(4) 出石川の洪水流の解析(平面二次元不定流解析)

破堤原因の解明には、河道上の平面的な流れの状況(流速・流向)や越流水 深を把握する必要がある。このため、平面二次元不定流解析を以下のフローに 従って実施した。

検討フロー

破堤地点周辺の流況(流向・流速の解析結果)

・鳥居橋上流左岸(内
 岸)の高水敷上で流れ
 が速くなる。

・鳥居橋のせき上げに より堤防上を越流した 流れは、堤内地側へ 流向を変えている。

・越流流速は、概ね
 1.0 ~ 1.2m/s程度、最
 大で1.7m/sである。

破堤地点周辺の越流水深(解析結果)

・鳥居橋上流区間の越流
 水深は、概ね30~40cm程
 度である。

・最大越流水深は鳥居樋
 門地点で、約50cmとなった。
 ・これは越水が起きる程の
 水位上昇により、通常低水
 路沿いに流れる洪水が、上
 流から直線的に流下し、左
 岸堤防の山付け部に集中
 したためと考えられる。

堤防高の設定

破堤区間の堤防高は、H15年測量に よる左岸5.4kの値とした。(一連区間 は同じ高さ)

その他の区間の堤防高は、H16年測 量の値(20mピッチ)とした。

破堤地点周辺の越流時間(再現計算結果)

出石川破堤地点周辺の水位ハイドロ

越流による破堤危険度の評価 ・ 越流水深と越流時間

下図の最大越流水深と越流時間の関係から、鳥居橋上流の左岸(破堤あり)、右岸(破堤なし)の越流区間をみると、破堤した左岸の越流区間は破堤の危険度が高かったことがわかる。

越流による破堤危険度の評価 ・堤体材料と掃流力

(5)破堤のイメージ

鳥居橋

武(

越水

付

20日18:00前、鳥居橋によるせき上げに よって水位が上昇し、鳥居橋上流左岸 で越水が始まる。

18:00頃、集会場(鳥居橋西150m)が浸水、消防団員が天井に避難(消防団)。 P35 20:00頃、鳥居橋付近の水位がピーク に達し、越水量が最大となる。最大越 流水深は約50cm、越流幅は約100m、最 大流速は約1.7m/sと推定される。

越水

越水

ш

付

19:00~19:30頃に鳥居橋付近の一部が 欠損(地元住民)

黒字:推測、青字:ヒアリング

(6) まとめ(出石川左岸5.4k)

- 現況の断面(破堤前)では、浸透による安全性は、 確保されている。(局所動水勾配、すべり安定性)
- ただし、越水により裏のりが侵食され、堤体幅が減 少すると浸透による安全性は確保されなくなる。
- 平面二次元不定流解析結果では、破堤箇所付近は越流が発生し、その発生時間も長く破堤の危険度は高かった。
- 破堤の原因は、主に越流に伴う裏のり侵食によ るものと考えられる。

2.円山川の地盤特性

1) 基礎地盤の土質調査結果

円山川左岸9.6K、円山川右岸13.2kの上流、下流において沖積粘土の 圧密特性を把握するために、サンプリングおよび圧密試験を実施した。 沖積粘土(Ac)の層厚は、円山川左岸9.6Kで36~37m、円山川右岸 13.2kで21~31.75mである。

2)土質の物性値 <円山川左岸9.6k上流> ・自然含水比、液性限界:深度方向に凸の分布 ▶ 粘土中央部が軟らかい、物性が深度ごとに異なる ・圧密降伏応力:有効土被り圧 'v > 圧密降伏応力pc ▶ 圧密進行中で、沈下が継続

土質の物性値 < 円山川左岸9.6k下流 > ・自然含水比、液性限界、圧密降伏応力の分布は上流と同様 な特性を示す。 上流、下流ともに、地下水の汲み上げなどによる圧密降伏応 力の増加が見られる。

単位体積重量 < 円山川左岸9.6k上流下流 > ・室内土質試験結果から得られる単位体積重量を算 出した。

圧密定数 < 円山川左岸9.6k上流下流 > ・圧密試験結果から得られる圧密定数(Cv,Cc)を、 各地点の地層毎に設定した。

圧密定数 < 円山川左岸9.6k上流下流 >

- ・調査のボーリングデータにより物性条件を設定した。
- ・圧密降伏応力は、堤防施工以前を正規圧密条件と仮定した。
- ・Ac2層は、上部・中央部・下部の3層構造とした。

9.6k-1下流	物性条件一覧表							
名称	上面深度 (m)	t(kN/m ³)	Cv (cm²/day)	Cc	Cs (Cs=Cc/10)	e0	Pc- i' (KN/m ²)	
Ac1	0	18.0	1500	0.33	0.033	1.01	0	
As1	- 1.95	18.8						
Ac2U	-4.87	17.2	250	0.495	0.0495	1.21	0	
Ac2M	-19.02	15.8	80	0.92	0.092	1.72	0	
Ac2L-1	-28.02	16.7	250	0.64	0.064	1.35		
Ac2L-2	-37.02	16.7	175	0.52	0.052	1.21	0	
Dg	-41.87	19.0						

9.6k-1上流 物性条件一覧表

名称	上面深度 (m)	t(kN/m ³)	Cv (cm ² /day)	Cc	Cs (Cs=Cc/10)	e0	Pc- i' (KN/m ²)
Ac1	0	18.0	700	0.42	0.042	1.03	0
As1	-2	18.9					
Ac2U	- 5.25	17.3	300	0.52	0.052	1.18	0
Ac2M	-19.4	15.9	80	0.93	0.093	1.68	0
Ac2L-1	-28.4	16.7	200	0.615	0.0615	1.33	
Ac2L-2	-37.4	17.4	200	0.48	0.048	1.05	0
Ds	-41.25	20.0					

2)土質の物性値 <円山川右岸13.2k上流> ・自然含水比、液性限界:深度方向に凸の分布 粘土中央部が軟らかい、物性が深度ごとに異なる ・圧密降伏応力:有効土被り圧 'v > 圧密降伏応力pc 圧密進行中で、沈下が継続

土質の物性値 < 円山川右岸13.2k下流 >

・自然含水比、液性限界、圧密降伏応力の分布は上流と同様 な特性を示す。

上流、下流ともに、地下水の汲み上げなどによる圧密降伏応 力の増加が見られる。

単位体積重量 < 円山川右岸13.2k上流下流 > ・室内土質試験結果から得られる単位体積重量を算 出した。

圧密定数 < 円山川右岸13.2k上流下流 > ・圧密試験結果から得られる圧密定数(Cv,Cc)を、 各地点の地層毎に設定した。

圧密定数 < 円山川右岸13.2k上流下流 >

- ・調査のボーリングデータにより物性条件を設定した。
- ・圧密降伏応力は、堤防施工以前を正規圧密条件と仮定した。
- ・Ac2層は円山川左岸9.6kと同様に上部・中央部・下部の3層構造とした。

名称	上面標高 (m)	t(kN/m ³)	Cv (cm ² /day)	Сс	Cs (Cs=Cc/10)	e0	Pc- i' (kN/m²)
Ac1	0	16.8	250	0.53	0.053	1.29	0
As2	-3.25	18	-				
Ac2U	-3.75	16.8	250	0.53	0.053	1.29	0
Ac2M	-14.33	16.7	80	0.59	0.059	1.4	0
Ac2L	-24.92	18.8	2000	0.26	0.026	0.81	0
Dg	- 35.5	20					

13.2k下流 物性条件一覧表

13.2k上流 物性条件一覧表

名称	上面標高 (m)	t(kN/m ³)	Cv (cm ² /day)	Сс	Cs (Cs=Cc/10)	e0	Pc- i' (KN/m²)
Ac1	0	16.8	100	0.42	0.042	1.3	0
As2	-3.4	18					
Ac2U	-5.65	16.8	100	0.42	0.042	1.3	0
Ac2M	-15.32	16.4	100	0.62	0.062	1.47	0
Ac2L	-24.98	18.2	1750	0.29	0.029	0.94	0
Ds	-34.65	20					

3)現在までの築堤履歴に伴う沈下予測結果 <円山川左岸9.6kの土質データで沈下予測>

・計算は一次元圧密解析を適用し、築堤荷重の分散を考慮した。

・昭和30年より現在までの累積沈下では裏のり部分で最大となる。 P48 ・これは、昭和43年の築堤による沈下が影響している。

< 円山川右岸13.2 k 上流の土質データで沈下予測> ・計算は一次元圧密解析を適用し、築堤荷重の分散を考慮した。

< 円山川右岸13.2 k 下流の土質データで沈下予測>

・計算は一次元圧密解析を適用し、築堤荷重の分散を考慮した。

・昭和30年より現在までの累積沈下では裏のり部分で最大となる。

・累積沈下量は上流より下流地点が大きい。これは、地点による沖積粘 土の状況(層厚や圧密沈下)が影響している。

4) 将来の完成堤の築堤に伴う沈下予測結果 < 円山川左岸9.6 k の土質データで沈下予測 >

・計算は一次元圧密解析を適用し、築堤荷重の分散を考慮した。

・完成堤施工を平成17年4月に開始した場合の沈下量は、約62cm と大きい。

< 円山川右岸13.2 k 上流の土質データで沈下予測>

・計算は一次元圧密解析を適用し、築堤荷重の分散を考慮した。

< 円山川右岸13.2 k 下流の土質データで沈下予測>

・計算は一次元圧密解析を適用し、築堤荷重の分散を考慮した。

5) 沈下解析結果

他の箇所において完成堤防までに、堤防幅や高さ の確保が必要な場合は、圧密荷重の増大、沖積粘 土層厚の影響でさらに大きな沈下が発生する可能 性がある。

破堤地点の沈下は、昭和40年~50年代以降の築堤 により、現在までに円山川左岸9.6kでは約1.3m、 円山川右岸13.2kでは1.4~1.9mの沈下が発生して いる可能性がある。

また、完成断面で築堤すると、円山川左岸9.6kで 約0.65m、円山川右岸13.2kで0.35~0.45mの沈下 が更に誘発される。

3.対策の方針

次の対策が必要である。

地盤沈下状況を考慮すると計画堤防断面を確保す ることは困難である。

越水が複数の区間で生じたため河川水位を下げる 対策が必要である。

堤防の被災状況を踏まえ浸透、侵食等に強い堤防 とする。

裏小段の侵食を考慮すると堤防を一法化とした基 本断面を確保する。

上記 ~ を満たす構造について基本的な考え方を 整理する。

また、

<mark>堤防につい</mark>ては沈下の影響に配慮して、維持管理 体制を確立させる。