群データを対象として、正確に道路地物の点群 データを抽出可能であることが明らかとなった.

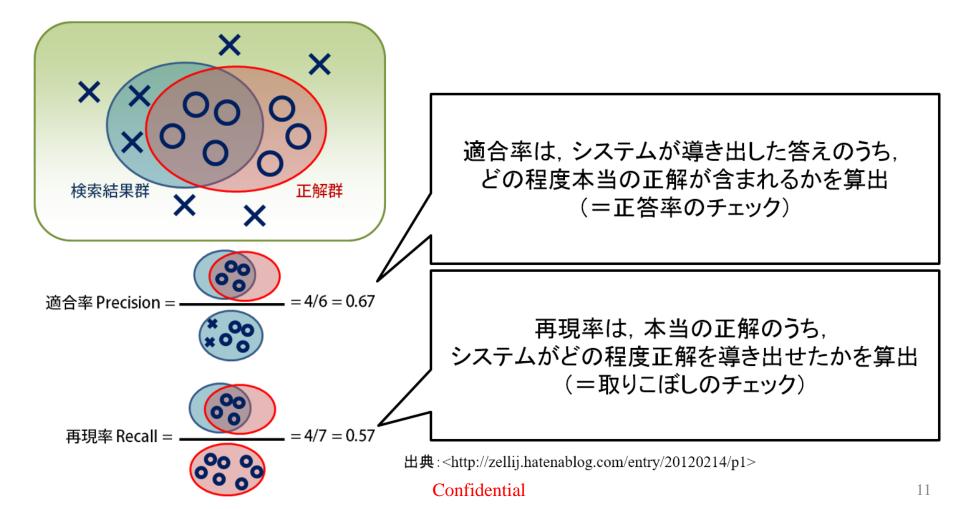
- 計測機器(地上設置型レーザスキャナ, MMSなど)
- 計測時期(2012年度, 2017年度)
- 抽出対象物(横断歩道橋, 車道部, 島など)

I. 道路工事完成図書の完成平面図を用いた道路地物の点群データの自動取得手法の開発 抽出精度の評価実験

• 実験目的

道路地物単位の点群データを抽出するアルゴリズムの精度を明らかにすること

実験データ


- 実施項目Iにて計測した3箇所(大阪, 滋賀, 京都)点群データ (=「実験データ」)

• 実験方法

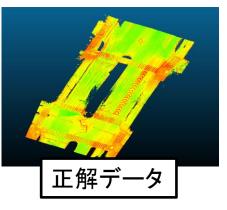
- 1. 実験データから<u>人手で道路地物単位の点群データを抽出</u>(=正解データ)
- 2. 実験データから提案技術を用いて道路地物単位の点群データを抽出 (=システム出力データ)
- 3. 「正解データ」と「システム出力データ」とを比較し、抽出精度を評価. なお、抽出精度の評価にはF値を採用.

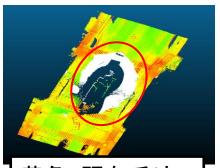
I. 道路工事完成図書の完成平面図を用いた道路地物の点群データの自動取得手法の開発 (参考)F値とは?

- F値=適合率と再現率の調和平均
- 適合率=システムが抽出した点群データの中に,正解の道路地物の点群データが含まれていた割合
- 再現率=正解の道路地物の点群データをシステムで漏れなく抽出できたかどうかの割合

I. 道路工事完成図書の完成平面図を用いた道路地物の点群データの自動取得手法の開発 実験結果:抽出精度

地物	分類点数(点)	適合率	再現率	F値		
横断歩道	296,996	0.86	0.88	0.87		
横断歩道橋	429,938	0.90	0.81	0.85		
軌道敷	429,938	0.90	0.81	0.85		
橋梁	589,523	0.86	0.47	0.59		
車道交差部	1,323,509	0.90	0.88	0.89		
車道部	1,826,107	0.81	0.87	0.83		
植栽	102,376	0.81	0.59	0.64		
盛土法面	438,789	0.88	0.89	0.88		
島	138,569	0.71	0.61	0.61		
歩道部	619,026	0.86	0.91	0.87		

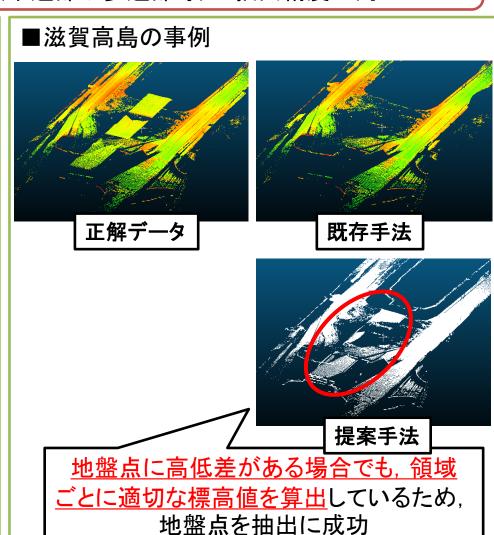

I. 道路工事完成図書の完成平面図を用いた道路地物の点群データの自動取得手法の開発 実験結果:抽出精度


地物	分類点数(点)	適合率	再現率	F値								
横断歩道	296,996	0.86	0.88	0.87								
横断歩道橋	429,938	0.90	0.81	0.85								
軌道敷	429,938	0.90	0.81.	<u>0.85</u> ,								
橋梁	589,523	0.86	0.47	0.59								
車道交差部	1,323,509		0.88	0.89								
車道部	1 826 107		Q7	0.83								
植栽 • 地												
盛土法配で	精度が低下したため、	地物抽出ア	゚ルゴリズム	を改良								
島	138,569	0.71	0.61	0.61								
歩道部	619,026	0.86	0.91	0.87								

I. 道路工事完成図書の完成平面図を用いた道路地物の点群データの自動取得手法の開発 改良アルゴリズムの成果

<u>道路地物の点群データを高精度に抽出できる</u>ことがわかった. 特に, 昨年度から アルゴリズムの改良により, 地盤点(車道部や歩道部等)の抽出精度が向上

■大阪堺(橋梁)の事例



黄色:既存手法

白:提案手法

昨年度アルゴリズムでは、橋梁下の点群 データが原因で抽出できなかった点群 データが多くあったが、改良アルゴリズム では、それらの<u>点群データの抽出に成功</u>

本研究の成果

- I. 道路工事完成図書の完成平面図を用いた<u>道路地物の点群</u> データの自動取得手法の開発
 - 膨大な点群データから、 <u>約20地物</u>を対象に、道路地物単位の点群データを<u>約8割の精度で自動的に抽出</u>する技術を開発
- II. 点群データの属性管理仕様に準拠したデータの作成
 - <mark>様々な点群データへ適用</mark>するため,道路工事完成図書の完成平面図と 点群データを用いて,領域データを自動生成する技術を開発
 - 点群データの属性管理仕様に準拠した領域データを用いた道路地物単位の点群データの抽出技術の開発
- III. 道路地物単位の点群データを用いた差分検出技術の開発
 - 領域データと複数時期の点群データを用いることで、

 道路地物の大きな

 変化を検出可能
 - 新設道路の検出や道路地物の移動など、点群データの差分から自動的に判 読可能

II. 点群データの属性管理仕様に準拠したデータの作成

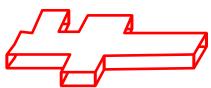
点群データの属性管理仕様(案)

【出典】

JACIC 社会基盤情報標準化委員会:道路分野における点群データの属性管理仕様の検討小委員会の資料

幾何情報(点群データ)

- 【座標系】 平面直角座標系
- 【計測年月日】2016年12月1日
- 【計測機器】Street Mapper
- 【総点数】140,192,000
- 【座標値の最大・最小】199.4,32.356,10.355 / 187.3, 29.0, 8.34
- 【反射強度の最大・最小】255/0



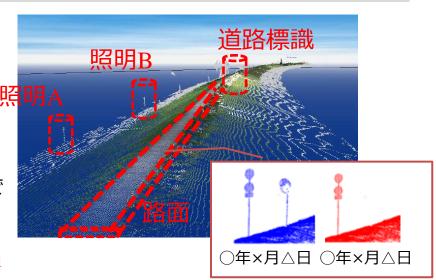
 P_n (X, Y, Z, Intensity, time,,,)

属性情報(領域+位相)

- 【座標系】 平面直角座標系
- [ID] 0001
- ・【名称】 道路中心線, 車道, 信号機など
- 【領域】底面形状(スケッチ)と押し出し(操作履歴)で地物を囲む領域を定義

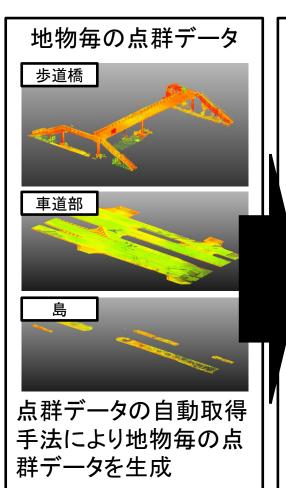
- 【参照情報】
 - ✓ 図面データ(設計図・完成図)
 - ✓ 画像データ(現場写真など)
- 【位相】
 - ✓ 属性0002と接続,
 - ※車道の面の中で、電柱と接している箇所と電柱の底面を共有

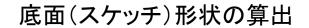
検討範囲

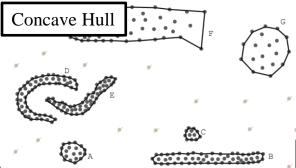

提案仕様の用途・利点

【用途】

- 地物の高速な空間検索と差分チェックが可能
 - 属性情報を手がかりに大規模点群データから対象地物のみを 一括で取得

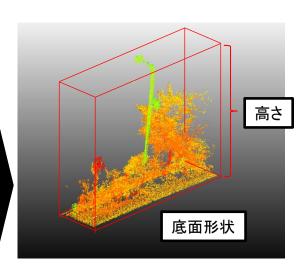

【利点】


- 点群データを加工しないため、データサイズが肥大化しない
- 属性情報を別ファイルで定義するため、データ交換が容易であり、再利用が可能
- 属性情報の精度は、入力データの特性に影響をうけない



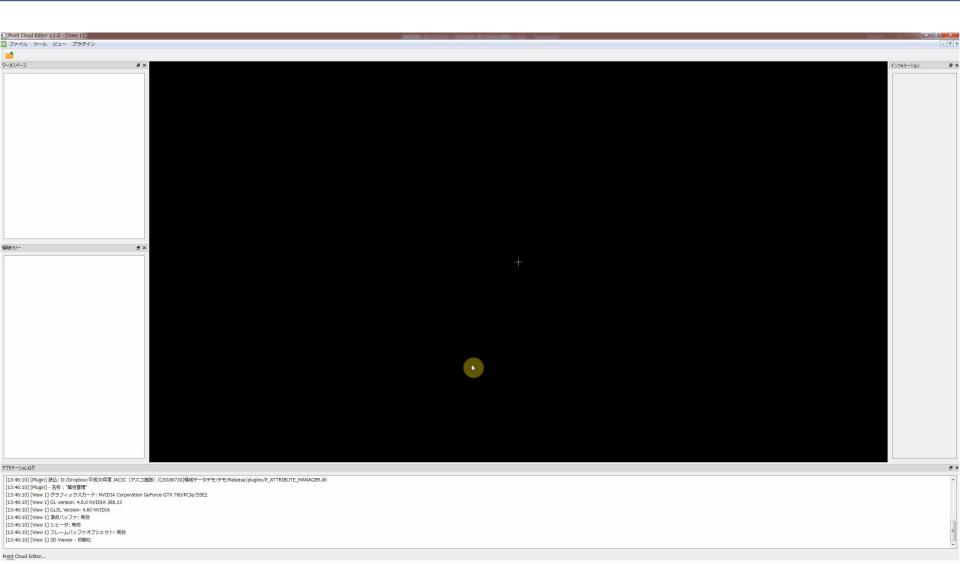
II. 点群データの属性管理仕様に準拠したデータの作成道路工事完成図書の完成平面図と点群データを用いて領域データを自動生成する技術

- 完成平面図を用いて、点群データを地物毎に分割
- 分割した地物毎の点群データから領域データを自動作成



Moreira, S., Maribel Y.: Concave hull: a knearest neighbours approach for the computation of the region occupied by a set of points, proceedings of the International Conference on Computer Graphics Theory and Applications, *GRAPP*, pp.61-68, 2007.

Concave Hullアルゴリズムにより地物毎の点群データを内包する2次元の底面形状を作成


領域の高さを算出

地物毎の点群データの最小 最大Z値から領域の高さを 算出

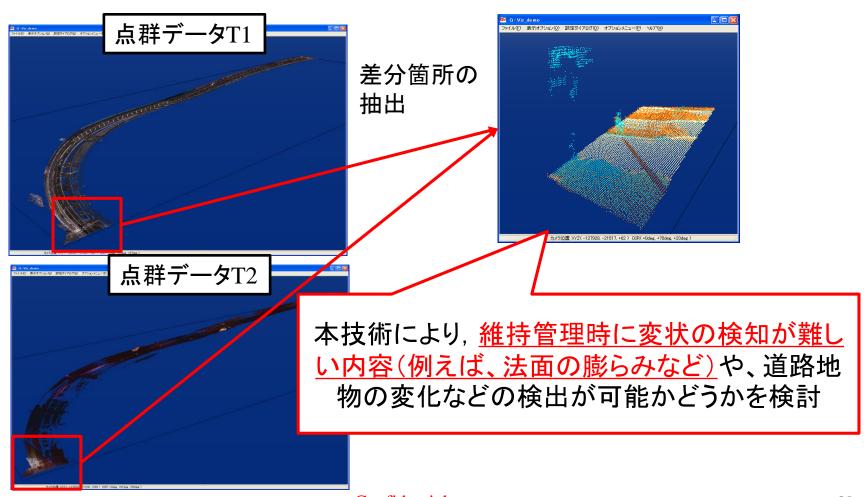
II. 点群データの属性管理仕様に準拠したデータの作成

領域データを用いた道路地物単位の点群データの抽出技術の開発

本研究の成果

- I. 道路工事完成図書の完成平面図を用いた<u>道路地物の点群</u> データの自動取得手法の開発
 - 膨大な点群データから、 <u>約20地物</u>を対象に、道路地物単位の点群データを<u>約8割の精度で自動的に抽出</u>する技術を開発

II. 点群データの属性管理仕様に準拠したデータの作成


- <u>様々な点群データへ適用</u>するため,道路工事完成図書の完成平面図と 点群データを用いて,領域データを自動生成する技術を開発
- 点群データの属性管理仕様に準拠した領域データを用いた道路地物単位の点群データの抽出技術の開発

III. 道路地物単位の点群データを用いた差分検出技術の開発

- 一 領域データと複数時期の点群データを用いることで、道路地物の大きな 変化を検出可能
 - 新設道路の検出や道路地物の移動など, 点群データの<u>差分から自動的に判</u> <u>読可能</u>

III. 道路地物単位の点群データを用いた差分検出技術の開発 実施内容

本研究は、巡視や定期点検等の点検作業の効率化を目指し、2 時期の点群データから道路地物の変状を検出する技術を開発

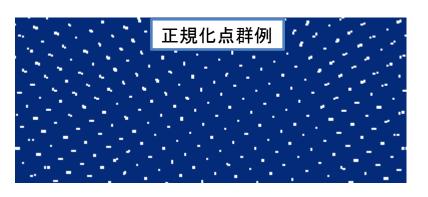
Ⅲ. 道路地物単位の点群データを用いた差分検出技術の開発 道路地物の点群データを用いた差分検出の試行

• 差分比較手法の方針

点群を比較する上での課題点

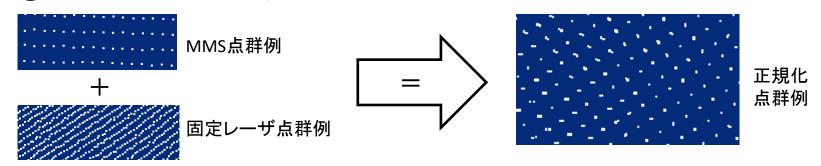
対応方針

- ・点位置: 各計測で点は同じ座標にはない
- ・点数量: 種類の違うレーザでは密度が違う
 - → 同じ位置に点(もの)があるかどうかは、 直接点同時の比較ではできない



点群座標の正規化

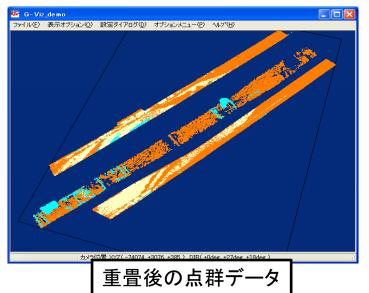
照合する点座標位置を定めておいて、その座標の近 傍に点があるか否かで判定 具体的には、座標を10cm単位に丸めた点群に編集

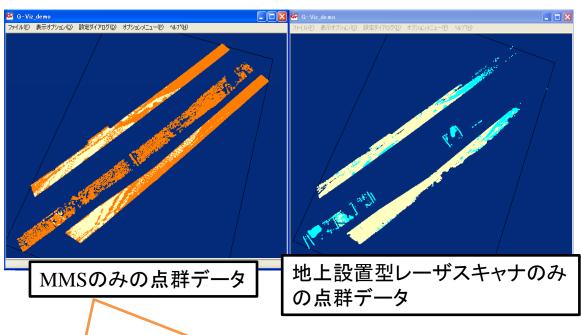

正規化の効果:

- ・点位置が一定化(10cm間隔)
- ・<u>点密度も一定化(10cmに1点、点軽減)</u>

Ⅲ. 道路地物単位の点群データを用いた差分検出技術の開発 道路地物の点群データを用いた差分検出の試行

- 差分比較手法の概要
 - ①点群データを正規化(座標を10cm単位に丸め処理)

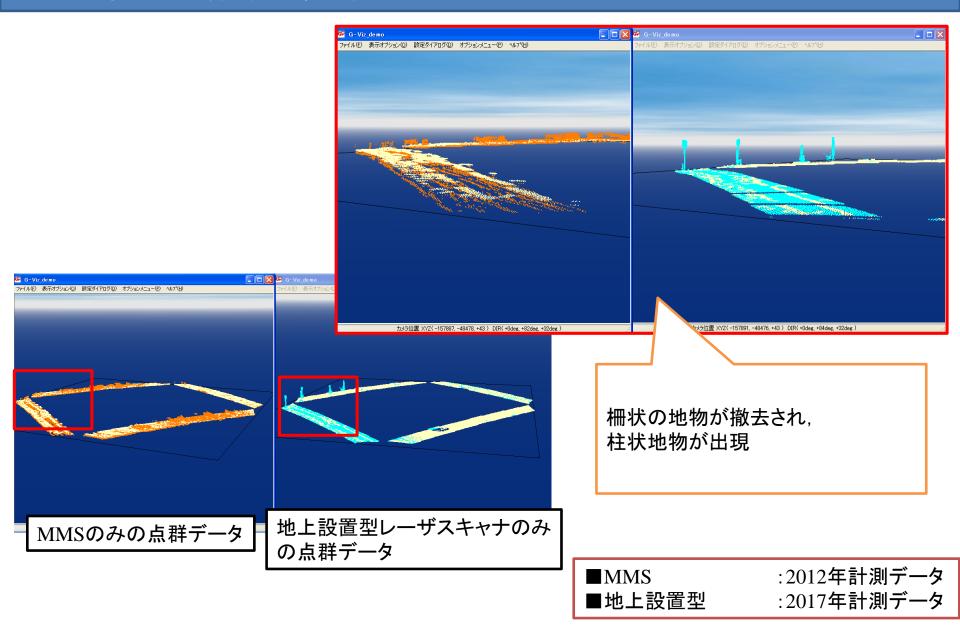

- ②点群加算時の照合範囲拡大
 - ・ 照合した座標に点がある場合、さらに照合範囲を隣接座標に拡大し、 点があるときは、その隣接座標も共通な点と判定


【照合範囲拡大時の点群加算のイメージ】

No	点の重なり	点表示	地物変化										0		
1)	MMSだけ		消滅					ı				_		0	
2)	共通		 変化なし					_				_	0	0	
•													0		
3)	地上設置型だけ		出現	Contidential										22	

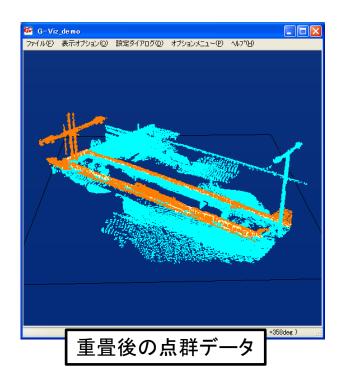
III. 道路地物単位の点群データを用いた差分検出技術の開発

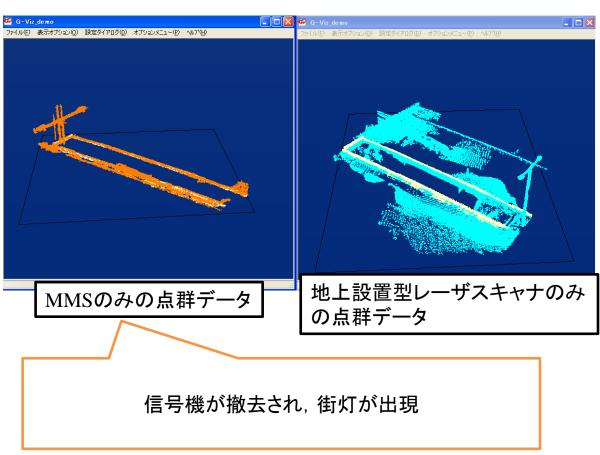
抽出結果:滋賀県高島 車道部の点群データの比較


MMSで計測された空地が消滅し、 新道に伴うカルバート等が新たに出現

■MMS : 2012年計測データ

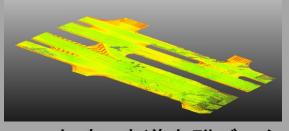
■地上設置型 :2017年計測データ


III. 道路地物単位の点群データを用いた差分検出技術の開発

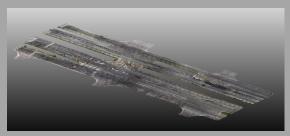

抽出結果:大阪堺(軌道敷)横断歩道の例

III. 道路地物単位の点群データを用いた差分検出技術の開発

抽出結果:大阪堺(橋梁)橋梁部(島)の例


■MMS : 2012年計測データ

■地上設置型 :2017年計測データ


Ⅲ. 道路地物単位の点群データを用いた差分検出技術の開発

平成30年度取り組み中の道路施設の変状の差分検出技術の考え方

課題

2017年度 車道点群データ

2012年度 車道点群データ

2つの精度誤差を含むデータ

計測機器の性能 (LS計測精度)

2時期のレジストレーション時の誤差 (計測条件ののことなりによる誤差 :計測機器、計測時期、対象地物等)

2017年度の試作結果より、「2時期の点群データを重畳して差分を検出する手 法では、道路施設の変状を検出することが困難」であることが判明

【対応策】

それぞれの点群データより変状 or 形状の解析結果(=解析情報)を作成し、解析情報間を 重畳して差分を検出することで、絶対的な位置の誤差を考慮しない変状検出手法を考案

本研究の成果と今後の予定

- I. 道路工事完成図書の完成平面図を用いた<u>道路地物の点群データの自動取</u> <u>得手法</u>の開発
 - 膨大な点群データから、 <mark>約20地物</mark>を対象に、道路地物単位の点群データを<mark>約8割</mark> <u>の精度で自動的に抽出</u>する技術を開発

「点群データと図面とのズレによる課題」と「道路面地物に高低差がある際の課題」が 見られたため、これらを改善する手法を開発予定

- II. 点群データの属性管理仕様に準拠したデータの作成
 - <mark>様々な点群データへ適用</mark>するため, 道路工事完成図書の完成平面図と点群データを用いて, <u>領域データ</u>を自動生成する技術を開発し, 道路地物単位の点群データの抽出可能性を評価

差分比較に加えて、道路地物単位の点群データの活用方策の模索

- III. 道路地物単位の点群データを用いた差分検出技術の開発
 - 一 領域データと複数時期の点群データを用いることで、<u>道路地物の大きな変化を検</u>出可能

<u>維持管理支援に向けて、道路地物のどのような差分があれば効果的であるかを検討。</u> 特に、法面の膨らみなど、点群データを用いることの意義がある利用シーンを模索